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Abstract

Background: Sympathetic overactivity and catecholamine accumulation are important characteristic findings in heart
failure, which contribute to its pathophysiology. Here, we identify a potential mechanism underlying norepinephrine
accumulation in a rat model of heart failure.

Methodology/Principal Findings: Initially, we constructed a rat model of unilateral renal artery stenosis (n = 16) and found
that the expression of renalase, a previously identified secreted amine oxidase, was markedly reduced in the ischemic
compared to the non-ischemic kidney (protein: 0.29560.085 versus 0.76560.171, p,0.05). Subsequently, we utilized an
isolated perfused rat kidney model to demonstrate that the clearance rate of norepinephrine decreased with reduction of
perfusion flow. On the basis of these findings, we hypothesized the reduced renal blood supply which occurs in heart failure
would result in impaired synthesis of renalase by the kidney and consequently reduced degradation of circulating
norepinephrine. To verify this, we used a rat model of infarction-induced heart failure (n = 12 per group). In these rats, the
flow velocity of renal artery, when measured at four weeks, is obviously lower in the operation group. Renal expression of
renalase was reduced (protein: 0.47660.043 for control, 0.24860.029 for operation versus 0.63660.151 for sham-operation)
and this was associated with an increase in circulating norepinephrine (0.16860.016 ng/mL for control, 0.20360.019 ng/mL
for operation versus 0.13860.008 ng/mL for sham-operation).

Conclusions/Significance: Renalase expression is influenced by renal blood flow and impaired synthesis of renalase by the
kidney may represent a potential mechanism underlying circulating norepinephrine accumulation in heart failure.
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Introduction

Chronic heart failure occurs as a result of a variety of

cardiovascular diseases, the most common being is ischemic heart

disease and in particular myocardial infarction. It carries a poor

prognosis, worse than that of malignant tumors collectively [1].

One of the most important pathophysiologic characteristics of

heart failure is sympathetic overactivity [2], which can contribute

to the progression and pathophysiology of cardiac dysfunction.

The plasma concentration of catecholamines is higher in patients

with heart failure than in controls [3], and the degree of elevation

is inversely correlated with prognosis [4].

In the context of end-stage heart failure, levels of circulating

catecholamines may be extremely high, whilst they are diminished

within the tissues especially the myocardium [5]. This paradox is

mainly explained by decreased tissue uptake and hence clearance

of plasma norepinephrine [6]. However, the mechanism under-

lying this decrease in catecholamine clearance remains largely

unclear. Catecholamines are mainly metabolized by the enzymes

monoamine oxidase and catechol-o-methyl transferase. However,

these two enzymes are both located intracellularly, so that they

cannot degrade circulating catecholamines directly but only target

them either before release from the nerve terminal or once they

have been taken up by cells through one of the catecholamine

uptake mechanisms.

Renalase, a renally synthesized protein mainly expressed in the

glomeruli and proximal tubules, was identified as an amine

oxidase in 2005 [7]. Unlike the classical amine oxidases, renalase is

a secreted enzyme which can be detected in plasma and degrades

circulating catecholamines. Plasma renalase is markedly reduced

in chronic renal failure and nephrectomized rats, and this

reduction is accompanied by a sizeable increase in circulating

concentrations of catecholamines [8]. Renalase-treated animals

exhibit a large reduction in blood pressure accompanied by a

decreased concentration of circulating catecholamines [7].

We hypothesized that reduced blood supply to the kidney, as a

result of redistribution of peripheral blood flow in heart failure,

causes suppression of renalase synthesis and consequently reduced

degradation of circulating catecholamines. The aims of the present

study were therefore: (a) to evaluate the influence of renal blood
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flow on renalase synthesis using a unilateral renal artery stenosis

model; (b) to ascertain the relationship between renal perfusion

flow and renal metabolism of norepinephrine using an in vitro

kidney perfusion model; and (c) to investigate the relationship

between the expression and activity of renalase in the kidney and

the plasma as well as the concentration of plasma norepinephrine

in an animal model of heart failure. Our studies focused on

norepinephrine rather than epinephrine, since the former appears

to exert much more important effects both on the heart and

vasculature than the latter, at concentrations found in the

circulation both in health and in the context of heart failure.

Methods

Animal model of unilateral renal artery stenosis
To investigate whether renal blood flow has influence on renal

synthesis of renalase, rats model of unilateral renal artery stenosis

was constructed, as detailed in Methods S1.

Norepinephrine metabolism by the kidney in vitro
To investigate whether norepinephrine can be degraded

directly by the kidney, and whether perfusion flow or pressure

can influence its clearance rate, we constructed isolated perfused

rat kidney model as previously described [9,10]. Full details are

given in Methods S1. Norepinephrine was added to the Krebs-

Henseleit bicarbonate perfusate, adjusting the concentration to

20 ng/mL.

Animal model of acute myocardial infarction (AMI)
To evaluate the expression and activity of renalase and the

concentration of plasma norepinephrine in animals with cardiac

dysfunction, a rat AMI model (n = 12/group) was constructed as

previously described [11], as detailed in Methods S1.

All animal research conformed to the Guide for the Care and

Use of Laboratory Animals published by the US National

Institutes of Health (NIH Publication No. 85-23, revised 1985)

and was approved by the Ethics Review Board for Animal Studies

of Nanjing Drum Tower Hospital (DTH ERBA 66.01/037D/

2009).

Renalase activity
Amine oxidase activity of renalase in the perfusate and plasma

of heart failure rats was measured by Amplex Red Monoamine

Oxidase Assay Kit (Invitrogen), based on the detection of H2O2 in

a horseradish peroxidase-coupled reaction according to the

manufacturer’s instructions.

Renal blood flow velocity
To evaluate renal blood flow of different groups in heart failure

model, the renal blood flow velocity were detected using Toshiba

Xario ultrasound system (SSA-680) with a 7.5 MHz linear-array

transducer. The flow velocity of renal artery proximal to

abdominal aorta of different groups were evaluated by a

technician blinded to the grouping.

Echocardiography and hemodynamic assessment
To evaluate cardiac function of rats post-AMI, we performed

echocardiography and hemodynamic assessment four weeks after

LAD ligation. Full details of the methodology are given in

Methods S1.

Plasma and tissue sample preparation
Full details are given in Methods S1.

Plasma brain natriuretic peptide (BNP) quantification
We measured plasma BNP concentration using a commercially

available kit (Uscn Life Science Inc. Wuhan, China)following the

manufacturer’s instructions.

Renalase protein expression in the kidney
Renalase protein expression in the kidney was quantified by

western blotting, and alpha-tubulin was also quantified in the same

samples as control. Full details of the methodology are given in

Methods S1. Results were presented as density values of renalase

as a ratio to alpha-tubulin.

Norepinephrine quantitation by EIA
Plasma, perfusate and urinary norepinephrine concentration

were determined by competitive ELISA using a commercially

Figure 1. Protein expression of renalase diminished in the ischemic compared to the non-ischemic kidney. A, There is no statistic
difference between renalase expression between the ACEI and control groups both in the ischemia kidney and the nonischemia one. B, Western
blotting showing renalase protein expression of ischemia kidney is lower than that of the nonischemia one. Alpha-tubulin also shown as a
housekeeping control. Corresponding graph shows accumulated results from n = 8 (A) or n = 16 (B) for each group (0.29560.085 versus 0.76560.171).
*p,0.01 vs. ischemic kidney. NS: No statistical difference is existed between the two groups.
doi:10.1371/journal.pone.0014633.g001

Renalase and Heart Failure
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Figure 2. Norepinephrine clearance is decreased in the hypoperfused kidney. A, Concentration of norepinephrine at different time points in
the perfusion medium, using a perfusion flow rate of 10 mL/min. B, Clearance rate of norepinephrine at conditions of different perfusion flow. In the
hypoperfusion group, the perfusion flow rate is 10 mL/min for the initial 30 min, followed by 5 mL/min for the succeeding 60 min. In the control group,
the perfusion flow rate is constant at 10 mL/min for 90 min. *P,0.01 vs. control. C, Dose-response curve analysis (renal flow/norepinephrine clearance)
in isolated perfused rat kidney model. The norepinephrine clearance is increased with increment in perfusion flow below 10mL/min while the clearance
remained stable at 15mL/min as compared with 10mL/min. D, Renalase activity and concentration in the perfusate at different time points during the
perfusion. The activity and concentration are undetectable at time 0. But within 10 minutes of the initiation of norepinephrine perfusion, renalase
activity and concentration increased significantly and remained high after 20 minutes during the perfusion procedure. n = 5 per group.
doi:10.1371/journal.pone.0014633.g002

Figure 3. The flow velocity of renal artery is obviously lower in the operation group of heart failure model. A, Ultrasonic images of
renal artery flow velocity of different groups. B, Corresponding graph shows accumulated results of flow velocity from n = 12 for each group
(21.9362.40 cm/s for control, 12.4360.82 cm/s for operation versus 20.3561.76 cm/s for sham-operation). *p,0.05 vs. sham-operation, p,0.05 vs.
control.
doi:10.1371/journal.pone.0014633.g003

Renalase and Heart Failure
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available kit (Norepinephrine EIA, ALPCO), according to the

manufacturer’s instructions.

Determination of plasma and perfusate renalase
concentration

Plasma and perfusate renalase concentration was determined by

ELISA analysis, full details are given in Methods S1.

Immunohistochemical analysis of renalase expression in
the kidney

We carried out immunohistochemical analysis to determine

renalase expression and spatial distribution in the kidney. 5um

paraffin-embedded kidney slices were incubated with anti-renalase

antibody (1:300, Abcam) at 4uC overnight, and visualized using

EnVision detection system with peroxidase/DAB (DAKO).

Renalase expression was quantified using Image Pro Plus 6.0

software (Media Cybernetics).

Statistical analysis
All results are expressed as mean 6 SEM. Comparisons

between two groups (ischemia and nonischemia in renal artery

stenosis model) were performed by Wilcoxon rank sum test, while

comparisons of data among three groups (operation, sham-

operation and control in heart failure model) were performed by

Kruskal-Walls test. All data were analysed using SPSS 13.0

software (SPSS, Inc, Chicago, IL, USA). Statistical significance

was defined as P,0.05 (two-tailed).

The authors had full access to the data and take responsibility

for its integrity. All authors have read and agree to the manuscript

as written.

Results

Protein expression of renalase in renal ischemia model
No difference was found in renalase protein expression between

rats treated with angiotensin converting-enzyme inhibitor (ACEI)

and those treated with corresponding vehicle (n = 8/group;

Table 1. Physical characteristics and cardiac function evaluation of rats 4 weeks post-LAD ligation.

heart weight/
body weight
(%) BNP (pg/mL) LVEDD (cm) LVESD (cm) FS (%) HR (bpm)

LVEDP
(mmHg)

±dp/dtmax

(mmHg/s)

Operation 3.7160.41 83.17612.46 0.71260.082 0.53960.066 23.38062.941 225.54665.993 23.4262.16 6(834.56612.33)

Sham-operation 2.9360.20* 17.3963.13** 0.58160.078* 0.34860.046* 39.89061.616* 208.80068.576 5.8261.27* 6(2310.45621.58)*

Control 2.8960.23* 16.2962.96** 0.51060.030** 0.29360.021** 42.43061.512** 210.29066.059 3.2161.14* 6(2834.27619.35)*

*p,0.05 vs. operation,
**p,0.01 vs. operation.
doi:10.1371/journal.pone.0014633.t001

Figure 4. Protein expression of renalase is decreased in
kidneys from heart failure rats four weeks after LAD ligation.
Alpha-tubulin also shown as a housekeeping control. Corresponding
graph shows accumulated results from n = 12 for each group
(0.47660.043 for control, 0.24860.029 for operation versus
0.63660.151 for sham-operation). *p,0.01 vs. sham-operation,
p,0.01 vs. control.
doi:10.1371/journal.pone.0014633.g004

Figure 5. Renalase expression in the kidney increases and
subsequently decreases with progression of heart failure post-
LAD ligation. Western blot showing expression of renalase at different
time points (24 h–4 weeks) post-LAD ligation. Alpha-tubulin expression is
also shown as a housekeeping control. Corresponding graph shows
accumulated results from n = 4 for each time point (1.22360.086 for 24h,
1.55660.102 for 1w, 0.98760.056 for 2w, 1.11260.057 for 3w,
0.94560.078 for 4w). * p,0.05 vs. 24h, 2w, 3w and 4w. ** p,0.05 vs. 24h.
doi:10.1371/journal.pone.0014633.g005

Renalase and Heart Failure
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Figure 1a), thus effectively excluding the possibility that renin-

angiotensin-aldosterone system activity could potentially influence

renalase expression. On the other hand, as shown in Figure 1b,

protein expression levels was lower in the ischemic than the non-

ischemic kidney, indicating that renal blood flow has an important

influence on renal synthesis of renalase.

Catecholamine degradation by the isolated perfused
kidney

The concentration of norepinephrine in the perfusion medium

decreased gradually during perfusion (Figure 2A). Moreover, the

clearance rate of norepinephrine decreased with reduction of

either perfusion flow or pressure (Figure 2B). As shown in

Figure 2C, dose-response curve analysis (renal flow/norepineph-

rine clearance) were performed. The norepinephrine clearance is

increased with increment in perfusion flow below 10mL/min

while the clearance remained stable at 15mL/min as compared

with 10mL/min. We also obtained measurements of creatinine

clearance at the same time, and these confirmed that the isolated

kidney exhibited good function in every case (data not shown). The

data suggest that norepinephrine can be degraded directly by the

kidney, and that perfusion flow or pressure are important factors

influencing its clearance rate.

Renalase activity
As shown in Figure 2D, renalase activity in the perfusate is

undetectable at time 0. But within 10 minutes of the initiation of

norepinephrine perfusion, renalase activity increased significantly

and remained high after 20 minutes during the perfusion

procedure. Unfortunately, we can not find the direct correlation

between norepinephrine clearance and renalase activity in our

experiment. Meanwhile, we also noticed that the elevation of

renalase activity in the initial 20 minutes is most likely due to the

increased renalase concentration in the perfusate as a result of

renalase secretion by the kidney in this time course. In heart failure

model, the plasma renalase activity is *9168AU in operation

group, 4667AU in sham-operation group while 3567AU in

control group. (*p,0.05 vs. sham-operation, p,0.05 vs. control.)

Perfusate renalase concentration. As shown in figure 2D,

renalase concentration in the perfusate is undetectable at time 0

while after the initiation of norepinephrine perfusion, it rose

significantly and remained at a relative high level 20 minutes post-

perfusion.

Renal blood flow velocity
As shown in Figure 3, the flow velocity of renal artery is

obviously lower in the operation group as compared to both

control and sham-operation groups in heart failure model

(21.9362.40 cm/s for control, 12.4360.82 cm/s for operation

versus 20.3561.76 cm/s for sham-operation).

Physical characteristics and cardiac function
Heart weight/body weight (%) and plasma BNP concentration

were both higher in operation group compared to the other two

groups, indicating progressive ventricular remodeling and elevated

cardiac loading. As expected, systolic function, evaluated by %FS

and 6dp/dt, exhibited a marked deterioration in the operation

group compared with the sham operation and control groups

(Table 1). Heart rate was slightly higher in the operation group,

consistent with heightened sympathetic activity, although this rise

did not reach statistical significance. Additionally, LVESD,

LVEDD and LVEDP were both higher in operation animals

compared to the other two groups, while no differences were seen

among the three groups in IVSd or LVPWT (data not shown).

Protein expression of renalase in heart failure rats
Renalase expression decreased at the protein level in the kidneys

of heart failure rats compared with those of control rats (Figure 4).

To determine the time course of changes in renalase expression

in the kidneys, this was determined by western blotting at different

time points (24 h–4 weeks) following LAD ligation. Renal renalase

expression increased and reached a peak at one week post-LAD

ligation, gradually decreasing thereafter (Figure 5).

Plasma norepinephrine and renalase concentrations
Plasma norepinephrine was higher in heart failure rats than the

other two groups (Figure 6A), confirming sympathetic overactivity

and catecholamine accumulation as a result of heart failure.

Plasma renalase was elevated in operation as compared to both

sham operation and control rats (Figure 6B). We also analyzed the

correlation between renalase expression in kidney and plasma

levels of norepinephrine (r = 20.485, p = 0.110) or the correlation

between plasma concentration of renalase and norepinephrine

(r = 20.532, p = 0.075) at 4 weeks following LAD ligation,

although which showed no statistical significance, the tendency

of the higher renalase, the lower norepinephrine did exist in heart

failure rats (data not shown).

Figure 6. Plasma norepinephrine and renalase concentrations are both increased in heart failure rats. A, Plasma norepinephrine
concentration in different groups (0.16860.016 ng/mL for control, 0.20360.019 ng/mL for operation versus 0.13860.008 ng/mL for sham-operation).
B, Plasma renalase concentration in different groups (0.53560.109 ug/mL for control, 1.14460.243 ug/mL for operation versus 0.87260.171 ug/mL
for sham-operation). n = 12 per group. *p,0.05.
doi:10.1371/journal.pone.0014633.g006

Renalase and Heart Failure
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Pathologic analysis of renalase expression in the kidney
The spatial distribution of renalase within the kidney was

mainly in proximal tubules, with much weaker expression in

glomeruli. Quantitative analysis showed a reduction of renalase

expression in the kidneys of heart failure rats (Figure 7A–7H),

consistent with the results of protein expression as determined by

western blotting.

Discussion

Sympathetic neurohormonal overactivity and consequent

accumulation of circulating catecholamines are characteristically

found in heart failure. Sustained sympathetic activation leads to

further deterioration of cardiac function through a variety of

mechanisms including stimulation of cardiomyocyte apoptosis

[12], direct toxicity to cardiomyocytes [13], and induction of

ventricular dysrhythmias [14]. In the present study, we tried to

explore the mechanism underlying circulating norepinephrine

accumulation in heart failure with the finding that renalase protein

expression was impaired in the ischemia kidney as compared to

the non-ischemia one. In the isolated perfused kidney model, we

found that the norepinephrine can be degraded directly by the

kidney and as blood flow or pressure declined, the rate of

clearance of norepinephrine decreased in parallel. In the kidneys

of rats with ischemia-induced heart failure, we found that the flow

velocity of renal artery and renalase protein expression were

reduced with a concomitant increased concentration of circulating

norepinephrine.

The catecholamine accumulation which occurs in this context

may in part be explained by desensitization of arterial baroreflexes

Figure 7. Renalase expression is reduced in the kidneys of heart failure rats. Renalase expression is demonstrated immunohistochemically
in kidney cortex (A–C) and medulla (D–F). A, D, Control. B, E, Operation. C, F, Sham-operation. G–H, Quantification of renalase expression in
different groups in renal cortex (G) and medulla (H). n = 12 per group. *p,0.01. Scale bars: 100 mm(A–F).
doi:10.1371/journal.pone.0014633.g007

Renalase and Heart Failure
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[15] and cardiopulmonary reflexes [16], as well as elevated central

and circulating levels of angiotensin II [17–20]. However, this is

unlikely to be the full explanation since, with increasing

sympathetic activation, norepinephrine becomes depleted in the

nerve terminals. We considered it likely, therefore, that norepi-

nephrine metabolism is also decreased in heart failure. The

present results show that, indeed, heart failure is associated with a

decrease in renalase expression by the kidney, which in turn causes

a decrease in norpeinephrine degradation and hence its accumu-

lation in the circulation.

Unlike MAO-A and MAO-B, renalase is secreted into the blood

and metabolizes catecholamines in the circulation [7]. Moreover,

circulating renalase is largely inactive under basal conditions (in

the form of prorenalase), while excess catecholamines not only

stimulate its activity (through conversion to renalase) but also

upregulate its synthesis and secretion [8]. Two single nucleotide

polymorphisms (SNPs) of the renalase gene (rs2576178 and

rs2296545) have been shown to be associated with essential

hypertension in a north Han Chinese population [21]. Renalase

protein expression is decreased in the hearts of neonatally

nephrectomized rats compared to those of control animals, and

this has been postulated to contribute to the increase in plasma

norepinephrine in these rats [22].

In the present study, we found in a unilateral renal artery

stenosis rat model that the synthesis of renalase by the ischemic

kidney was impaired compared to the non-ischemic kidney,

suggesting that renal blood flow has an important influence on

renalase synthesis by the kidney. This may to a large extent explain

the circulating renalase deficiency seen in patients with end-stage

kidney disease. In the kidneys of rats with experimentally-induced

heart failure, we found that the flow velocity of renal artery is

obviously lower. Unfortunately, we can not obtain the exact data

of diameter of renal artery or that of blood flow in view of the

limitation of the resolution of our measurement instrument. But

considering the similar renal artery diameter of rats of the same

age, we believe that the renal flow velocity could at least in part

represent the situation of renal blood flow. That is to say, the renal

blood flow is lower in the operation group compared to the other

two groups. Renalase protein expression was reduced with a

concomitant increased concentration of circulating norepineph-

rine in our post-MI heart failure model.

It has previously been demonstrated that plasma renalase is

inactive whilst urinary renalase has amine oxidase activity under

basal conditions [8]. This, coupled with the finding that

catecholamines can activate renalase [8], suggests two possibilities:

either renalase does not exert a physiologically important function

or catecholamines can be metabolized by renalase in the kidney

rather than by circulating renalase, under basal conditions in vivo.

To distinguish between these two possibilities, we investigated

norepinephrine clearance in the isolated kidney perfusion model.

Our results strongly support the notion that norepinephrine is

directly degraded by the kidney. Importantly we found that, as

blood flow or pressure declined, the rate of clearance of

norepinephrine decreased in parallel. But as there is no clear

evidence that this rapid effect is due to lack of renalase, further

investigation on possible mechanism of such a rapid effect is

needed.

Interestingly, the plasma renalase concentration was higher in

heart failure rats compared with control animals. In the same way

as sympathoadrenal activity changes from compensation in the

early phase to decompensation in the late phase of heart failure,

we hypothesized that renalase expression in vivo goes through

similar changes as the function of heart failure progression. To

confirm our hypothesis, immunoblotting analysis of renalase

expression in the kidney was undertaken at different time points

following LAD ligation. Intriguingly, we found that renalase

protein level increased to a peak at one week, declining thereafter

to reach sub-basal levels. It has previously been demonstrated that

circulating catecholamines are elevated [3] whilst renal blood flow

is decreased, in patients with asymptomatic left ventricular

dysfunction [23]. We therefore propose that the kidney may

synthesize and secrete more renalase to compensate for the

increase in catecholamine concentration, during the early stage of

deterioration of cardiac function and as cardiac function continues

to deteriorate, renal blood flow falls to a critical level, so that

renalase expression by the kidney fails to keep up with the increase

in catecholamines, resulting in a phase of decompensation.

However, the mechanism underlying renalase deficiency in

under-perfused kidney remains largely unknown. Both anoxia

and renal cell insult could be the reason, which needs further

investigation.

Also, we found that the concentration and activity of plasma

renalase were both higher in heart failure rats so that there was

more activated renalase to degrade the increased circulating

catecholamine in heart failure rats which is in favor of our

hypothesis.

However, in the present study we do not provide direct evidence

for a causal relationship between the increase in plasma

norepinephrine of heart failure rats and reduced norepinephrine

degradation by renalase, which needs further investigation.

Nevertheless, our data indicate that renalase deficiency may

represent a potential mechanism underlying catecholamine

accumulation in heart failure. It remains to be seen whether

renalase replacement may prove to be a promising therapy for

heart failure.

Supporting Information

Methods S1 Supplemental Methods

Found at: doi:10.1371/journal.pone.0014633.s001 (0.05 MB

DOC)
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