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Abstract

Background Renal dysfunction is a frequent comorbidity

associated with high mortality in patients with chronic

heart failure (CHF). The intrinsic biological age might

affect the ability of the kidney to cope with the challenging

environment caused by CHF. We explored the association

between leukocyte telomere length, a marker for biological

age, and renal function in patients with CHF.

Methods and results Telomere length was determined by

a real-time quantitative polymerase chain reaction in 866

CHF patients. Renal function was estimated with the

simplified Modification of Diet in Renal Disease equation.

The median age was 74 (interquartile range 64–79) years,

61% male, left ventricular ejection fraction of 30 (23–

44)%, and the estimated glomerular filtration rate was 53

(40–68) ml/min/1.73 m2. Telomere length was associated

with renal function (correlation coefficient 0.123,

P \ 0.001). This relationship remained significant after

adjustment for age, gender, age of CHF onset (standard-

ized-beta 0.091, P = 0.007). Also additionally adjusting

for the severity of CHF and baseline differences did not

change our findings.

Conclusion The association between shorter leukocyte

telomere length and reduced renal function in heart failure

suggests that intrinsic biological aging affects the ability of

the kidney to cope with the systemic changes evoked by

heart failure.
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Introduction

Chronic heart failure (CHF) is an age-associated disease

with a high prevalence and incidence in Western Society

[8, 24]. Risk factors associated with increased mortality in

patients with CHF include, hypotension, anaemia,

increased BNP levels, activation of the renin-angiotensin

system, and decreased renal function [2, 7, 9, 10, 13, 18,

22, 27]. The precise nature of renal dysfunction in CHF

patients remains to be elucidated. It has been suggested that

the decreased cardiac output, increased inflammation and

oxidative stress may challenge the function and integrity of

the kidney in patients with CHF [4, 17]. At some point, a

glomerulus may be irreversibly damaged, leading to

‘‘nephron dropout’’ and accumulating into a progressive

decline of renal function. Recently, we provided pre-

liminary data suggesting a possible association between

shorter telomere length and reduced renal function in a

retrospective study [23]. We hypothesized that a more

advanced intrinsic biological age, reflected by telomere

length, increases the susceptibility of the kidney to lose

function in the challenged physiological environment

evoked by CHF.

Telomeres are considered indicators of biological age

and are heritable structures located at the extreme ends of

chromosomes. Telomeres consist of specific nucleotide
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repeats, in humans TTAGGG [3, 5, 16]. In conjunction

with several telomere-binding proteins, telomeres protect

chromosomes from recognition and degradation by DNA

damage signalling pathways [6]. When telomeres become

critically short, they lose their protective function and cells

become genetically instable, causing senescence or apop-

tosis [3]. Telomeres are incompletely replicated by DNA

polymerase, causing cumulative attrition of length after

each cell division and marking replicative history [16].

Additional telomere attrition can be caused by damaging

external factors (e.g., oxidative stress, activation of the

renin-angiotensin system) [25, 26]. The aim of our study is

to explore whether systemic leukocyte telomere length is

associated with renal function in patients with CHF.

Methods

This study was a sub-study of the Coordinating Study

Evaluating Outcomes of Advising and Counseling in Heart

Failure (COACH) of which the main findings have been

published [11, 12]. The COACH-study assessed the value

of additional support by a specialized heart failure nurse in

the treatment of CHF. Eligible patients were aged 18 years

or older, had typical signs and symptoms, and evidence for

structural heart disease confirmed by cardiovascular

imaging. Patients did not necessarily have to have impaired

left ventricular ejection fraction (LVEF). At hospital dis-

charge, patients were stable and on oral heart failure

medication. In total, 157 (15%) of the 1,023 patients who

participated in the COACH were not included in this sub-

study, mainly because of no available DNA (n = 133) or

missing serum creatinine values (n = 18). This study has

been approved by the local Medical Ethics Committee. All

patients gave written informed consent.

Renal function and telomere length

Glomerular filtration rate (GFR) was estimated at

enrollment with the simplified Modification of Diet in

Renal Diseases equation [186.3 9 (serum creatinine/

88.4)-1.154 9 age-0.203, in women multiplied by 0.742],

which is one of the most precise and accurate formulas for

calculating GFR [19]. A venous blood sample was taken

from the patients during the first outpatient visit and DNA

isolated from it according to standard protocols (Qiagen,

subsidiary Benelux B.V. Venlo, The Netherlands; QIAmp

96 DNA Blood kit, catalog no. 51162). Mean leukocyte

telomere length was measured by quantitative polymerase

chain reaction (PCR) in leukocytes, as previously described

in detail [21]. Telomere length is expressed as T/S ratio,

which is the relative ratio of telomere repeat copy number

‘‘T’’ to a single-gene copy number ‘‘S’’ (36B4). All

samples were assayed in triplicates on separate PCR plates,

but in same well positions. The mean ± SD coefficient of

variation was 7 ± 5% for the T-assay, and 6 ± 4% for S

assay.

Statistical analysis

Telomere length ratio was natural log transformed to obtain

a normal distribution. Baseline characteristics were com-

pared among quartiles of estimated glomerular filtration

rate (eGFR) by one-way analysis of variance, Kruskal–

Wallis test, or Chi-square when appropriate. Pearson cor-

relation coefficient was used to assess the association

between leukocyte telomere length and renal function.

Standard linear regression techniques were used to adjust

for age and gender in a second model and additionally for

age of CHF onset in a third model. This third basic model

was used to subsequently adjust for baseline differences.

Because renal function cannot be assumed to be linearly

related to leukocyte telomere length, it was also modeled as

a fractional polynomial function. A two-sided P value of

\0.05 was considered to indicate statistical significance.

All statistical analyses were performed with use of STATA

version 10.0 for Windows software (StataCorp LP, College

Station, TX, USA).

Results

Baseline characteristics according to quartiles of eGFR are

presented in Table 1. The study population consisted of

61% men, median age was 74 years, median LVEF was

30%, with most patients in NYHA class II and III (together

97%). Patients with decreased renal function were less

likely to be men, and more likely to be older of age, to have

higher NYHA class, hypertension, diabetes, atrial fibrilla-

tion or flutter, lower hemoglobin levels, and a previous

admission for CHF (Table 1).

Estimated GFR decreased with age at a yearly rate of

0.70 ± 0.058 ml/min/1.73 m2 (P \ 0.001). Telomere

length ratio decreased steadily at a mean rate of

0.0035 ± 0.00064 per year of increase of age (P \ 0.001).

Telomere length was 0.719 (interquartile range 0.609–

0.881) in the quartile with the highest eGFR, 0.710 (0.604–

0.855) in quartile 2, 0.673 (0.582–0.834) in quartile 3, and

0.667 (0.571–0.825) in the quartile with the lowest eGFR

(P = 0.031). When leukocyte telomere length was mod-

eled as a continuous predictor, renal function decreased

gradually with shorter telomere length. Pearson correlation

coefficient for the association between telomere length and

eGFR was 0.123 (P \ 0.001). The relationship between

renal function and telomere length remained significant

after adjustment for gender and age (standardized-beta
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0.090; Table 2). In the third basic model we also adjusted

for the age of CHF onset (Fig. 1). Our findings did not

change after additionally adjusting for baseline differences

(diabetes, hypertension, history of myocardial infarction,

NYHA class, systolic blood pressure, diastolic blood

pressure, heart rate, atrial fibrillation, NT-pro-BNP,

Table 1 Baseline characteristics

Patient characteristics Quartiles of estimated GFR (eGFR) Total, n = 866 P value

1, n = 216 2, n = 217 3, n = 216 4, n = 217

eGFR (ml/min/1.73 m2) 79 (73–88) 61 (57–65) 46 (43–49) 31 (26–36) 53 (40–68) Defining

criterion

Creatinine (lmol/l) 83 (71–91) 104 (90–113) 131 (113–141) 174 (153–205) 113 (91–144) \0.001

Telomere length

(T/S ratio)

0.72 (0.61–0.88) 0.71 (0.60–0.85) 0.67 (0.58–0.83) 0.67 (0.57–0.82) 0.69 (0.59–0.85) 0.031

Natural log T/S ratio -0.37 ± 0.28 -0.34 ± 0.28 -0.32 ± 0.27 -0.31 ± 0.28 -0.34 ± 0.28 0.031

Age 66 (57–74) 73 (64–79) 75 (67–81) 78 (71–81) 74 (64–79) \0.001

Male gender, n (%) 148 (69) 140 (65) 134 (62) 107 (49) 529 (61) \0.001

NYHA class, n (%)

II 135 (63) 112 (53) 99 (46) 87 (41) 433 (51) 0.001

III 78 (36) 93 (44) 109 (51) 115 (54) 395 (46)

IV 3 (1) 7 (3) 6 (3) 10 (5) 26 (3)

Age of onset CHF (year) 64 (54–73) 71 (62–76) 71 (63–78) 74 (68–79) 71 (61–78) 0.001

LVEF (%) 30 (22–40) 30 (21–44) 30 (23–45) 33 (25–43) 30 (23–44) 0.44

Body mass index

(kg/m2)

26.0 (23.5–29.4) 26.3 (23.9–29.7) 26.2 (23.7–29.7) 26.1 (23.0–29.4) 26.1 (23.5–29.6) 0.71

Blood pressure (mmHg)

Systolic blood pressure 110 (100–125) 120 (105–130) 115 (105–130) 120 (100–137) 115 (101–130) 0.002

Diastolic blood

pressure

65 (60–76) 70 (60–80) 65 (60–70) 65 (60–75) 69 (60–75) \0.001

Heart rate (beats/min) 76 (66–86) 72 (66–80) 72 (64–80) 72 (64–80) 72 (64–82) 0.03

Medical history, n (%)

Diabetes 52 (24) 52 (24) 60 (28) 81 (37) 245 (28) 0.005

Hypertension 81 (38) 77 (35) 93 (43) 113 (52) 364 (42) 0.002

Myocardial infarction 77 (36) 85 (39) 97 (45) 103 (47) 362 (42) 0.05

Atrial fibrillation/

flutter

76 (44) 91 (42) 107 (50) 110 (51) 384 (44) 0.003

Stroke 18 (8) 17 (8) 26 (12) 26 (12) 87 (10) 0.29

Laboratory measurements

NT-pro-BNP (pg/ml) 2,027 (1,259–

4,242)

1,983 (1,130–

3,624)

3,016 (1,202–

4,742)

4,572 (1,506–

10,664)

2,530 (1,259–

5,548)

\0.001

Hemoglobin (mmol/l) 8.7 (8.0–9.3) 8.8 (7.9–9.3) 8.3 (7.6–9.1) 7.8 (7.1–8.6) 8.4 (7.6–9.2) \0.001

Previous admission,

n (%)

48 (22) 56 (26) 69 (32) 102 (47) 275 (32) \0.001

Current medication, n (%)

RAS-inhibitors 189 (88) 189 (87) 182 (84) 155 (71) 715 (83) \0.001

Beta-blockers 145 (67) 149 (69) 141 (65) 135 (62) 570 (66) 0.52

Diuretics 205 (95) 212 (98) 205 (95) 206 (95) 828 (96) 0.39

Digoxin 77 (36) 63 (29) 74 (34) 52 (24) 266 (31) 0.034

Statins 78 (36) 91 (42) 85 (39) 79 (36) 333 (38) 0.56

Normally distributed data is presented as mean ± SD, skewed distributed data as median (interquartile range). The body-mass index is the

weight in kilograms divided by the square of the height in meters. Diuretics include loop diuretics, thiazides, and aldosterone antagonists

eGFR estimated glomerular filtration rate, NYHA New York Heart Association functional class, CHF chronic heart failure, LVEF left ventricular

ejection fraction, NT-pro-BNP N-terminal pro-B-type natriuretic peptide, RAS-inhibitors renin-angiotensin-system inhibitors (angiotensin-con-

verting enzyme inhibitor and/or angiotensin-receptor blocker)
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hemoglobin levels, use of renin-angiotensin system inhib-

itors, and digoxin; Table 2).

Discussion

A frequent co-morbidity factor and powerful predictor of

mortality in CHF is decreased renal function [7, 10, 13].

The main finding of this study is that reduced leukocyte

telomere length, as a marker for advanced intrinsic bio-

logical age, is associated with decreased renal function in

patients with CHF. This observation remained significant

after adjustment for several confounders, including age,

age of CHF onset, and severity of CHF.

Telomere length is associated with CHF. We recently

demonstrated telomere length to be shorter in 620 patients

with CHF compared to healthy controls [21]. This was also

observed by others [15]. In addition, levels of TRF2—one

of the telomere-stabilizing proteins—in the myocardium of

heart failure patients was found to be down-regulated by

approximately 50% compared to healthy controls [15].

Interestingly, Werner et al. found that physical exercise in

mice up-regulated TRF2, and protected the myocardium

from doxorubicin-induced apoptosis [28]. Thus, telomere

biology is not only associated with CHF, but seems to be a

modifiable factor in heart failure. Possibly, telomeres are a

new therapeutic target in heart failure.

A retrospective analysis of the cohort of 620 CHF

patients suggested a potential association between telo-

mere length and renal function [23]. Obviously, retro-

spective analysis is susceptible to type-1 errors. The

current prospective study, however, provides important

independent confirmation of these preliminary findings.

Reduced renal function might be associated with shorter

telomere length in patients with CHF for several reasons.

First, the processes biological aging and renal senescence

associated with renal function decline includes a

decreased ability of aged nephrons to cope with diseased

states. CHF elicits systemic changes, including decreased

cardiac output, inflammation, oxidative stress, and acti-

vation of the renin-angiotensin system [4, 22]. Nephrons

with shorter telomeres might be less resistant to these

challenges and more likely to enter a senescence state,

become dysfunctional or even apoptotic. The phenotype

of human renal senescence has indeed been described

Table 2 Univariate and

adjusted standardized beta for

association between renal

function and telomere length

Model 1: univariate; Model 2:

adjusted for age and gender;

Model 3; adjusted for age, age

of heart failure onset, and

gender

NYHA New York Heart

Association functional class,

NT-pro-BNP N-terminal pro-B-

type natriuretic peptide, RAS-
inhibitors renin-angiotensin-

system inhibitors (angiotensin-

converting enzyme and/or

angiotensin-receptor blocker)

Standardized-beta 95%CI P value

Model 1 0.123 0.057–0.189 \0.001

Model 2 0.090 0.023–0.157 0.008

Model 3 0.091 0.024–0.158 0.007

Model 3

? Diabetes 0.090 0.023–0.157 0.008

? Hypertension 0.091 0.024–0.159 0.008

? Previous myocardial infarction 0.092 0.024–0.158 0.007

? NYHA class 0.085 0.018–0.153 0.013

? Systolic blood pressure 0.088 0.021–0.155 0.010

? Diastolic blood pressure 0.090 0.023–0.157 0.009

? Heart rate 0.090 0.023–0.157 0.009

? Atrial fibrillation/flutter 0.091 0.024–0.157 0.008

? NT-pro-BNP 0.103 0.011–0.194 0.028

? Hemoglobin 0.100 0.010–0.187 0.029

? RAS-inhibitors 0.074 0.007–0.142 0.031

? Digoxin 0.094 0.027–0.161 0.006

Fig. 1 Renal function histogram and association with telomere

length. Bars represent the histogram of renal function (left Y-axis;

percentage of subjects per bar). Black line represents the squared

relationship between renal function and telomere length after

adjustment for age, age of heart failure onset, and gender. The

shaded area indicate the 95% confidence limits as estimated by the

fractional polynomial function
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previously as the loss of mass and function, including a

loss of GFR [14]. Second, leukocytes telomeres mark

replicative history and therefore might mark the cumula-

tive inflammatory burden a patient has been exposed to

[1]. Inflammation is a major causal factor of vasculo- and

glomerulopathy and consequently might cause a decrease

in renal function. Finally, other factors associated with

biological aging (e.g., accumulation of advanced glyca-

tion endproducts) might cause renal dysfunction and

coincide with shorter telomere length [20].

The cross-sectional nature of our study does not allow

drawing definite conclusions concerning the nature of the

observed association. Although we used multiple statistical

adjustments, we cannot exclude possible confounding

factors that may have obscured the observed relationship.

In conclusion, decreased renal function was associated

with reduced leukocyte telomere length in patients with

CHF. This observation support the hypothesis that

increased intrinsic biological age affects the kidney in its

ability to cope with the systemic changes evoked by CHF

and might explain, at least in part, why renal function is

closely related to mortality in patients with CHF.
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