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Abstract

Object viewpoint estimation from 2D images is an

essential task in computer vision. However, two issues

hinder its progress: scarcity of training data with viewpoint

annotations, and a lack of powerful features. Inspired by the

growing availability of 3D models, we propose a framework

to address both issues by combining render-based image

synthesis and CNNs (Convolutional Neural Networks). We

believe that 3D models have the potential in generating a

large number of images of high variation, which can be

well exploited by deep CNN with a high learning capacity.

Towards this goal, we propose a scalable and overfit-

resistant image synthesis pipeline, together with a novel

CNN specifically tailored for the viewpoint estimation task.

Experimentally, we show that the viewpoint estimation from

our pipeline can significantly outperform state-of-the-art

methods on PASCAL 3D+ benchmark.

1. Introduction

3D recognition is a cornerstone problem in many vi-

sion applications and has been widely studied. Despite

its critical importance, existing approaches are far from

robust when applied to cluttered real-world images. We

believe that two issues have to be addressed to enable

more successful methods: scarcity of training images with

accurate viewpoint annotation, and a lack of powerful

features specifically tailored for 3D tasks.

The first issue, scarcity of images with accurate view-

point annotation, is mostly due to the high cost of manual

annotation, and the associated inaccuracies due to human

error. Consequently, the largest 3D image dataset, PASCAL

3D+ [39], contains only ⇠22K images. As such, it is limited

in diversity and scale compared with object classification

datasets such as ImageNet, which contains millions of

images [5].

The second issue is a lack of powerful features specif-

ically tailored for viewpoint estimation. Most 3D vision

systems rely on features such as SIFT and HoG, which were

designed primarily for classification and detection tasks.

⇤Indicates equal contributions.

Convolu onal Neural Network

Figure 1. System overview. We synthesize training images by

overlaying images rendered from large 3D model collections on

top of real images. CNN is trained to map images to the ground

truth object viewpoints. The training data is a combination of

real images and synthesized images. The learned CNN is applied

to estimate the viewpoints of objects in real images. Project

homepage is at https://shapenet.cs.stanford.edu/

projects/RenderForCNN

However, this is contrary to the recent finding — features

learned by task-specific supervision leads to much better

task performance [16, 11, 14]. Ideally, we want to learn

stronger features by deep CNN. This, however, requires

huge amount of viewpoint-annotated images.

In this paper, we propose to address both issues by com-

bining render-based image synthesis and CNNs, enabling us

to learn discriminative features. We believe that 3D models

have the potential to generate large number of images of

high variation, which can be well exploited by deep CNN

with a high learning capacity.

The inspiration comes from our key observation: more

and more high-quality 3D CAD models are available online.

In particular, many geometric properties, such as symmetry

and joint alignment, can be efficiently and reliably esti-

mated by algorithms with limited human effort (Sec 2). By

rendering the 3D models, we convert the rich information

carried by them into 3D annotations automatically.

To explore the idea of “Render for CNN” for 3D tasks,

we focus on the viewpoint estimation problem — for an

input RGB image and a bounding box from an off-the-shelf

detector, our goal is to estimate the viewpoint.

To prepare training data for this task, we augment real
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images by synthesizing millions of highly diverse images.

Several techniques are applied to increase the diversity of

the synthesized dataset, in order to prevent the deep CNN

from picking up unreliable patterns and push it to learn

more robust features.

To fully exploit this large-scale dataset, we design a deep

CNN specifically tailored for the viewpoint estimation task.

We formulate a class-dependent fine-grained viewpoint

classification problem and solve the problem with a novel

loss layer adapted for this task.

The results are surprising: trained on millions of

”rendered” images, our CNN-based viewpoint estimator

significantly outperforms state-of-the-art methods, tested on

”real” images from the challenging PASCAL 3D+ dataset.

In summary, our contributions are as follows:

• We show that training CNN by massive synthetic data

is an effective approach for 3D viewpoint estimation.

In particular, we achieve state-of-the-art performance

on benchmark data set;

• Based upon existing 3D model repositories, we pro-

pose a synthesis pipeline that generates millions of

images with accurate viewpoint labels at negligible

human cost. This pipeline is scalable, and the

generated data is resistant to overfitting by CNN;

• Leveraging on the big synthesized data set, we propose

a fine-grained view classification formulation, with a

loss function encouraging strong correlation of nearby

views. This formulation allows us to accurately predict

views and capture underlying viewpoint ambiguities.

2. Related Work

3D Model Datasets Prior work has focused on manually

collecting organized 3D model datasets (e.g., [7, 10]).

Recently, several large-scale online 3D model repos-

itories have grown to tremendous sizes through public

aggregation, including the Trimble 3D warehouse (above

2.5M models in total), Turbosquid (300K models) and

Yobi3D (1M models). Using data from these repositories,

[38] built a dataset of ⇠130K models from over 600

categories. More recently, ShapeNet [33] annotated ⇠330K

models from over 4K categories. Using geometric analysis

techniques, they semi-automatically aligned 57K models

from 55 categories by orientation.

3D Object Detection Most 3D object detection methods

are based on representing objects with discriminative fea-

tures for points [4], patches [6] and parts [19, 29, 34], or by

exploring topological structures [15, 2, 3]. More recently,

3D models have been used for supervised learning of

appearance and geometric structure. For example, [32] and

[20] proposed similar methods that learn a 3D deformable

part model and demonstrate superior performance for

cars and chairs, respectively; [21] and [1] formulated an

alignment problem and built key point correspondences

between 2D images and rendered 3D views. In contrast

to these prior efforts that use hand-designed models based

on hand-crafted features, we let CNNs learn viewpoint

estimation directly from data.

Synthesizing Images for Training Synthetic images ren-

dered from 3D models have long been used in computer

vision [25, 26, 37, 23]. Recently, [32, 19, 13, 27] used 3D

models to render images for training object detectors and

viewpoint classifiers. They tweak the rendering parameters

to maximize model usage, since they have a limited number

of 3D models - typically below 50 models per category

and insufficient to capture the geometric and appearance

variance of objects in practice. Leveraging 3D repositories,

[20, 1] use 250 and 1.3K chair models respectively to render

tens of thousands training images, which are then used to

train deformable part models (DPM [8]). In our work, we

synthesize several orders of magnitude more images than

existing work. We also explore methods to increase data

variation by changing background patterns, illumination,

viewpoint, etc., which are critical for preventing overfitting

of the CNN.

While both [27] and our work connect synthetic im-

ages with CNN, they are fundamentally different in task,

approach and result. First, [27] focused on 2D object

detection, whereas our work focuses on 3D viewpoint

estimation. Second, [27] used a small set of synthetic

images (2,000 in total) to train linear classifiers based

on features extracted by out-of-the-box CNNs [16, 11].

In contrast, we develop a scalable synthesis pipeline and

generate more than two million images to learn geometric-

aware features by training deep CNNs (initialized by [11]).

Third, the performance of [27], though better than previous

work using synthetic data, did not match R-CNN baseline

trained by real images [11]. In contrast, we show significant

performance gains (Sec 5.2) over previous work [39] using

full set of real data of PASCAL VOC 2012 (trainset).

3. Problem Statement

For an input RGB image, our goal is to estimate its

viewpoint. We parameterize the viewpoint as a tuple

(✓, φ,  ) of camera rotation parameters, where ✓ is azimuth

(longitude) angle, φ is elevation (latitude) angle, and  
is in-plane rotation (around optical axis) angle. They

are discretized in a fine-grained manner, with azimuth,

elevation and in-plane rotation angles being divided into

N bins respectively. The viewpoint estimation problem

is formalized as classifying the camera rotation parameters

into these fine-grained bins (classes).

By adopting a fine-grained (N=360) viewpoint classifi-

cation formulation, our estimation is informative and accu-

rate. Compared with regression-based formulations [22],

our formulation returns the probabilities of each viewpoint,

2687



Figure 2. 3D model set augmentation by symmetry-preserving

deformation.

thus capturing the underlying viewpoint ambiguity possibly

caused by symmetry or occlusion patterns. This informa-

tion can be useful for further processing. Compared with

traditional coarse-grained classification-based formulations

that typically have 8 to 24 discrete classes [29, 39], our

formulation is capable of producing much more fine-

grained viewpoint estimation.

4. Render for CNN System

Since the space of viewpoint is discretized in a highly

fine-grained manner, massive training data is required for

the training of the network. We describe how we synthesize

such large number of training images in Sec 4.1, and how

we design the network architecture and loss function for

training the CNN with the synthesized images in Sec 4.2.

4.1. Training Image Generation

To generate training data, we render 3D model views.

To increase the diversity of object geometry, we create new

3D models by deforming existing ones downloaded from a

modestly-sized online 3D model repository. To increase the

diversity of object appearance and background clutterness,

we design a synthesis pipeline by randomly sampling

rendering parameters, applying truncation patterns and

adding random backgrounds from scene images.

Structure-preserving 3D Model Set Augmentation We

take advantage of an online 3D model repository, ShapeNet,

to collect seed models for classes of interest. The provided

models are already aligned by orientation. For models that

are bilateral or cylinder symmetric, their symmetry planes

or axes are also already extracted. Please refer to [33] for

more details of ShapeNet.

From each of the seed models, we generate new models

by a structure-preserving deformation. The problem of

structure-preservation deformation has been widely studied

in the field of geometry processing, and there exists many

candidate models as in survey [24]. We choose a symmetry-

Figure 3. Synthetic image examples. Three example images are

shown for each of the 12 classes from PASCAL 3D+.

preserving free-form deformation, defined via regularly

placed control points in the bounding cube, similar to

the approach of [30]. Our choice is largely due to the

model’s simplicity and efficiency. More advanced methods

can detect and preserve more structures, such as partial

symmetry and rigidity [31].

To generate a deformed model from a seed model,

we draw i.i.d samples from a Gaussian distribution for

the translation vector of each control point. In addition,

we regularize the deformation to set the translations of

symmetric control points to be equal. Figure 2 shows

example deformed models from our method.

Overfit-Resistant Image Synthesis We synthesize a

large number of images for each 3D model and millions

in total. Rather than pursuing realistic effect, we try to

generate images of high diversity to prevent deep CNNs

from picking up unreliable patterns.

We inject randomness in the three basic steps of our

pipeline: rendering, background synthesis, and cropping.

For image rendering, we explore two sets of parameters,

lighting condition and camera configuration. For the light-

ing condition, the number of light sources, their positions

and energies are all sampled. For the camera extrinsics,

we sample azimuth, elevation and in-plane rotation from

distributions estimated from a real image training set. Refer

to the supplementary material for more details.

Images rendered as above have a fully transparent back-

ground, and the object boundaries are highly contrasted.

To prevent classifiers from overfitting such unrealistic

boundary patterns, we synthesize the background by a

simple and scalable approach. For each rendered image,

we randomly sample an image from SUN397 dataset [40].

We use alpha-composition to blend a rendered image as

foreground and a scene image as background.

To teach CNN to recognize occluded or truncated

images, we crop the image by a perturbed object bounding

box. The cropping parameters are also learned from a real

image training set. We find that the cropped patterns tend
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Figure 4. Network architecture2. Our network includes shared

feature layers and class-dependent viewpoint estimation layers.

to be natural. For example, more bottom parts of chairs are

cropped, since chair legs and seats are often occluded.

Finally, we put together the large amount of synthetic

images, together with a small amount of real images with

ground truth human annotations, to form our training image

set. The ground truth annotation of a sample s is denoted

as (cs, vs), where cs is the class label of the sample, and

vs 2 V is the the discretized viewpoint label tuple, and V is

the space of discretized viewpoints.

4.2. Network Architecture and Loss Function

Class-Dependent Network Architecture. To effectively

exploit our large-scale dataset, we need a model with

sufficient learning capacity. CNN is the natural choice for

this challenge. We adapt network structure of AlexNet [17]

to fit our viewpoint estimation task.

We found that the CNN trained for viewpoint estimation

of one class do not perform well on another class, possibly

due to the huge geometric variation between the classes.

Instead, the viewpoint estimation classifiers are trained in a

class-dependent way. However, a naive way of training the

class-dependent viewpoint classifiers, i.e., one network for

each class, cannot scale up, as the parameter of the whole

system increases linearly with the number of classes.

To address this issue, we propose a novel network

architecture where lower layers (both convolutional layers

and fully connected layers, i.e. conv1-conv5 and fc6-fc7)

are shared by all classes, while class-dependent layers (one

fc layer for each class k, k = 0, .., N ) are stacked over them

(see Figure 4). During training, loss from class k will only

affect its corresponding top fc layer and the lower shared

layers. Our network architecture design accommodates

the fact that viewpoint estimation are class-dependent and

maximizes the usage of low-level features shared across

different classes to keep the overall network parameter

number tractable. We initialize the shared convolutional

and fully connected layers with the weights from [12].

During training, for real images all convolutional and fully

connected layers are fine-tuned, for rendered images, last

two conv layers and all fc layers are fine tuned. The class-

dependent fully connected layers are trained from scratch.

Geometric Structure Aware Loss Function. The out-

puts of the network, the (✓, φ,  ) tuples, are geometric

entities. We propose a geometric structure aware loss

function to exploit their geometric constraints. We define

the viewpoint classification loss Lvp adapted from the soft-

max loss as:

Lvp({s}) = −
X

{s}

X

v2V

e−d(v,vs)/σ logPv(s; cs), (1)

where Pv(s; cs) is the probability of view v for sample

s from the soft-max viewpoint classifier of class cs, and

d : V ⇥ V 7! R is the distance between two viewpoints,

e.g. geodesic distance on 3-sphere or geodesic distance of

points by (✓, φ) on 2-sphere plus scaled `1 distance of  .

By substituting an exponential decay weight w.r.t viewpoint

distance for the mis-classification indicator weight in the

original soft-max loss, we explicitly encourage correlation

among the viewpoint predictions of nearby views.

5. Experiments

Our experiments are divided into four parts. First,

we evaluate our viewpoint estimation system on the PAS-

CAL3D+ data set [39] (Sec 5.2). Second, we visualize

the structure of the learned viewpoint-discriminative feature

space (Sec 5.3). Third, we perform control experiments to

study the effects of synthesis parameters (Sec 5.4). Last,

we show more qualitative results and analyze error patterns.

(Sec 5.5). Before we discuss experiment details, we first

overview the 3D model set used in all the experiments.

5.1. 3D Model Dataset

As we discussed in Sec 2, there are several large-

scale 3D model repositories online. We download 3D

models from ShapeNet [33], which has organized common

daily objects with categorization labels and joint alignment.

Since we evaluate our method on the PASCAL 3D+

benchmark, we download 3D models belonging to the

12 categories of PASCAL 3D+, including 30K models in

total. After symmetry-preserving model set augmentation

(Sec 4.1), we make sure that every category has 10K

models. For more details, please refer to supplementary

material.

5.2. Comparison with state-of-the-art Methods

We compare with state-of-the-art methods on PASCAL

3D+ benchmark.

Methods in Comparison We compare with two baseline

methods, VDPM [39] and DPM-VOC+VP [28], trained on

2For simplicity, Pooling, Dropout, and ReLU layers are not shown. See

the supplementary material for the full network definition.
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VOC 2012 val AVP aero bicycle boat bus car chair table mbike sofa train tv Avg.

VDPM-4V [39] 34.6 41.7 1.5 26.1 20.2 6.8 3.1 30.4 5.1 10.7 34.7 19.5

VDPM-8V 23.4 36.5 1.0 35.5 23.5 5.8 3.6 25.1 12.5 10.9 27.4 18.7

VDPM-16V 15.4 18.4 0.5 46.9 18.1 6.0 2.2 16.1 10.0 22.1 16.3 15.6

VDPM-24V 8.0 14.3 0.3 39.2 13.7 4.4 3.6 10.1 8.2 20.0 11.2 12.1

DPM-VOC+VP-4V [9] 37.4 43.9 0.3 48.6 36.9 6.1 2.1 31.8 11.8 11.1 32.2 23.8

DPM-VOC+VP-8V 28.6 40.3 0.2 38.0 36.6 9.4 2.6 32.0 11.0 9.8 28.6 21.5

DPM-VOC+VP-16V 15.9 22.9 0.3 49.0 29.6 6.1 2.3 16.7 7.1 20.2 19.9 17.3

DPM-VOC+VP-24V 9.7 16.7 2.2 42.1 24.6 4.2 2.1 10.5 4.1 20.7 12.9 13.6

Ours-Joint-4V 54.0 50.5 15.1 57.1 41.8 15.7 18.6 50.8 28.4 46.1 58.2 39.7

Ours-Joint-8V 44.5 41.1 10.1 48.0 36.6 13.7 15.1 39.9 26.8 39.1 46.5 32.9

Ours-Joint-16V 27.5 25.8 6.5 45.8 29.7 8.5 12.0 31.4 17.7 29.7 31.4 24.2

Ours-Joint-24V 21.5 22.0 4.1 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8

Table 1. Simultaneous object detection and viewpoint estimation on PASCAL 3D+. The measurement is AVP (an extension of AP,

where true positive stands only when bounding box localization AND viewpoint estimation are both correct). We show AVPs for four

quantization cases of 360-degree views (into 4, 8, 16, 24 bins respectively, with increasing difficulty). Our method uses joint real and

rendered images and trains a CNN tailored for this task.

real images from PASCAL 3D+ VOC 2012 train set and

tested on VOC 2012 val.

For our method, we train on a combination of real images

(around 12K images in VOC12 train set) and synthetic

images. We synthesized 200K images per category and in

total 2.4M images for all 12 classes, all of which are with

accurate and free viewpoint and category annotations.

Joint Detection and Viewpoint Estimation Following

the protocol of [39, 28], we test on the joint detection and

viewpoint estimation task. The bounding boxes of baseline

methods are from their detectors and ours are from R-CNN

with bounding box regression [11].

We use AVP (Average Viewpoint Precision) advocated

by [39] as evaluation metric. AVP is the average precision

with a modified true positive definition, requiring both 2D

detection AND viewpoint estimation to be correct.

Table 1 and Figure 5 summarize the results. We observe

that our method trained with a combination of real images

and rendered images significantly outperform the baselines

by a large margin, from a coarse viewpoint discretization

(4V) to a fine one (24V), in all object categories.
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Figure 5. Simultaneous object detection and viewpoint estima-

tion performance. We compare mAVP of our models and the

state-of-the-art methods. We also compare Ours-Real with Ours-

Render and Ours-Joint (use both real and rendered images for

training) to see how much rendered images can help.

Viewpoint Estimation One might argue higher AVP is

due to higher 2D detection performance of R-CNN. So

we also directly compare viewpoint estimation performance

using the same bounding boxes.

We first show the comparison results with VDPM, using

the bounding boxes from R-CNN detection. For two sets

from detection, only correctly detected bounding boxes

are used (50% overlap threshold). The evaluation metric

is a continuous version of viewpoint estimation accuracy,

i.e., the percentage of bounding boxes whose prediction is

within ✓ degrees of the ground truth.

Figure 6 summarizes the results. Again, our method is

significantly better than VDPM on all sets. In particular, the

median of the viewpoint estimation error for our method is

14◦, which is much less than VDPM, being 57◦.

Next we show the performance comparison using ground

truth bounding boxes (Table 2). We compare with a recent

work from [35], which uses a similar network architecture

(TNet/AlexNet) as ours except the loss layer. Note

that the viewpoint estimation in this experiment includes

azimuth, elevation and in-plane rotation. We use the same

metrics as in [35], which are based on geodesic distance

(∆(R1, R2) = klog(RT
1 R2)kF /

p
2) over the manifold of

rotation matrices between ground truth and predicted 3D

viewpoints (azimuth, elevation and in-plane rotation). For

more details of the metric definition, please refer to [35].

From the results, it is clear that our methods significantly

outperforms the baseline CNN.

To evaluate the effect of synthetic data versus real data,

we compare model trained with real images (Ours-Real)

and model trained with rendered images (Ours-Render).

For Ours-Real, we flip all VOC12 train set images to

augment real training data. For Ours-Render, we only use

synthetic images for training. In Figure 6, we see an 32%
median azimuth error decrement from Ours-Real (23.5◦) to

Ours-Render (16◦). By combining two data sources (we

feed the network with both real and rendered images), we
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aero bike boat bottle bus car chair table mbike sofa train tv mean

Accπ

6
(Tulsiani, Malik) 0.78 0.74 0.49 0.93 0.94 0.90 0.65 0.67 0.83 0.67 0.79 0.76 0.76

Accπ

6
(Ours-Render) 0.74 0.83 0.52 0.91 0.91 0.88 0.86 0.73 0.78 0.90 0.86 0.92 0.82

MedErr (Tulsiani, Malik) 14.7 18.6 31.2 13.5 6.3 8.8 17.7 17.4 17.6 15.1 8.9 17.8 15.6

MedErr (Ours-Render) 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7

Table 2. Viewpoint estimation with ground truth bounding box. Evaluation metrics are defined in [35], where Accπ

6
measures accuracy

(the higher the better) and MedErr measures error (the lower the better) based on geodesic distance over the manifold of rotation matrices.

Model from Tulsiani, Malik [35] is based on TNet, a similar network architecture as ours except the loss layer. While they use real images

from both VOC 12 train and ImageNet for training, Ours-Render only uses rendered images for training.
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Figure 6. Viewpoint estimation performance on detected object

windows on VOC 2012 val. Left: mean viewpoint estimation

accuracy as a function of azimuth angle error δθ . Viewpoint is

correct if distance in degree between prediction and groundtruth

is less than δθ . Right: medians of azimuth estimation errors (in

degree), lower the better.

get another 2◦ less error.

In Figure 6 right, we also compare Real-baseline (soft-

max loss and class-independent architecture) with Real-

cls-dep (softmax loss and our class-dependent architecture)

and Ours-Real (geometric aware loss and class-dependent

architecture). We see both of our architecture choice and

smooth loss function lead to better performance.

To show the benefits of fine-grained viewpoint estima-

tion formulation, we take top-2 viewpoint proposals with

the highest confidences in local area. Figure 6 left shows

that having top-2 proposals significantly improve mVP

when azimuth angle error is large. The improvement can

be understood by observing ambiguous cases in Figure 10,

where CNN gives two or multiple high probability propos-

als and many times one of them is correct.

5.3. Learned Feature Space Visualization

The viewpoint estimation problem has its intrinsic diffi-

culty, due to factors such as object symmetry and similarity

of object appearance at nearby views. Since our CNN can

predict viewpoints well, we expect the structure of our CNN

feature space to reflect this nature. In Figure 7, we visualize

the feature space of our CNN (output of the last shared

fully connected layer) in 2D by t-SNE [36], using “car” as

an example. As a comparison, we also show the feature

space from original R-CNN over the same set of images.

We observe strong viewpoint-related patterns in our feature
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Figure 7. Feature space visualization for R-CNN and our view

classification CNN. We visualize features of car images extracted

by original R-CNN for detection (left) and our CNN for viewpoint

estimation (right) by t-SNE. Each feature point of an image is

marked in color corresponding to its quantized azimuth angle (8

bins for [0, 2π)). For points of same angle bin, their center is

labeled on the plot by angle bin id.

space: 1) images from similar views are clustered together;

2) images of symmetric views (such as 0◦ and 180◦) tend to

be closer; 3) the features form a double loop. In addition,

as the feature point moves in the clock-wise direction, the

viewpoint also moves clock-wisely around the car. Such

observations exactly reflect the nature we discussed at the

beginning of this paragraph. As a comparison, there is no

obvious viewpoint pattern for R-CNN feature space.

5.4. Synthesis Parameter Analysis

In this section we show results of our control experi-

ments, which analyze the importance of different factors

in our “Render for CNN” image synthesis pipeline. The

control experiments focus on the chair category, since it is

challenging by its diversity of structures. We first introduce

the five testbed data sets and the evaluation metrics.

Experimental Setup We refer to the test datasets using

the following short names: 1) clean: 1026 images from the

web, with relatively clean backgrounds but no occlusion,

e.g., product photos in outdoor scenes. 2) cluttered: 1000

images from the web, with heavy clutter in the background

but no occlusion. 3) ikea: 200 images of chairs photoed

from an IKEA department store, with strong background

clutter but no occlusion. 4) VOC-easy: 247 chair images
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images

per model
clean clutter ikea

VOC-

easy
VOC-

all
avg.

16 89.1 92.2 92.9 77.7 46.9 79.8

32 93.4 93.5 95.9 81.8 48.8 82.7

64 94.2 94.1 95.9 84.6 48.7 83.5

128 94.2 95.0 96.9 85.0 50.0 84.2

Table 3. Effect of synthetic image quantity. Numbers are 16Vtol

(16 view accuracy with tolerance).

clean clutter ikea
VOC-

easy
VOC-

all
avg.

nobkg 95.4 93.1 86.2 78.1 48.5 80.3

bkg (indoor) 94.2 91.6 92.8 80.6 48.9 81.6

bkg (all) 94.2 95.0 96.9 85.0 50.0 84.2

Table 4. Effect of background synthesis. Numbers are 16Vtol

(16 view accuracy with tolerance).

from PASCAL VOC 12 val, no occlusion, no truncation,

non difficult chair images. 5) VOC-all: all 1449 chair

images from PASCAL VOC 12 val. While the clean

and cluttered sets exhibit a strong non-uniform viewpoint

distribution bias, the VOC-easy and VOC-all set have a

similar tendency with weaker strength. The ikea dataset

has close-to-uniform viewpoint distribution. All images are

cropped by ground truth bounding boxes. The groundtruth

for the clean, cluttered and ikea dataset are provided by the

authors, those for VOC-easy and VOC-all are by PASCAL

3D+. Usage of these five datasets instead of just one or two

of them is to make sure that our conclusion is not affected

by dataset bias.

Unless otherwise noted, our evaluation metric is a

discrete viewpoint accuracy with ”tolerance”, denoted as

16Vtol. Specifically, we collect 16-classes azimuth view-

point annotations (each of which corresponds to a 22.5◦

slot) for all the data sets we described above. As for

testing, if the prediction angle is within the label slot or

off by one slot (tolerance), we count it as correct. The

tolerance is necessary since labels may not be accurate in

our small scale human experiments for 16-classes viewpoint

annotation3.

Effect of Synthetic Image Quantity We separately fine

tune multiple CNNs with different volumes of rendered

training images. We observe that the accuracy keeps

increasing as the training set volume grows (Table 3) from

6928 ⇤ 16 = 111K images to 6928 ⇤ 128 = 887K images.

The observation confirms that quantity matters and more

training data from synthesis does help the training of the

CNN.

3Accurate continuous viewpoint labels on PASCAL 3D+ are obtained

by a highly expensive approach of matching key points between images

and 3D models. We do not adopt that approach due to its complexity.

Instead, we simply ask the annotator to compare with reference images.
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Figure 8. Effect of 3D model collection size. Vertical axis

numbers are 16Vtol (16 view accuracy with tolerance).

Effect of Model Collection Size We keep the total

number (887k) of rendered training image fixed and change

the number of 3D models used for training data synthesis.

In Figure 8 we see that as the model collection size

increases, system performance continually increases and

tends to plateau as number of models approaches 104.

Effect of Background Clutter As objects in the real

world are often observed in cluttered scenes, we expect

the network to perform better when trained on images with

synthetic backgrounds. In Table 4, we see that nobkg

(trained on rendered images with no background, i.e., black

background) performs worse than bkg (trained on rendered

images with synthetic backgrounds - cropped images from

SUN397 scene database) in the ikea, VOC-easy and VOC-

all data sets, which are with cluttered backgrounds. We

also notice that nobkg performs better in the clean data set.

This is reasonable since nobkg network has been working

hard on clean background cases. Another discovery is that

bkg-indoor (background restricted to indoor scenes of 177

categories), while surpassing nobkg , does not match bkg-all

(no restriction on background). Possible explanation is that

higher diversity of background helps minimize overfitting.

5.5. Qualitative Results

Figure 9. 3D model insertion. Recovered 3D viewpoint reduces

search space of model retrieval.

Besides azimuth estimation, our system also estimates

elevation and in-plane rotation of the camera. To visualize
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Figure 10. Viewpoint estimation example results. The bar under each image indicates the 360-class confidences (black means high

confidence) corresponding to 0◦ ∼ 360◦ (with object facing towards us as 0◦ and rotating clockwise). The red vertical bar indicates the

ground truth. The first two rows are positive cases, the third row is negative case (with red box surrounding the image).

this ability, Figure 9 shows examples by model insertion for

objects detected by R-CNN. The inserted 3D models are

searched from our library by similarity.

Figure 10 shows more representative examples of our

system. For each example, we show the cropped image by

a bounding box and the confidence of all 360 views. Since

viewpoint classifiers are regularized by our geometry-aware

loss and sharing lower layers, the network learns about

correlations among viewpoints. We observe interesting

patterns. First of all, for simple cases, our system correctly

outputs a clear single peak. Second, for those challenging

cases, even though our system may fail, there is still a lower

peak around the ground truth angle, validated both by the

examples and our experiment results presented in Figure 6.

Higher level systems (e.g. 3D model alignment, keypoint

detector) can use those viewpoint proposals to reduce search

space and increase accuracy. This proposing ability is not

available for a regression system.

We observe several typical error patterns in our results:

occlusion, multiple objects, truncation, and ambiguous

viewpoint. Figure 10 illustrates those patterns by examples.

For cases of occlusion the system sometimes gets confused,

where the 360 classes probabilities figure looks messy (no

clear peaks). For cases of ambiguous viewpoints, there

are usually two peaks of high confidences, indicating the

two ambiguous viewpoints (e.g. a car facing towards you

or opposite to you). For cases of multiple objects, the

system often shows peaks corresponding to viewpoints of

those objects, which is very reasonable results after all. See

supplementary material for more results.

6. Conclusion and Future Work

We demonstrated that images rendered from 3D models

can be used to train CNN for viewpoint estimation on

real images. Our synthesis approach can leverage large

3D model collections to generate large-scale training data

with fully annotated viewpoint information. Critically, we

can achieve this with negligible human effort, in stark

contrast to previous efforts where training datasets have to

be manually annotated.

We showed that by carefully designing the data synthesis

process our method can significantly outperform existing

methods on the task of viewpoint estimation on 12 object

classes from PASCAL 3D+. We conducted extensive

experiments to analyze the effect of synthesis parameters

and input dataset scale on the performance of our system.

In general, we envision our Render for CNN pipeline can

be extended to many tasks beyond viewpoint estimation,

especially to those that annotations are hard to acquire such

as segmentation, dense correspondence and depth estima-

tion. Furthermore, 2D images and 3D shapes/scans can be

connected through our pipeline [18], thus information can

be transported between the two domains bidirectionally.

Acknowledgement. This work was supported by NSF

grant IIS 1016324 and 1546206, ONR grant N00014-13-1-

0341, a Google Focused Research Award, a gift from Apple

Corporation, the Mac Planck Center for Visual Computing

and Communication and GPUs donated by NVIDIA Corpo-

ration. We are also thankful to the anonymous reviewers for

their helpful comments and Tao Du, Manolis Savva, Yuke

Zhu, Alexandre Alahi for valuable discussion.

2693



References

[1] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic. Seeing 3d

chairs: exemplar part-based 2d-3d alignment using a large dataset of

cad models. In CVPR, 2014.

[2] K. W. Bowyer and C. R. Dyer. Aspect graphs: An introduction and

survey of recent results. International Journal of Imaging Systems

and Technology, 2(4):315–328, 1990.

[3] C. M. Cyr and B. B. Kimia. A similarity-based aspect-graph

approach to 3d object recognition. International Journal of

Computer Vision, 57(1):5–22, 2004.

[4] P. David, D. Dementhon, R. Duraiswami, and H. Samet. Softposit:

Simultaneous pose and correspondence determination. International

Journal of Computer Vision, 59(3):259–284, 2004.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

Imagenet: A large-scale hierarchical image database. In Computer

Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference

on, pages 248–255. IEEE, 2009.

[6] Y. Deng, Q. Yang, X. Lin, and X. Tang. A symmetric patch-

based correspondence model for occlusion handling. In Computer

Vision, 2005. ICCV 2005. Tenth IEEE International Conference on,

volume 2, pages 1316–1322. IEEE, 2005.

[7] B. Falcidieno. Aim@shape. http://www.aimatshape.net/

ontologies/shapes/, 2005.

[8] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively

trained, multiscale, deformable part model. In Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages

1–8. IEEE, 2008.

[9] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.

Object detection with discriminatively trained part-based models.

Pattern Analysis and Machine Intelligence, IEEE Transactions on,

32(9):1627–1645, 2010.

[10] P.-L. George. Gamma. http://www.rocq.inria.fr/

gamma/download/download.php, 2007.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation.

In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE

Conference on, pages 580–587. IEEE, 2014.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation.

In CVPR 2014, 2014.
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