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Abstract

Renal cell carcinoma (RCC) denotes cancer originated from renal epithelium and accounts for 

>90% of cancers in the kidney. The disease encompasses >10 histological and molecular subtypes, 

of which clear cell RCC (ccRCC) is most common and accounts for most cancer-related deaths. 

Although somatic VHL mutations have been described for some time, more-recent cancer 

genomic studies have identified mutations in epigenetics regulatory genes and demonstrated 

marked intratumour heterogeneity, which could have prognostic, predictive and therapeutic 

relevance. Localized RCC can be successfully managed with surgery whereas metastatic RCC is 

refractory to conventional chemotherapy. However, over the past decade, marked advances in 

treatment of metastatic RCC have been made, with targeted agents including sorafenib, sunitinib, 
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bevacizumab, pazopanib and axitini that inhibit vascular endothelial growth factor (VEGF) and its 

receptor(VEGFR) and everolimus and temsirolimus, which inhibit mTOR complex 1, being 

approved. Since 2015, agents with additional targets aside from VEGFR have been approved, such 

as cabozantinib and lenvatinib; immunotherapies such as nivolumab have also been added to the 

armamentarium for metastatic RCC. Here, we provide an overview of the molecular biology of 

RCC, with a focus on ccRCC, as well as updates to complement current clinical guidelines and an 

outline of potential future directions for RCC research and therapy.

INTRODUCTION

Renal cell carcinoma (RCC) encompasses a heterogeneous group of cancers derived from 

renal tubular epithelial cells1 and is among the 10 most common cancers worldwide. Key 

advances in histopathological and molecular characterization of RCC over the past two 

decades have led to major revisions in its classification2–5. Major subtypes6 with ≥5% 

incidence are clear cell RCC (ccRCC)7, papillary RCC (pRCC)8 and chromophobe RCC 

(chRCC)9 (FIG. 1). The remaining subtypes are very rare (each with ≤1% total incidence)5 

and in cases where a tumour does not fit any subtype diagnostic criteria, it is designated as 

unclassified RCC (uRCC, ~4% total incidence)10. ccRCC is the most common subtype and 

accounts for the majority of kidney cancer deaths and is the focus of this Primer11. Indeed, 

owing to the predominance of clear cell histology in metastatic disease (83–88%)12,13, 

tumours with non-clear cell histology have been grouped as ‘nccRCC’ (Table 1) for 

feasibility in conducting clinical trials14–16. Furthermore, recent cancer genomic studies 

have revealed an overt complexity of intra-tumour17–19 and inter-tumour7,20 heterogeneity in 

ccRCC, which could contribute to the heterogeneous clinical outcomes observed21–23.

Localized RCC can be treated with partial or radical nephrectomy (removal of the kidney)24, 

ablation25 (destruction of the malignant tissue with heat or cold) or active surveillance26 

(monitoring of tumour growth with periodic radiographic studies). Despite nephrectomy 

with curative intent, ~30% of patients with ccRCC with localized disease eventually develop 

metastases27–30, which require systemic therapies and is associated with high mortality. 

Targeted therapy against vascular endothelial growth factor (VEGF) and mTOR pathways 

have been developed, but treatment response is varied and most patients eventually 

progress31. However, increased genomic and molecular understanding of metastatic ccRCC 

has contributed to an unprecedented number of drugs approvals in the United States and 

European Union (currently 12 approved drugs with six different effective mechanisms of 

action are approved). In this Primer, we discuss these new approvals and the major progress 

made in biology of ccRCC that led to their development. Furthermore, we present insights 

into genomics-based risk and treatment stratification and discuss treatment sequencing and 

combinations that are paving the way for the future design of personalized clinical 

management plans.
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EPIDEMIOLOGY

Incidence and mortality

Kidney cancer accounts for approximately 2% of all cancer diagnoses and cancer deaths 

worldwide, with incidence rates generally higher in developed countries (FIG. 2)32. 

Annually, ~295,000 new kidney cancer cases are diagnosed and ~134,000 deaths are 

recorded worldwide33,34. Kidney cancer accounts for ~63,000 new cases and ~14,000 deaths 

yearly in the United States35, and for ~84,000 new cases and ~35,000 deaths in Europe36. 

Men are more affected than women (a 2:1 ratio of new diagnoses).

The median age of patients with RCC in the Surveillance, Epidemiology, and End Results 

(SEER) database in the United States was 64 years with a near normal distribution37. 

Accordingly, when RCC is diagnosed at younger ages (≤46 years, which represents the 

lowest decile of the age distribution)37,38, the possibility of an underlying hereditary kidney 

cancer syndrome — which accounts for 3–5% of all RCCs5 — should be considered (Table 

2)39,40.

The incidence of RCC highest in the Czech Republic, with age-standardized annual rates of 

22.1 and 9.9 new cases per 100,000 men and women, respectively, over the period 2003–

200741. The incidence is also very high in the Baltic and Eastern European countries, 

although the reasons for this excess are not known. Overall, incidence rates have been 

increasing over time in most populations, but mortality rates have levelled off or are 

decreasing since 1990s. This divergent pattern of increasing incidence and decreasing 

mortality is particularly evident in developed countries. For example, analyses within the 

SEER database indicate that the increase in RCC incidence is confined to small and 

localized tumours, likely due at least in part to increasingly frequent incidental detection of 

small renal masses (tumours ≤4 cm in size) that are unlikely to have metastasized from 

increased use of abdominal imaging42. The global increases in the prevalence of obesity, an 

established RCC risk factor, might also play a part in increasing incidence, as well as 

influencing clinical outcome41,43.

Risk factors

RCC incidence increases markedly with age and is higher for men than women. In the 

United States, incidence varies by ethnic group, with rates highest among Native American, 

Indigenous Alaskans and African Americans, and lowest among Asian Americans and 

people of Pacific Island descent35. The major established risk factors for RCC include 

excess body weight, hypertension and cigarette smoking44, which were factors in 

approximately half of all diagnosed cases in one US study45. Other medical conditions that 

have been associated with RCC in epidemiological studies include chronic kidney disease, 

haemodialysis, kidney transplantation, acquired kidney cystic disease, a previous RCC 

diagnosis and, possibly, diabetes mellitus44. Many lifestyle, dietary, occupational and 

environmental factors have also been associated with RCC with varying levels of 

evidence46.

For example, contradictory reports exist on the association between red meat consumption 

and RCC risk47,48. Moderate alcohol consumption (≥11g per day) seems to reduce the risk 
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for RCC48,49. In a case–control study on physical activity and the risk of RCC, inverse 

trends in risk were found, and the authors concluded that 9% of RCC cases could be avoided 

by increasing physical activity50. However, the inverse association might have involved other 

confounding factors such as BMI and social class correlates. Other studies have found no 

such inverse association51.

Genetic factors also contribute to RCC risk, as evidenced by individuals with a family 

history of renal cancer having an approximate twofold increased risk52. Investigations into 

familial RCC have uncovered mutations in at least 11 genes (namely BAP1, FLCN, FH, 

MET, PTEN, SDHB, SDHC, SDHD, TSC1, TSC2, and VHL), some of which have also 

been implicated in sporadic RCC development39. A notable example is VHL, the mutated 

gene underlying von Hippel-Lindau disease, which is characterized by a high risk of 

developing ccRCC53; inactivation of the VHL protein, leading to unchecked expression of 

oncogenic hypoxia-inducible factors (HIF-1 and HIF-2), is also a hallmark of sporadic 

ccRCC tumours (see Mechanisms, below)39,54. Genome-wide association studies (GWAS) 

of RCC have identified six susceptibility loci to date, on chromosome regions 2p21, 2q22.3, 

8q24.21, 11q13.3, 12p11.23 and 12q24.3155–58. The 2p21 locus maps to EPAS1, a gene 

encoding the HIF-2α subunit 55 whereas the biological effects underlying the 11q13.3 locus 

seems to be attributable to changes in the regulation of CCND1 (encoding cyclin D1, which 

is involved in cell cycle regulation)59. The locus 12p11.23 probably maps to changes in 

BHLHE41 (encoding basic helix-loop-helix family member e41, which is thought to have a 

role in regulation of the circadian rhythm)60. The disease genes underlying the other GWAS 

susceptibility loci have yet to be identified.

MECHANISMS/PATHOPHYSIOLOGY

Genes and pathways

In ccRCC, the VHL tumour suppressor gene is the most frequently mutated gene7,54, and its 

complete loss through genetic (point mutations, indels and 3p25 loss) and/or epigenetic 

(promoter methylation) mechanisms constitutes the earliest, truncal oncogenic driving 

event61,62. VHL is the substrate recognition component of an E3 ligase complex that 

ubiquitinates HIF-1α and HIF-2α for proteasome-mediated degradation53,63,64. Loss of 

VHL, therefore, leads to aberrant accumulation of HIF proteins despite an adequately 

oxygenated tissue microenvironment, which in turn results in uncontrolled activation of HIF 

target genes that regulate angiogenesis, glycolysis and apoptosis (FIG. 3). Accordingly, 

human ccRCC tumours are rich in lipids and glycogens, and are highly vascular65,66 — 

which underlies why agents that primarily inhibit VEGF and its receptor VEGFR are 

effective treatments for metastatic ccRCC14,15,67. However, VHL loss alone is insufficient to 

induce ccRCC as evidenced by the long latency (>30 years) in individuals who harbour 

VHL germline mutations to develop ccRCC53 and by the observation that Vhl loss in mice is 

unable to induce ccRCC68. These results suggest that additional genetic and/or epigenetic 

events are probably needed for ccRCC to develop69.

To identify these events, large-scale cancer genomic projects have been undertaken, and 

have revealed several novel prevalent mutations in ccRCC, including PBRM1 (29–41% of 

tumour samples), SETD2 (8–12%), BAP1 (6–10%), KDM5C (4–7%) and MTOR (5–
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6%)7,70–73. Interestingly, PBRM1, SETD2 and BAP1 encode chromatin and histone 

regulating proteins, are located at 3p21 and function as tumour suppressors7,70–72. As VHL 

resides at 3p25, a single copy loss of the short arm of chromosome 3 (3p) would result in 

haploinsufficiency of these four tumour suppressor genes, corroborating the fact that 3p loss 

(that is, loss of heterozygosity) is nearly a universal event in ccRCC61 and constitutes an 

early genetic event69. By contrast, MTOR mutations in ccRCC are generally missense and 

functionally activating73,74, which could explain the reason mTOR pathway inhibitors, 

including everolimus and temsirolimus, are effective75,76.

How individual mutations and their interactions contribute to the pathogenesis and their 

values as prognostic or predictive biomarkers in ccRCC are largely unknown. Nevertheless, 

a few studies have demonstrated interesting clinical correlations that warrant future 

validation. As inactivation of VHL is the founding event of ccRCC, its mutation status has 

no effect on clinical outcome, whereas mutations involved in disease progression such as 

PBRM1, SETD2 and BAP1 as well as KDM5C (which is also involved in chromatin 

modification) were shown to associate with aggressive clinical features77–79. Small renal 

masses harbouring PBRM1 mutations were associated with stage III pathological features 

(that is, extrarenal growth but not extending beyond Gerota’s fascia see below)71, whereas 

BAP1 mutations were associated with larger tumour sizes, higher Fuhrman nuclear grade 

(large nucleus with prominent nucleolus) and worse cancer-specific survival77,78,80. 

Interestingly, mutations in BAP1 and PBRM170 or KDM5C20 seem to occur mutually 

exclusively in ccRCC, offering a molecular subclassification of ccRCC. Furthermore, 

mutations of KDM5C, which is located at Xp.11, were predominantly detected in male 

patients and correlated with long-term therapeutic benefit from sunitinib20; and mutations of 

SETD2 were associated with reduced relapse-free survival80.

Tumour heterogeneity and cancer evolution

As Nowell first described 40 years ago81, genetic diversity within tumours is thought to 

provide the substrate upon which selection can act, to enable tumours to adapt to new 

microenvironmental pressures and metabolic demands during the natural history of the 

cancer (FIG. 4A). Such genetic diversity has been studied extensively in ccRCC. For 

example, in a study of four patients with ccRCC who had multiple tumours were subjected 

to multi-region genetic analysis, VHL mutation and 3p loss of heterozygosity were found to 

be ubiquitous events across all regions sampled17. By contrast, common driver events such 

as SETD2, PBRM1, MTOR, PIK3CA, PTEN and KDM5C mutations were present 

heterogeneously within the primary tumour and metastatic sites — in some regions but not 

others. Such genetic characteristics enable the construction of tumour phylogenies, whereby 

the ‘trunk’ of the evolutionary tree depicts mutations found in the most recent common 

ancestor (MRCA) that are present in every tumour cell. ‘Branched’ mutations are found in 

some subclones but not others; these mutations may be regionally distributed across the 

tumour, occupying distinct regional niches within the primary tumour or different niches 

between the primary and metastatic sites of disease.

Furthermore, parallel evolution has also been observed, whereby recurrent branch alterations 

in subclones affect the same gene, signal transduction pathway or protein complex (FIG. 
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4B). In some cases — such as BAP1, PBRM1 and SETD2 mutations — such recurrent but 

distinct alterations can be readily explained as the ‘second hit’ event in the evolution of the 

tumour. In other cases, parallel evolution suggests considerable selection pressures for 

disruption of the same signalling pathway or protein complex. Additionally, convergence of 

genetic characteristics has been noted in several studies of ccRCC19,23,82, whereby 

mutations in genes occur at different time points but result in similar overall genomic and 

phenotypic profiles; a ‘braided river’ model has been conceived to illustrate this 

phenomenon (FIG. 4C)69. Regardless of the modality, a follow up study of ccRCC samples 

for eight patients demonstrated evidence for branched evolution in which 73–75% of driver 

alterations were found to be subclonal18.

Multi-region tumour analyses suggest the intriguing possibility that evolutionary trajectories 

are remarkably constrained in ccRCC, which — as our knowledge of microenvironmental, 

therapeutic and host selection pressures grows — could render the evolutionary routes 

predictable and, therefore, therapeutically tractable. For example, it has been shown that 

patients who responded well to mTOR inhibition harbour recurrent regionally separated 

aberrations in components of the mTOR pathway75. Furthermore, some subclonal alterations 

might be involved in the initiation and maintenance of cell-to-cell variation necessary for 

clonal selection. For example, SETD2 loss of function has been shown to impair nucleosome 

compaction, minichromosome maintenance complex component 7 (MCM7) function and 

DNA polymerase delta loading to chromatin, resulting in impaired DNA replication fork 

progression. Additionally, failure to load lens epithelium-derived growth factor p75 splice 

variant (LEDGF) and DNA repair protein RAD51 homolog 1 (RAD51) — which are 

involved in DNA break repair — has also been observed upon SETD2 loss, resulting in 

homologous recombination repair deficiency83. These events are, accordingly, plausible 

genomic biomarkers in ccRCC dispersed within distinct regional niches within each 

tumour19,84.

Immune infiltration and the tumour microenvironment

In addition to genetic alterations, gene expression, metabolic and immunological analyses of 

ccRCC have also yielded important mechanistic and clinical insights 20,85–87. Of these, 

perhaps the immune infiltration characteristics of ccRCC is of increasing interest, given the 

rise of immune checkpoint-blocking therapies in this disease (see below, Management). 

Notably, among 19 cancer types examined by The Cancer Genome Atlas research 

programme, ccRCC has the highest T cell infiltration score 87. Furthermore, higher nuclear 

grade and stage in ccRCC was correlated with an increase in T helper 2 and T regulatory cell 

infiltration87,88.

Disease models

Although RCC cell lines have been used for mechanistic studies, 89 ccRCC tumours in 

patients are highly vascular — a feature that cannot be recapitulated with in vitro cell 

studies. Furthermore, such cell lines can acquire additional genetic and/or epigenetic 

changes during passages such that in vitro drug screens do not yield specific, translatable 

insights90. Nevertheless, when these cell lines were injected subcutaneously into laboratory 
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animals, xenografted tumours largely respond to anti-VEGF therapy91 and can be used to 

investigate resistance mechanisms92,93.

More recently, patient-derived xenograft (PDX) models have been established and have been 

shown to recapitulate the patient’s documented clinical response to targeted therapies, which 

could be used in pre-clinical drug trials94. At the same time, efforts to develop mouse 

models that truly reflect human ccRCC genomics and morphology have been hampered by 

the fact that homozygous inactivation of the Vhl gene in mice does not result in ccRCC68. 

However, the identification of additional recurrent, prevalent mutations in human ccRCC 

have rekindled efforts to generate such models. For example, homozygous deletion of Vhl 

and Pbrm1 in a mouse model resulted in multifocal, lipid-rich, glycogen-rich, transplantable 

ccRCC (J.J.H., unpublished data). Interestingly, homozygous deletion of Vhl and Bap1 in a 

mouse model resulted in early lethality (<1 month), and some mice (within a cohort of 7) 

carrying homozygous deletion of Vhl and heterozygous deletion of Bap1 developed tumour 

micronodules (0.25–1.8mm) with unknown tumour incidence and molecular characteristics 
95. Overall, animal models of RCC are currently limited but being eagerly pursued.

DIAGNOSIS, SCREENING AND PREVENTION

Diagnosis

Historically, patients were diagnosed with RCC after presenting with flank pain, gross 

haematuria and a palpable abdominal mass. Nowadays, the majority of diagnoses result from 

incidental findings. This shift is a consequence of the widespread use of non-invasive 

radiological techniques such as ultrasonography or abdominal CT imaging performed for 

another reason. That being said, paraneoplasic syndromes — symptoms caused by hormones 

or cytokines excreted by tumour cells or by an immune response against the tumour — are 

not uncommon in RCC 96 and symptoms include hypercalcaemia, fever and erythrocytosis. 

Most of these symptoms are usually reversed after tumour resection11. Diagnosis is usually 

strongly suspected by imaging studies although RCCs can display variable radiographic 

appearances97. Typical radiological features for ccRCC include exophytic (outward) growth, 

heterogeneity due to intratumoral necrosis or haemorrhage and high uptake of contrast-

enhancement agents98.

Staging

The stage of RCC reflects the tumour size, extent of invasion outside of the kidney, the 

involvement of lymph nodes and whether the tumour has metastasized (FIG. 5). CT imaging 

with contrast enhancement of the chest, abdominal cavity and pelvis is required for optimal 

staging. Such imaging enables assessment of primary tumour (size and whether the tumour 

is organ-confined or extends to perinephric fat or kidney hilum), regional spread (lymph 

node involvement) and distant metastases (lung, bone and distant lymph nodes). MRI can 

also provide additional information, especially to determine whether the tumour extends into 

the vasculature (vena cava tumour thrombus). Bone scan, 18F-fluorodeoxyglucose PET and 

imaging of the brain are not systematically recommended for initial staging14,15. Prognostic 

assessment will require further laboratory testing that includes, but is not limited to, 
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haemoglobin, leukocyte and platelet counts; serum-corrected calcium levels; and lactate 

dehydrogenase levels99,100.

Genomic implications

An age of onset of ≤46 years raises the possibility of a hereditary syndrome (Table 2) and, 

according to the American Society of Clinical Oncology, should trigger consideration for 

genetic counselling and might serve as a useful cut-off age when establishing genetic testing 

guidelines37. Indeed, awareness of the non-renal malignancies and non-neoplastic features 

associated with RCC is of interest to the physician to identify hereditary syndromes40. 

Furthermore, specific therapeutic options driven by the underlying biology are now being 

developed for these different RCC related to cancer susceptibility syndromes101. Upon 

confirmation, patients and their families harbouring mutations are subject to specialized 

monitoring and treatment plans to minimize morbidity and prevent mortality.

Histopathological confirmation

Histopathological confirmation of malignancy is obtained either with renal core biopsy or on 

the partial or radical nephrectomy specimen. Initial biopsy is recommended before ablative 

therapy is undertaken (in those for whom surgery is not an option) or before initiating 

systemic therapy (in those who have metastatic disease)102. In 2016, the WHO classification 

of RCC was updated5 from previous (2004) WHO1 and International Society of Urological 

Pathology (ISUP) Consensus Conference4 (2013) systems. Although most RCCs can be 

easily classified on the basis of histological criteria, some tumours pose a diagnostic 

problem because they display a combination of features characteristic of different subtypes. 

For instance, the presence of clear cells is not unique to ccRCC but can be observed in 

pRCC, chRCC and MiT family translocation RCC (tRCC)66. Similarly, papillary structures, 

characteristic of pRCC, can be present in other RCC types103. In challenging cases, careful 

evaluation of cytological features, growth pattern, immunophenotype and genetic alterations 

usually enables the proper diagnosis. However, a subset of RCCs (~4%) cannot be assigned 

to any specific category because they either present combined morphologies or display 

unusual features and are, therefore, designated uRCC3,104,105. Nevertheless, a recent 

molecular characterization of 62 aggressive uRCC revealed distinct subsets including NF2 

loss (26%), mTORC1 pathway activation (21%) and mutations in chromatin and DNA 

damage regulators (21%)10.

At macroscopic examination, the cut surface of the ccRCC tumours is golden yellow with 

frequent haemorrhagic, necrotic and cystic areas. Microscopically, ccRCC usually consists 

of tumour cells with clear cytoplasm arranged in nests or tubules surrounded by a rich 

vascular network. The clear appearance of the cytoplasm is due to the accumulation of 

glycogen and lipids. A variable proportion of tumour cells with granular eosinophilic 

cytoplasm can be observed and, in some cases, these cells constitute the entire tumour 

mass3,104,105. The most widely used grading system for ccRCC is the Fuhrman grading 

system, which defines four nuclear grades (1–4) in order of increasing nuclear size, 

irregularity and nucleolar prominence106. The Fuhrman nuclear grade has been shown to 

have prognostic value in ccRCC30,107,108.
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It should be noted that all RCC types can contain foci of high-grade malignant spindle cells 

(that is, sarcomatoid differentiation). Thus, sarcomatoid RCC is no longer considered as an 

entity but rather as a progression of any RCC type109. Of note, recent genomic insights from 

sequencing matched sarcomatous and carcinomatous RCC demonstrated enrichment in 

TP53 and CDKN2A mutations, implicating these genetic defects as underlying causes of 

sarcomatoid differentiation in RCC110–112.

Screening

Owing to the relatively low incidence of RCC, universal screening (such as that for 

asymptomatic micro-hematuria) has not demonstrated a positive effect on outcomes in 

RCC113. Furthermore, other biomarkers have not yet been established for screening114,115. 

Imaging remains the primary tool for RCC detection and screening. An ultrasonography 

screening study in 45,905 participants reported a 10-fold higher RCC-incidence than 

expected for a general population with improved cancer-free survival when compared with 

symptomatic patients116.

Although most cases are sporadic62, the majority of patients with RCC might have a genetic 

predisposition38,117. Although, no guideline is available regarding the selection of patients 

for germline mutation testing, guidelines for monitoring those with confirmed hereditary 

syndromes that increase the risk of RCC are available37.

Prevention: modifiable risk factors

Smoking, obesity and hypertension are associated with increased risks of developing RCC 

whereas exercise and moderate consumption of alcohol and flavonoids reduce RCC risks.

Tobacco—When compared to never smokers, a relative risk for ever smokers of 1.38 

(95%CI=1.27–1.50) was reported in a meta-analysis including 8,032 cases and 13,800 

controls from 5 cohort studies118. A dose-dependent increase in risk in both men and women 

was found; individuals who had quit smoking >10 years prior had a lower risk when 

compared to those who had quit <10 years prior. Other studies have confirmed smoking as a 

risk factor for RCC119.

Obesity—A 5 kg/m2 increase in body mass index (BMI) was found to be strongly 

associated with RCC120. Similarly, a strong association between weight gain in early and 

mid-adulthood (18–35 years of age) with RCC was reported121. Moreover, central adiposity 

(relative risk 1.8, 95%CI 1.2–2.5) and the waist-to-hip ratio (0.86–2.88) was positively 

associated with RCC in women122. The impact of BMI on overall survival was also studied 

in 1,975 patients treated with targeted agents. The authors reported on a median overall 

survival of 25.6 months (95%CI 23.2–28.6) in patients with high BMI versus 17.1 months 

(95%CI 15.5–18.5) in patients with low BMI (adjusted hazard ratio of 0.84, 95%CI 0.73–

0.95)123. Compared with stable weight, neither steady gain in weight nor weight loss was 

significantly associated with risk of RCC121.

Hypertension and medications—Higher BMI and hypertension were independently 

shown to increase the long-term risk of RCC in men whereas a reduction in blood pressure 
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lowered the risk124. Aspirin use was found to be associated with an increased RCC risk in 

one out of five studies125; by contrast, paracetamol (acetaminophen) exposure showed no 

increased risk126. The role of phenacetin (acetophenetidin) exposure has been 

inconclusive127. Statins were reported to significantly reduce the risk of RCC in a large 

analysis (n=483,733), with a 48% risk reduction (adjusted odds ratio 0.52, 95%CI 0.45–

0.60)128. However, owing to the sporadic and low frequency nature, current guideline does 

not support the role of empiric treatment for prevention of RCC in general population; 

patients with hereditary syndromes should be monitored more closely and treated 

accordingly.

MANAGEMENT

For patients with surgically resectable RCC, the standard of care is surgical excision by 

either partial or radical nephrectomy with a curative intent. By contrast, those with 

inoperable or metastatic RCC typically undergo systemic treatment with targeted agents 

and/or immune checkpoint inhibitors. Deciding on which treatment has been largely guided 

by various nomograms30. For example, the UCLA Integrated Staging System (UISS) and 

Stage Size Grade and Necrosis (SSIGN) score integrate clinical (1997 TNM stage) and 

pathological (Fuhrman nuclear grade) information to recommend the length and frequency 

of clinical follow-up and the selection of high-risk patients for adjuvant studies129–131. 

Similarly, key prognostic factors have been identified, validated and adopted to guide and 

stratify patients with metastatic RCC for systemic treatment, including performance status, 

time from diagnosis to systemic treatment and blood levels of haemoglobin, neutrophils, 

platelets, calcium and lactate dehydrogenase99,132,133.

Surgery

Surgical treatment of RCC is related to the clinical stage of the disease and to the general 

condition of the patient (FIG. 5). Although typically reserved for localized disease, both 

partial and radical nephrectomy can also be used with cytoreductive intent in patients with 

metastatic disease. Indeed, randomized controlled trials (RCTs) demonstrating the benefit of 

this approach date from the 1990s, when cytokine-based therapies dominated the systemic 

therapy landscape. Furthermore, although most patients included in RCTs of targeted 

therapies also underwent cytoreductive nephrectomy, the current role of excision of the 

primary tumour in these patients has yet validated. However, according to main international 

guidelines many centres in offer cytoreductive nephrectomy if there is a substantial disease 

volume at the primary site but only a low burden of metastatic disease134

Partial nephrectomy—The goal of partial nephrectomy is to completely remove the 

primary tumour while preserving the largest possible amount of healthy renal parenchyma. 

Partial nephrectomy is indicated for patient with T1 tumours (according to the Union for 

International Cancer Control TNM staging system) and a normal contralateral kidney 

(elective indication). Moreover, partial nephrectomy is strongly recommended (imperative 

absolute indications) in patients with RCC who have only one kidney (anatomically or 

functionally), in those with bilateral synchronous RCC and in those with von Hippel-Lindau 

syndrome. Similarly, imperative relative indications include conditions that can impair renal 

Hsieh et al. Page 10

Nat Rev Dis Primers. Author manuscript; available in PMC 2018 May 05.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



function (for example, kidney stones, hypertension, diabetes and pyelonephritis). Indeed, 

partial nephrectomy offers lower renal function impairment135–137 and equivalent 

oncological survival outcomes compared with radical nephrectomy in those with T1 

tumours138,139. More controversial is the favourable impact of partial nephrectomy on 

overall survival140,141 because conventional wisdom dictates that removal of the whole 

kidney is better in terms of oncological outcome. In this scenario, surgical feasibility 

remains the main factor influencing the final decision making process.

In the past decade, nephrometry scoring systems have been proposed to predict the 

complexity of the partial nephrectomy procedure and predict perioperative outcomes 

according to the anatomical and topographical tumour characteristics (Table 3)142. The 

R.E.N.A.L. and PADUA nephrometry systems are still the most popular and most used tools 

to preoperatively classify tumours 143. These first-generation systems, along with the 

Centrality Index system, mainly factor in tumour-related anatomical parameters, including 

face location (that is, anterior or posterior faces, accordingly to their coverage by the anterior 

or posterior layers of the renal fascia, respectively), longitudinal polar location, rim location 

(that is, whether the tumour is located at the lateral or medial rim of the kidney), degree of 

tumour extension into the parenchyma, renal sinus involvement, upper urinary collecting 

system involvement and clinical maximal diameter of the tumour. Clinical studies 

demonstrated that such nephrometry systems were able to predict the risk of bleeding and 

post-operative complications in patients who underwent partial nephrectomy 142. Thus, they 

represent valid tools for counselling patients and selecting the ideal candidate for partial 

nephrectomy according to surgeon experience 143. Second-generation nephrometry systems, 

such as Diameter-Axial-Polar system, Zonal NePhRo scoring system and Arterial Based 

Complexity System, should be externally validated and tested head-to-head against a first-

generation system before being introduced in the clinical practice.

Laparoscopic partial nephrectomy (LPN) and robot-assisted partial nephrectomy (RAPN) 

are the main alternative to classical open partial nephrectomy (OPN). However, RAPN and 

OPN are more appropriate in the treatment of more-complex cases (based on expert 

opinion). Conversely, LPN should be reserved for small tumours (usually ≤4 cm in size) in 

patients without complex features as defined according to nephrometry systems (low- or 

intermediate-risk categories). Available meta-analyses have demonstrated that RAPN 

provides equivalent perioperative outcomes to LPN, but a significantly shorter warm 

ischaemia time144,145. Moreover, RAPN seems to be significantly better than OPN in terms 

of perioperative complications, estimated blood loss and hospital stay146,147. Conversely, 

transfusion rate, ischaemia time, estimated glomerular filtration rate change and early cancer 

outcomes are similar between the two approaches147. International guidelines recommended 

the use of both approaches according to the surgeon and patient preferences.

Finally, partial nephrectomy can also involve simple enucleation — entirely sparing the 

healthy parenchyma around the tumour. Alternatively, classic enucleoresection whereby a 

thin layer of healthy parenchyma is removed or polar or wedge resection whereby a wider 

excision of healthy parenchyma is performed are also viable options. A minimal tumour-free 

surgical margin following partial nephrectomy seems appropriate to avoid the increased risk 

of local recurrence24. Positive surgical margins have been reported in 1–6% of cases 
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regardless the type of used surgical technique148. Haematuria, perirenal haematoma and 

urinary fistulas are the most common complications of partial nephrectomy procedures. Less 

frequent postoperative complications can be represented by acute renal impairment and 

infection149.

Radical nephrectomy—Classical radical nephrectomy consists in the removal of kidney, 

perirenal fat tissue, adrenal gland and regional lymph nodes. However, in patients with 

tumour ≤5 cm in size, located at the inferior pole, the adrenal gland can be spared. Similarly, 

regional lymph nodes dissection can be reserved for patients with clinically positive nodes 

detected by CT or during the surgical procedure 150. Radical nephrectomy can be considered 

in cases with multiple small renal tumours, in cases in which the tumour extends into the 

vasculature and can be a laparoscopic or open procedure (FIG. 6). In most patients with 

stage I and II tumours, radical nephrectomy is currently performed using a traditional 

laparoscopic approach; the open approach remains the gold standard for the treatment of 

more complex cases. In experienced hands, the robot-assisted approach can represent a 

potential alternative to open surgery in cases with venous tumour thrombus.

Data recently extracted from the US National Cancer Data Base support the use of 

cytoreductive nephrectomy in those with metastatic disease even while they receive systemic 

targeted therapies. Indeed, the median overall survival was 17.1 months in cytoreductive 

nephrectomy cases versus 7.7 months in non-cytoreductive nephrectomy group151.

Active surveillance and ablative therapies

Active surveillance and ablative techniques such as cryotherapy or radiofrequency ablation 

are alternative strategies for elderly patients and/or those with competing health risks and 

limited life expectancy that renders them unsuitable for surgery15,24.

A definite protocol for active surveillance has yet to be defined. The most common approach 

consists of alternating between ultrasonography imaging and CT or MRI every 3 months in 

the first year, every 6 months in the second year and annually thereafter. Intervention should 

be considered for growth to >3–4 cm or by >0.4–0.5 cm per year152. Data from the Delayed 

Intervention and Surveillance for Small Renal Masses (DISSRM) registry in the United 

States showed that in a well-selected cohort of patients with up to 5 years of prospective 

follow-up, active surveillance was not inferior to primary intervention in terms of both 

overall survival and cancer-specific survival 26.

Ablative technology must be able to completely destroy all viable tumour tissue with no area 

of viable tumour left. Both cryotherapy and radiofrequency ablation can be performed using 

a laparoscopic or percutaneous approach under a CT or ultrasound guidance. A meta-

analysis of case series showed 89% and 90% of efficacy for cryoablation and radiofrequency 

ablation, respectively25; complication rates are 20% and 19%. Available low quality studies 

suggest a higher local recurrence rate for ablative therapies compared with partial 

nephrectomy153.

Hsieh et al. Page 12

Nat Rev Dis Primers. Author manuscript; available in PMC 2018 May 05.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Medical management

The past 10 years have seen the approval of a number of targeted therapeutic agents and one 

immunotherapy agent for the treatment of metastatic RCC (FIG. 7). However, in the 

adjuvant setting after surgery, the situation is less clear and a randomised trial (ASSURE) of 

sunitinib versus sorafenib versus placebo showed no benefit for either drug therapy in terms 

of disease-free survival131. Notably, a recent study in the adjuvant setting reported a disease-

free survival benefit for 1 year of sunitinib therapy in comparison with observation in the S-

TRAC trial130. A number of other trials of adjuvant targeted therapies (such as PROTECT 

and SORCE) have completed accrual and will report outcomes in the next 12 months.

Targeted therapies—Given the highly vascular nature of RCCs, it is unsurprising that 

several therapies are available to exploit this feature. Indeed, tyrosine kinase inhibitors 

targeting the VEGF signalling axis approved in the first-line and second-line settings for the 

treatment of metastatic RCC in United States and European Union are sorafenib, sunitinib, 

pazopanib, axitinib, lenvatinib and cabozantinib154–159. All approvals have been as single 

agents except the combinations of lenvatinib with everolimus; additionally, the anti-VEGF 

monoclonal antibody bevacizumab is approved for use with interferon-α160,161. Broadly 

speaking, sunitinib, pazopanib and the combination of bevacizumab and interferon-α are 

approved as first-line options whereas axitinib and cabozantinib are approved in the second 

line. The mTOR inhibitors everolimus and temsirolimus are approved as single agents in the 

second-line setting and in the first line in patients with poor risk status162,163. Indeed, 

arguably the landmark trial of first-line systemic therapy of metastatic RCC was the phase 3 

study of sunitinib versus interferon-α reported in 2007 in which the superiority of sunitinib 

in terms of response rate, progression free and overall survival was reported155. This trial 

established sunitinib as the standard of care and the drug remains the comparator for all 

currently recruiting phase 3 studies of new drugs.

No clinically usable markers are available to select patients for particular therapies, despite 

intensive efforts. As such, the average duration of disease control with these drugs is 8–9 

months in the first line setting and 5–6 months in the second line setting. Most of the phase 3 

RCTs leading to the approval of these agents have excluded patients with nccRCC (Box 1) 

and as such this evidence base relates largely to ccRCC. Furthermore all of these agents are 

given continuously until disease progression in the absence of major toxicity. Furthermore, 

alternative schedules such as those electively interrupting therapy for prolonged periods have 

not been reported from RCTs.

Box 1

Limitations in the management of nccRCC

From the perspective of surgical management, the presence of non-clear cell histology 

rarely has a bearing on treatment and, in fact, histological subtype is often unknown pre-

operatively. Limited data are available to guide medical management of non-clear cell 

renal cell carcinoma (nccRCC) as a consequence of the exclusion in general of non-clear 

cell histologies from registration trials of targeted agents over the past 10 years. 

Importantly, the tumours classed as nccRCC are fundamentally different; there is no 
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reason to suppose that a therapy effective for papillary RCC would be effective for 

chromophobe or indeed any other subtype of kidney cancer. Nevertheless, some trials 

have been carried out and have broadly established sunitinib as a reasonable first line 

option in nccRCC, although the efficacy is less than for clear cell renal carcinoma 

(ccRCC). Most patients with metastatic nccRCC are treated with targeted agents 

approved for ccRCC, with the data favouring VEGF inhibitors over mTORC1 

inhibitors204,22,205. Unfortunately, most patients with nccRCC succumb to their diseases 

within 18 months despite systemic treatment12,13,204,205,206, and currently there is no 

evidence base for the treatment of nccRCC with checkpoint inhibitors. Encouragingly, a 

recent phase 2 trial reported everolimus plus bevacizumab as an effective combination in 

treating nccRCC in patients whose tumours display papillary features, achieving an 

overall response rate at 43% and a median progression free survival at 12.9 months194. 

Arguably, everolimus plus bevacizumab should be considered as the comparison arm in 

trials in rare RCC subtypes displaying predominant papillary morphology (papillary RCC 

type I and type II, and unclassified RCC with papillary features). Overall, the advances 

made are encouraging, but drug therapies tailored specifically to subtype remains an 

unmet need. Initiatives such as rarekidneycancer.org set up by experts and patient 

advocates are important steps to encourage rapid communication among patients with 

rare kidney cancer, doctors specialized in nccRCC and trialists.

Immunotherapy—Cytokines such as interferon-α and high dose IL-2 that enhance anti-

tumour immune activity have been used since the 1990s to treat metastatic RCC and were 

standards of care prior to the introduction of sunitinib164. Both drugs typically benefit only a 

small subset of patients (generally those with intrinsically favourable disease biology) and 

are associated with significant toxicity, particularly in the case of high-dose IL-2. Many 

studies are currently investigating combinations of anti-VEGF therapy with new-generation 

of immunotherapy agents in the form of T-cell immune checkpoint inhibitors such as the 

antibodies against programmed cell death protein 1 ligand 1 (PDL1), which include 

avelumab and atezolizumab, and antibodies against programmed cell death protein 1 (PD1), 

which include nivolumab and pembrolizumab). PD1 negatively regulates T cell function and 

its ligand PDL1 is highly expressed by cancer cells; accordingly, blockade of the PD1–PDL1 

axis promotes T cell activation and immune killing of the cancer. Another combination 

under investigation (Checkmate 214, NCT02231749) is nivolumab with ipilimumab, an 

inhibitor of the T-cell checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). 

CTLA-4 also downregulates T cell function; its inhibition by these antibodies promotes T 

cell activation.

Nivolumab was approved in United States and European Union after the Checkmate 025 

RCT showed an overall survival benefit compared with everolimus in patients who had 

failed prior therapy with sunitinib and pazopanib165. However, the response rate to 

nivolumab was only 25% (5% for everolimus) and most patients treated did not experience 

significant tumour shrinkage. Although these check point inhibitors show promise, 

predicting response is difficult. In Checkmate 025, for example, PDL1 expression did not 

correlate with response, as had been reported in other trials in other cancer types 165. The 
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reason for this observation is unknown, but PD-L1 expression is dynamic in space and time 

and archival (paraffin-embedded) material from the primary tumour used in Checkmate 025 

might not have been representative of PD-L1 expression at metastatic tumour sites.

Finally, nivolumab is well tolerated compared with everolimus. Furthermore, it has been 

possible to combine nivolumab (and other anti-PD1 or anti-PDL1 therapies) with ‘clean’ 

(that is, more-specific, less-toxic and easier to combine) anti-VEGF therapies such as 

axitinib and bevacizumab, leading to a number of phase 3 studies of such combinations in 

metastatic RCC.

QUALITY OF LIFE

Quality of life and patient reported outcomes have become an important way to assess 

therapeutic strategies in the treatment of patients with RCC. Adverse events are important to 

consider and these are summarized in Table 4. Although oncological outcomes such as 

survival are more objective, validated quality of life measures have been developed to help 

assess the patient experience.

For localized RCC, a systematic review was performed which included data from 29 studies 

that included randomized and non-randomized studies149. It noted that quality of life 

outcomes after partial nephrectomy were superior to those of radical nephrectomy regardless 

of approach or technique. Interestingly, no good evidence suggested that cryotherapy or 

radiofrequency ablation had better quality of life outcomes compared to nephrectomy.

For metastatic RCC, quality of life measures become more important as treatment is usually 

palliative and patients continually balance quality versus quantity of life. A validated 15-

question tool called the Functional Assessment of Cancer Therapy (FACT)–Kidney Cancer 

Symptom Index (FKSI) is the most specific to kidney cancer 166. A subscale of this, the 

FKSI-DRS (disease-related symptoms) has nine kidney cancer-specific questions on the 

topics of lack of energy, pain, weight loss, bone pain, fatigue, shortness of breath, cough, 

fever and haematuria. Other more-general questionnaires exist and have been used in RCC 

clinical trials, including the Functional Assessment of Cancer Therapy General (FACT-G), 

the EuroQOL EQ-5D and Visual Analogue Scale (VAS)167. These tools enable investigators 

to assess quality of life; however, limitations including questionnaire burden, incomplete 

answering and defining a truly clinically significant minimal difference in quality of life 

scores remain.

In the phase 3 registration trial of first-line sunitinib versus interferon-α in the metastatic 

setting, the FKSI, FKSI-DRS, FACT-G, EQ-5D and EQ-VAS demonstrated a consistent 

favourable difference in quality of life for sunitinib 155. This finding can probably be 

attributed to the favourable adverse effect profile of sunitinib, which is associated with less 

fatigue than interferon-α, and higher efficacy of sunitinib (31% response rate) compared 

with interferon-α (6%).

Quality of life was assessed with FKSI-19, the Functional Assessment of Chronic Illness 

Therapy-Fatigue (FACIT-F), Cancer Therapy Satisfaction Questionnaire (CTSQ) and Seville 

Quality of Life Questionnaire (SQLQ) in the COMPARZ clinical trial comparing first line 
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sunitinib versus pazopanib156. Measurements were taken at baseline and at day 28 of each 

treatment cycle, which is typically the point of highest sunitinib toxicity (including soreness 

in mouth, throat, hands and feet). Improved quality of life scores were observed in those 

patients taking pazopanib versus those taking sunitinib.

The immune checkpoint inhibitors have also had quality of life analyses reported167. In the 

Checkmate 025 study of nivolumab used the FKSI-DRS score, these were performed at 

baseline and every 4 weeks up to study week 104 after which assessments were reduced. 

Median time to health-related quality of life improvement was shorter in patients given 

nivolumab (4.7 months, 95% CI 3.7–7.5) than in patients given everolimus (median not 

reached). The overall survival of patients was longer in those who had high baseline health-

related quality of life scores who then improved than those with similar baseline whose 

scores then deteriorated. The shortest overall survival was observed in those with low 

baseline scores who then deteriorated.

OUTLOOK

With the considerable advances in the molecular biology and management of RCC over the 

past several decades, it is not without reason that one could describe the current era of 

knowledge and available treatments as the ‘golden age’ of research. If we are to progress 

further, advances in diagnosis, local management and systemic therapy are needed to 

achieve >80% long-term survival that might define the future ‘diamond age’ of kidney 

cancer research and therapy (FIG. 7). Areas that currently show promise include developing 

strategies for treating high-risk patients, biomarkers to guide treatment and preventing and 

overcoming drug resistance.

Biomarkers to guide treatment

Although wide ranging clinical outcomes can be attributed to tumour heterogeneity in RCC, 

opportunities to further improve clinical outcomes on the basis of individual tumour 

characteristics (so called precision medicine) is an emerging field. Given that nivolumab, 

cabozantinib and lenvatinib were only recently approved, and few correlative studies have 

been reported, potential biomarkers for VEGF and mTOR inhibitors currently have the most 

promise.

Biomarkers can range from clinical parameters (such as blood pressure) and endogenous 

substances (such as plasma proteins) to pathobiological features specific to individual 

tumours (such as mutations). For example, as an on-target clinical biomarker, hypertension 

(systolic blood pressure ≥140mmHg) in patients receiving VEGF inhibitors has been shown 

to be associated with longer progression free survival and overall survival168. Additionally, 

many studies have looked into circulating biomarkers169, among which high levels of IL-6, 

IL-8, hepatocyte growth factor and osteopontin were associated with shorter progression free 

survival in patients receiving pazopanib and sunitinib170,171 whereas high levels of lactate 

dehydrogenase were associated with better overall survival in those receiving temsirolimus 

but not interferon-α172.
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Genetic biomarkers are also beginning to be studied for associations with treatment outcome 

in various metastatic settings173–175. For example, RECORD-3, a large randomized phase 2 

trial (n=471), demonstrated the better first-line efficacy of sunitinib (progression free 

survival of 10.7 months) over first-line everolimus (progression free survival of 7.9 

months)22. Interestingly, genomic biomarker analysis of patients enrolled in RECORD-3 

showed that BAP1 mutations were associated with 8.1 month progression free survival with 

first line sunitinib but 5.5 month with first-line everolimus — a significant difference. By 

contrast PBRM1 mutations showed no such association20, which is consistent with a VEGF 

inhibitor outlier study173 and warrants further validation. That BAP1 mutations were 

associated with inferior outcomes on everolimus20 is surprising given their reported higher 

mTORC1 activity than PBMR1 mutant tumours70. Furthermore, patients with KDM5C 

mutations were associated with a much longer first-line progression-free survival with 

sunitinib (20.6 months) than everolimus (9.8 months)20. As mutual exclusivity was detected 

between mutations of BAP1 and PBRM1 or KDM5C20, molecular subgrouping of 

metastatic ccRCC based on these three genes could be of clinical value in the future. In 

addition, case-based mTOR inhibitor outlier studies recognized activation mutations of 

MTOR and bi-allelic inactivation of TSC1 or TSC2 as potential biomarkers for long-term 

responders69,73,75,76.

Managing high-risk patients

A significant number (~30%) of patients with non-metastatic disease (based on clinical and 

pathological evaluation at the initial diagnosis) have occult metastases that will eventually 

become clinically evident. How to identify and better manage these high-risk patients 

presents a major challenge for operating urologists. As we begin to appreciate the impact 

that prevalent RCC mutations (in PBRM1, SETD2, BAP1, KDM5C, PTEN, and TP53) have 

on clinical outcomes, incorporating specific mutational information into prognostic 

nomograms will become increasingly useful. For example, transcription signatures such as 

ClearCode3486, and other biomarkers in the blood and urine, might be incorporated into 

validated predictive biomarkers for RCC recurrence after surgery. Similarly, predicting 

treatment response to systemic therapy might be plausible and will reduce cost and improve 

RCC cancer patient care. Our improving ability to identify high-risk patients with RCC and 

formulate personalized treatment and follow-up plans based on multi-omics holds the 

promise to quickly reduce the incidence of patients developing overt metastatic disease and 

render long-term survival.

Emerging therapies and changes to treatment

Several promising new drugs with novel mechanisms of action are in various stages of 

clinical trials. For immunotherapeutics, ipilimumab, an anti-CTLA-4 antibody, in 

combination with nivolumab has shown remarkable response rate of ~40% in the Checkmate 

016 trial176. Additionally, the efficacy of autologous dendritic cell-based immunotherapy, 

which consists of expanding patient’s own dendritic cells in vitro followed by the 

introduction of tumour RNA before re-infusion back to the patient, in combination with 

sunitinib has been examined and showed early promise177.

Hsieh et al. Page 17

Nat Rev Dis Primers. Author manuscript; available in PMC 2018 May 05.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



In the realm of targeted therapeutics, inhibitors specifically targeting HIF-2 have been 

developed178,179. As kidney cancer is characterized by aberrant glycolysis (with aberrant 

glutamine and tryptophan metabolism65,180,181), it is of interest to learn if the glutaminase 

inhibitor CB-839182 and the indolemaine-2,3-dioxygenase inhibitor INCB024360183 could 

yield additional clinical benefits when added to existing therapies. Finally, as many of these 

novel therapeutic agents act on modulating the anti-cancer response in patients, further 

understanding of the intricate relationship between individual an kidney cancer cell and its 

respective immune microenvironment would be critical for the future success in designing 

combination treatment to improve survival87,184–187.

Given the increasing understanding of tumour biology and the increasing number of 

treatment options, how treatments are selected in the future will undoubtedly change (FIG. 

8). As well as those already discussed, potential measures of high values personalized 

vaccination188, targeted radiotherapy to enhance anti-tumour immune response189 and 

selective cytoreductive nephrectomy in patients who were initially inoperable but later 

showed marked shrinkage of tumours after systemic treatments. Additionally, neoadjuvant 

or adjuvant190 immunotherapy or targeted therapy could become integrated into the current 

treatment algorithms.

Preventing and overcoming drug resistance

Model systems and clinical experience have shown that inhibiting RCC activity with 

multiple drugs specific to different targets is superior to single-agent approaches23,191,192. 

However, such approaches tend to produce more toxicities — on and off-target. For 

example, the combination of sunitinib and everolimus in treating metastatic RCC subjected 

patients to severe toxicity193. Nevertheless, bevacizumab, a more tolerable VEGF pathway 

inhibitor than sunitinib, plus everolimus is well tolerated and has been shown to be 

efficacious in treating nccRCC with papillary features194. The success of polypharmacy 

relies on efficient and correct targeting of both primary and secondary (bypass) 

pathways69,195. In ccRCC, VEGF is the primary pathway due to the universal VHL loss; 

secondary targets can include mTORC1, MET and IL-8 but not EGFR or PI3K pathways 

when one takes into consideration of available clinical158,159,169,196,197 and preclinical 

studies92,198–200.

Given the availability of targeted therapies (FIG. 7), immediate challenge is to design the 

most effective and specific regimen through combining or sequencing drugs to prevent 

resistance in individual patients201. Interestingly, a recent study in melanoma patients who 

relapsed after the initial treatment response on PD-1 blockade revealed invaluable insights 

on how tumour cells might develop resistance to immunotherapies, including defects in 

interferon-receptor signalling and in antigen presentation 202. As immune checkpoint 

inhibitors functions independently of specific oncogenic pathways and incur distinct 

resistance mechanisms202, the combination of these drugs with targeted therapies is of great 

clinical interests203 and theoretically can prevent the emergence of escape mechanisms from 

either agent.
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Figure 1. Distinct subtypes of RCC

Approximately 75% of renal cell carcinomas (RCCs) are a | clear cell RCC (ccRCC). b | 

Papillary RCCs make up ~15% of all kidney cancers and are divided into two types based on 

staining features: b | type 1 (basophilic) and c | type 2 (eosinophilic). d | Chromophobe 

RCCs make up ~5% of kidney tumours. Other minor subtypes include e | MiT family 

translocation RCCs and f | collecting duct RCCs. Additional minor subtypes include 

medullary RCC, clear cell papillary RCC, acquired cystic disease-associated RCC, 

tubulocystic RCC, mucinous tubular and spindle RCC, succinate dehydrogenase-deficient 

RCC, hereditary leiomyomatosis, renal cell carcinoma-associated RCC and oncocytoma. 

Tumours not fitting into any of these categories are designated unclassified RCC. Scale bar = 

200 μm.
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Figure 2. Globalkidney cancer incidence

Estimated age-standardized rates (ASRs) of incidence for both sexes (per 100,000 persons) 

in 2012. Rates are generally higher in developed countries, with the highest incidence the 

Czech Republic (reasons unknown). Data from GLOBOCAN database; http://

globocan.iarc.fr.
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Figure 3. VHL inactivation in ccRCC and its implication in targeted therapy

Loss of VHL is the most frequent genetic feature of clear cell renal cell carcinoma (ccRCC). 

Its loss relieves the cell of negative regulation of the hypoxia inducible factors (HIFs), which 

results in increase HIF target gene expression and ensuing changes in cellular metabolism 

and signalling that enhances cell survival. For example, increased vascular endothelial 

growth factor (VEGF) expression increases angiogenesis in concert with increased 

signalling from growth factor receptors in endothelial cells in the tumour microenvironment 

(including fibroblast growth factor (FGF) and hepatocyte growth factor (HGF)). 

Collectively, these changes provide the targets for therapeutic agents to impede tumour 

growth, as indicated. FGFR, FGF receptor VEGFR, VEGF; TSC, tuberous sclerosis 

complex; PI3K, phosphatidylinositol 4,5-bisphosphate 3-kinase; AKT, RAC-α serine/

threonine-protein kinase; Rheb, GTP-binding protein Rheb; mTORC1, mTOR complex 1; 

mTORC2, mTOR complex 2; S6K1, ribosomal protein S6 kinase; 4EBP1, eukaryotic 

translation initiation factor 4E-binding protein 1; HRE, HIF response element; MET, 

hepatocyte growth factor receptor.
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Figure 4. Cancer evolution and tumour heterogeneity in ccRCC

Although VHL mutation and 3p loss of heterozygosity are early events that are evident in all 

clear cell renal cell carcinoma (ccRCC) cells regardless of the region of the tumour sampled, 

common driver mutations (for example, SETD2, MTOR and KDM5C mutations) are present 

heterogeneously — suggestive of subclonal evolution of the tumour. a | Cancer subclones 

originate from the most recent common ancestor cell (MRCA) in which a normal cell 

acquires all functional capacities to become cancer cell. b | Genomic heterogeneity can result 

from the sequential, parallel accumulation of mutations, contributing to the heterogeneity 

and the evolution of ccRCC. In this example, ‘R’ represents the genomic characteristics of 

the primary tumour and ‘M’ represents the genomic characteristics of the metastatic sites, 

numbered accordingly. The major genetic lesions acquired after VHL mutation feature in 

different samples and are indicated on the branches. c | However, some evidence suggests 

that tumours can converge by way of parallel evolution. Here, a hypothetical beaded river 

model depicts the sequential convergence of SETD2 and KDM5C mutations through 

different spatiotemporally distinct genetic events.
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Figure 5. Stages of kidney cancer and recommended treatments

Staging renal cell carcinoma (RCC) is based on size, position and lymph node 

involvement15. For example, a stage I or II tumour is enclosed wholly in the kidney. Stage 

III tumours can extend into major veins or adrenal glands within Gerota’s fascia (the layer of 

connective tissue encapsulating the kidneys and adrenal glands) or can involve one regional 

lymph node involvement. Stage IV tumours can invade beyond Gerota’s fascia and/or have 

distant metastases. *Until the introduction of newer targeted therapies beginning in 2005, the 

5-year survival of stage IV RCC was <10%. Treatment is largely guided by stage15,24. For 

example, those with stage I RCC who are fit for surgery are recommended partial 

nephrectomy. However, radical nephrectomy is also an option; for elderly patients or those 

who cannot undergo surgery owing to comorbidities, active surveillance or ablative therapies 

are recommended. In patients with stage III RCC, radical nephrectomy is recommended 

with lymph node dissection in those with clinical enlarged lymph nodes, but systemic 

therapies might be the only available option for those with extensive disease and poor 

performance status.
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Figure 6. Indications for radical nephrectomy

a | Radical nephrectomy could be considered in cases with multiple small renal tumours 

(circled). b | Conversely, radical nephrectomy and contextual excision of neoplastic 

thrombus into renal vein or cava vein tumour thrombus is the gold standard treatment for 

patients with venous involvement.
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Figure 7. Therapeutic evolution and survival outcome of metastatic ccRCC through the four 
different eras

a | Prior to 2004, two drugs were available to treat RCC (with a median survival of ~15 

months). This so-called dark age of treatments was followed by the modern age (2005–

2014), which saw seven additional regimens gain approval (increasing median survival to 

~30 months). Currently, the golden age has already witnessed the introduction of three 

drugs, with more anticipated over the next decade. b | These advances promise to be 

translated to a significant number of patients (~50%) achieving durable remissions under 

active surveillance by 2025 with a median survival of ~5 years. The ultimate goal is the 

future diamond age of drug approvals is >80% of patients with metastatic ccRCC long-term 

survival. Dashed lines represent predicted survival.
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Figure 8. Treatment algorithms for renal cell carcinoma

Given the advances in renal cell carcinoma (RCC) research, how patients are treated — 

based on their individual tumour characteristics — will likely change in the future.
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Table 3

Nephrometry scoring systems to predict partial nephrectomy complexity and outcomes.

Nephrometry system Parameters included Outcomes prediction External validation

R.E.N.A.L. nephrometry 25 Tumour size
Exophytic rate
Polar location
Renal sinus involvement
UCS involvement
Face location

Blood loss
Warm ischaemia time
UCS lesion
Overall complications
Functional outcomes
Benign or malignant tumour
Tumour grade

Yes

PADUA classification 153 Tumour size
Exophytic rate
Polar location
Rim location
Renal sinus involvement
UCS involvement
Face location

Blood loss
Ischaemia time
UCS lesion
Overall complications
Functional outcomes

Yes

Centrality Index 135 Tumour radius
Tumour depth (horizontal and vertical 
distances)

Ischaemia time
Functional outcomes

Yes

Diameter–Axial–Polar system 136 Diameter
Axial distance
Polar distance

Blood loss
Ischaemia time
Functional outcomes

No

Zonal NePhRo scoring system 137 Nearness
Physical zone
Tumour radius
Organization of the tumour

Perioperative complications No

Arterial Based Complexity Scoring 
System 138

Size of the renal arterial branches needing to 
be dissected or transected to achieve 
complete excision of the renal tumour

Ischaemia time
Urinary fistula

No

UCS, upper collecting system.
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Table 4

Selected adverse events and quality of life of the approved agents

Drug Adverse events Improvement inquality of life? Reference

Axitinib Hypertension, diarrhoea, hypothyroidism and hand–foot syndrome Yes versus sorafenib 157

Bevacizumab Proteinuria, hypertension and bleeding Not reported 160

Cabozantinib Diarrhoea, hand–foot syndrome, hypertension, nausea and 
hypothyroidism

Not reported

Everolimus Stomatitis, hypercholesterolaemia, hyperglycaemia and pneumonitis No versus placebo 209

Nivolumab Colitis, pneumonitis and endocrinopathies Yes versus everolimus 165

Pazopanib Diarrhoea, hypertension, liver function test abnormalities and hand–
foot syndrome

No versus placebo, Yes versus 
sunitinib

156

Sorafenib Hypertension, diarrhea, hand–foot syndrome and rash Yes versus placebo 154

Sunitinib Diarrhoea, hand–foot syndrome, mucositis and hypertension Yes versus IFN 155

Temsirolimus Stomatitis, hyperglycaemia, hypercholesterolaemia and oedema Yes versus IFN 210
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