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A b s t r a c t .  We present a method for rendering scenes with fine detail 

via an object called a texel, a rendering primitive inspired by volume den- 

sities mixed with anisotropic lighting models. This  technique solves a long 

outstanding problem in image synthesis: the rendering of furry surfaces. 

I n t r o d u c t i o n  

Rendering scenes with very high complexity and a wide range of detai l  

has long been an important  goal for image synthesis. One idea is to 

introduce a hierarchy of scale, and at  each level of scale have a corre- 

sponding level of detai l  in a hierarchy of geometric models (Crow 1982). 

Thus very complex small  objects may have a hierarchy of progressively 

simplified geometric representations. 

However, for very fine detail, a significant problem has so far prevented 

the inclusion of furry sufaces into synthetic images. The conventional 

approach gives rise to a severe, intractable aliasing problem. We feel 

that this aliasing problem arises because geometry is used to define sur- 

faces at an inappropriate scale. An alternative approacti is to treat fine 

geometry as texture ra ther  than  geometry. We explore tha t  approach 

here. 

This paper presents a new type of texture map, called a tezel, inspired 

by the volume density (Blinn 1982). A texel is a 3-dhnensional texture 

map in which both  a surface frame--normal,  tangent,  and b inormal - -  

and the parameters  of a lighting model are dis tr ibuted freely throughout 

a volume. A texel is not tied to the geometry of any particular surface. 

Indeed, it is intended to represent a highly complex collection of surfaces 

contained within a defined volume. Because of this  the rendering t ime 

of a texel is independent of thegeometr ic  complexity of the surfaces tha t  

it extracts. In fact, wi th  texels~ one can dispense with the usual notion 

of geometric surface models altogether. That  is, i t  is possible to render 

texels directly, foregoing referents to any defined surface geometry. 

We will use the idea of texels to represent fuzzy surfaces and present an 

algorithm for rendering such surfaces. 

R e v i e w  of  H i g h  C o m p l e x i t y  R e n d e r i n g  

Many a t tempts  to model scenes with very high complexity have been 

made. One method is to a t tack the problem by brute force computing. 

A very early effort by Csuri, et al.(1979) generated images of smoke and 
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fur with thousands of polygons. More recently, Weil(1986) rendered 

cloth with thousands of Lambert cylinders. Unfortunately, at a fairly 

large scale, microscopic geometric surfaces give rise to severe aliasing 

artifacts tha t  overload tradi t ional  antialiasing methods. These images 

tend to look brittle: tha t  is, hairs tend to look like spines. 

The brute force method fails because the desired detai l  should be ren- 

dered through textures and lighting models rather  than  through geom- 

etry. Wha t  is desired is the painter's illusion, a suggestion that  there 

is detail  in the scene far beyond the resolution of the image. When 

one examines a painting closely the painter 's illusion falls apart:  zoom- 

ing in on a finely detailed object in a painting reveals only meaningless 

blotches of color. 

The most successful effort to render high complexity scenes are those 

based on particle systems (Reeves 1983, Reeves and Blan 1985). We 

believe their  success is due in par t  to the fact tha t  particle systems 

embody the idea of rendering without  geometry. Along the path of 

the particle system, a lighting model  and a frame are used to render 

pixels directly rather  than  through a notion of detailed microgeometry. 

In some sense, this paper represents the extension of particle systems 

to ray tracing. As the reader will  readily discern, even though our 

rendering algorithm is radically different, particle systems and texels are 

complementary, e.g. particle systems could be used to generate texel 

models. Indeed, this paper can be modified to render particle systems 

in a manner tha t  is independent of the number of particles rendered. 

Gavin Miller in (Miller 1988) advanced a solution tha t  uses a combina- 

tion of geometry and a sophisticated lighting model much in the spirit of 

this paper to make images of furry animals. However, like particle sys- 

tems~ the complexity of the geometric part of his algorithm is dependent 

on the number of hairs. 

The idea of texels is inspired by Blinn's idea for rendering volume densi- 

ties (Blinn 1982). Blinn presented an algorithm to calculate the appear- 

aalce of a large collection of microscopic spherical particles uniformly 

distr ibuted in a plane. This enabled him to synthesize images of clouds 

and dust and the rings of Saturn. Because Blinn was interested in 

directionally homogeneous atmospheres, he analytical ly integrated his 

equations to yield a shnple lighting model. 

In Kajiya and Von Herren (1984), Blinn's equations were solved for 

nonhomogeneous media by direct computation. It  was essentially a 

volume rendering technique for ray tracing. Because our work is based 

on that  earlier effort, we now briefly discuss the relevant equations from 

Kajiya and Von Herzen (1984}. 

As a beam of light travels through a volume of spherical particles, it 

is scattered and attenuated. The attenuation is dependent on the local 

density of the volume Mong the ray. The scattering is dependent on 

the density of the particles scat tering the light and the albedo of each 

particle. The amount of scattering varies in different directions due to 

the particle partially occluding scattering in certain directions. This 

scattered fight then is a t tenuated and rescattered by other particles. 
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This model ignores diffraction around scattering particles. 

In ray tracing, we follow light rays from the eye backwards toward the 

light sources (figure 1). The progressive at tenuat ion along the ray due 

to occluding particles is computed for each point along a ray emanating 

from the eye. At each point on the ray through the volume, we measure 

the amount of light that  scatters into the direction toward the eye. 

This light is then integrated to yield the total  light reaching the eye. 
In this work we use Blinn's low albedo single scatterhxg approximation. 

That  is, we assume that  any contribution from multiple scattering is 

negligible. We assume that  the light is scattered jus t  once from the 

light source to the eye. The accuracy of this assumption is relatively 

good for low albedo particles and suffers as the albedo increases (Blinn 

1982~ Rushmeier and Torrance 1987). 

Figure 1 shows a schematic of the situation. A volume containing par- 

ticles with density p(x, y, z) at each point is penetrated by a ray. The 

light reaching the eye is computed along the ray R. At each point 

P = (x(t), y(t),z(t)) of the ray at  distance t, the i l lumination Ii  for 

each light source is multiplied by a phase factor p(cos 0) that  indicates 

how much of the light is scattered from the light source to the ray. The 

brightness is then weighted by the density p of the particles at this point. 

The attenuation between point P and A due to the medium is given by 

an integral of the density along the ray. The equations are: 

and 

× p(~(t), y(t / , . ( t / )  dt 

(1) 

(2) 

Equation 1 calculates the transparency T of the density p. It says that  

tha t  each small distance ds along a ray multiplicatively accumulates 

the transmission coefficient by e -rpd~. The coefficient r converts the 

density of the particles into an at tenuat ion coefficient. The quantities 

tne~,tfa~ are the near and far distances of the density that  contribute 
to the calculation. 

Equation 2 calculates the brightness B by integrating the brightness 

of each piece dt along the ray (x(t), y(t) ,z( t))  according to three fac- 

tors. The first factor introduces the at tenuation of the medium Mong 

the ray into the surface. Bright particles buried deep within a density 

are occluded by many particles, thus the accumulated transmission co- 

efficient is low and the particle will not contribute much light to the 

pixel. Note tha t  this factor is calculated as in equation 1. The second 

factor multiplies the il lumination I i  for each light source i reaching the 

particle (which is given as a transmission as in equation 1), times the 

lighting model for each single particle, this is given by the phase factor 

p(cos0). This phase factor is a function of the angle 0 between the light 

direction and the eye direction. It  represents the amount of occlusion 

of the scattered light and is much like the phase of the moon. The third 

factor weights the brightness by the density of particles at  a given point. 

A few bright particles will contribute less light than a large number of 

dimmer particles. 

Calculating the illumination component I~ can be done in many ways. 

Blinn (1982) assumed a homogeneous field and calculated the trans- 

parency of the medium from point P to point C~ for each light source 

(figure 1). Kajiya and Von Herzen (1984) assumed an infinite distance 

(viz. collimated) light source and precalculated the intensities for each 

point in the volume by marching along a parallel wavefront. Rushmeier 

and Torrance (1987) solve a system of linear equations to yield Ii. 

Following Blinn(1982), many workers have expanded on the volume 

density theme: Voss(1983), Max(1983), Kajiya and Von Herzen(1984), 

Max(1986b, 1986e), Rushmeier and Torrance(1987), and Nishita, 

Miyawaki and Nakamae(1987). These algorithms extended Blinn's orig- 

inal work to rendering densities with nonuniform distribution, to high 

albedo solutions, and to more general geometries. Rushmeier and Tor- 

rance(1987) represents the most sophisticated effort to date, calculating 

a physically accurate distribution of light for true multiple sca t te r ing--  

albeit with isotropic scattering models. 

The recent popularity of scientific visualization has engcndered much re- 

cent activity in volume rendering, e.g. Sabella(1988), Upson and Keeler 

(1988), Drebin, Carpenter, and Hanrahan(1988). The technique out- 

lined in this paper has direct application to the volume rendering of 

vector fields. In particular, one result of this work has part icular  rele- 

vance to volume rendering: the hnportance of shadows. In the results 

section, we have rendered an identical texel with and without  shadows. 

As the pair of torii in figures 10 and 11 show, rendering without  taking 

into account shadows creates a situation that  is so unphysical that  the 

data  cannot be properly interpreted by our visual system. 

We also point out that  the technique presented in this paper fits well into 

the ray t racing/distr ibuted ray tracing/rendering equation framework. 

That  is, texels can be mixed with the wide variety of primitives already 

amenable to ray tracing. It is not clear whether texels can be made 

compatible with the radiosity approach to image synthesis. 

Texels  

In Kajiya and Von Herzeu(1984) it was suggested that  volume densities 

were potentially capable of rendering many complex objects beyond 

particles of dust and smoke: this would include phenomena such as 

hair and furry surfaces. We began this work a t tempt ing to generalize 

volume density rendering along these lines. During the course of the 

investigation, we found that  the idea of using volume densities to model 

surfaces is not entirely appropriate. Although the idea of distr ibuting 

lighting models instead of spherical particles within the volume density 

is the right idea, we have found that  one cannot not s imply replace 

particle lighting models with surface lighting models. The physics of 

scattering from surfaces is so different from that  of particles that  new 

equations governing the rendering process must be derived. 

To generalize volume densities we now introduce texels. In practical 

terms, a texel is a three dimensional array of parameters approximating 
visual properties of a collection of microsurfaces. If texels are to be 

used to replace g e o m e t r y ~ u c h  as trees on the side of a moun ta in - -  

then the microsurfaces of leaves and branches will be stored into the 

volume array. At each point in space, several items must  be stored. 

First is the density of microsurfaces. That  at certain points, space 

is empty; at others, there is a dense array of leaves. A second item 

distributed throughout space is a lighting model. In a texel, each leaf is 

not stored as a polygon. Instead the collection of leaves is represented 

by a scattering function tha t  models how light is scattered from the 

aggregate collection of surfaces contained within a volume cell. This 

scattering function is represented by a pair of quantities, the first is a 

frame, that  is a representative orientation of a microsurface within the 

cell, and a reflectance function. 

Texels may be generated many different ways. We have not investigated 

techniques for generating texels for many interesting cases. For example, 

the geometry for the trees could be sampled into three~:limensional 

arrays using some sort three-dimensional scan-conversion technique. 

We have not done thisj however. For representing fur~ the generation of 

texels is straightforward and is presented in a section below. 

Texels are intended to simulate a volume cell that  contains bits of sur- 

faces, not spherical particles. Thus the first component of a texel is a 

scalar density p which represents not relative volume, but an approxi- 

mation to relative projected area of the microsurfaces contained within 

a volume cell. The second component of a texel is a field of frames B, 

that  is the local orientation of the mlcrosurface within a volume cell. 

The third component is a field of lighting models ~, which determine 

how light scatters from this bit of surface. 

Def in i t i on .  A texel is a triple p ,B,  g, consisting of a scalar density 

p(x,y,z), a frame bundle B = [n(x,y ,z) , t (x ,y ,z) ,b(x ,y ,z)] ,  and a 
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field of bidirectional l ight reflection functions 

~(~ ,y ,~ ,0 ,¢ ,¢ ) .  

The scalar density p measures how much of the projected unit area of a 

volume cell is covered by microsurfaces. It should properly be a higher 

tensor quanti ty that  takes into account the viewing vector, but we adopt 

the approximation that  this quanti ty is an isotropic quanti ty and hence 

a scalar. 

The frame bundle B indicates the local orient ation of the surfaces within 

the texel. It is a field of coordinate basis vectors n~t~b that  are called 

the normal, tangent, and binormal fields, resp. 

The bidirectional light reflection function • indicates the type of surface 

contained therein. It is possible to combine B and • into a single 

anisotropic lighting model field, but  we have separated them because, 

often, either component may be taken to be constant throughout the 

volume while the other varies. 

Texels appear to be a na tura l  extension of a volume density. Because 

in a volume density the spheres are physically and materially isotropic, 

the frame and reflectance fields are homogeneous. Thus they do not 

need to be distr ibuted throughout a density but  can be established as 

single quantities. Texels simply generalize this a bit. 

l ~ e n d e r i n g  Texe l s  

How can one modify volume densities to model hair? A naive approach 

would be to simply reinterpret the density p to reflect the densities of 

the hair  at each volume celt; and to modify the lighting model at each 

point to correspond to scattering from a cylinder instead of a sphere. 

Unfortunately this direct approach~ while correct in spirit, has flaws. 

For an insight into understanding why volume densities are not appro- 

priate for rendering microsurfaces~ consider the rendering of a single 

plane surface via a volume density (figure 2). Assume tha t  the surface 

is stored into a volume density so tha t  it bisects the cube. The optical 

depth of the surface is so high that  it simulates an opaque surface, Let 

the phase factor of the particle lighting model be say a Lambert ian sur- 

face lighting model in equations 1 and 2. Let us not use equations 1 and 

2 to calculate both the transparency and the brightness of the surface. 

For the transparency calculation, even though the optical depth param- 

eter ~ is set very high, the line integral of the density in the exponent 

will be vanishingly small. This is because the surface is infinitely thin~ 

so the line integral will pierce the surface at only a single point. This 

yeilds an integral Of 0. 

A similar problem occurs in the brightness calculation. The brightness 

integrand yields a finite value whose contribution to the integral along 

the ray will be zero, since it is nonzero only for a single point. 

Thus the transparency and brightness for this surface will  both be zero--  

an invisible surface! Obviously, volume rendering needs to be modified 

somewhat to be able to render surfaces. The problem is tha t  the relative 

volume of mierosurfaces does not determine brightness and opacity for 

surfaces as it does for point particle densities. A single surface with zero 

volume can be completely opaque and can reflect 100% of its incident 

light. Yet its relative volume will be zero. Thus, what  is called for is 

something like a density which is given by Dirac delta functions. This, 

along with a more general lighting model, is the essence of the texel 

idea. 

Texels are rendered in a manner which is similar to tha t  for volume 

densities, suitably generalized. Again, the equations model the si tuation 

schematized in figure 1. The texel containing surfaces with projected 

area density p(z, y,z) at  each point is penetrated by a ray. The light 

reaching the eye is computed along the ray R. At each point P = 

(x(t),y(t),z(t)) of the ray at distance t, the i l lumination h for each 

light source is multiplied by the bidirectional reflectance function gt 

tha t  indicates how much light is scattered from the light source to the 

ray. The brightness is then weighted by the projected area density at 

this point. The attenuation between point P and A due to the medium 

is given by an sum of the density along the ray. 

The equations for a texel i l lumination are 

T = , - "  E :~L . . r  ~(~(,),v(,),~(,)) (3) 

and 

B =  

tfar 

t--tnear 

×[~Ii(x(t),Y(t),z(t))ff2(x(t),y(t),z(t),O,¢,P)] 

× 0(=(t), y ( t l , . ( t ) )  

(4) 

Equations 3 and 4 are similar to equations 1 and 2. Equation 3 is just  

equation 1 with the line integral replaced by a sum. We write the sum 

because integrating Dirac del ta  functions on microsurfaces sums the 

contribution at each microsurface. 

In equation 4, the relationship to equation 2 is also evident. The inte- 

gral has again been replaced by a sum. The at tenuation along the ray 

segment AP in figure 1 is represented by the first term in the product. 

The second term models the scattering of light from the microsnrface. 

As in equation 1 there is a te rm for eacl~ light source. The illumina- 

tion I¢ reaching the microsnrface is multiplied by the bidirectional light 

reflection function • of the microsurface. Finally, the projected area 

density scales the reflected l ight in the third term. 

The transmission equation 3 for texels is a formal sum instead of an 

integral. This formal sum is taken over each of the surfaces in the 

density along the ray. If this  sum is infinite, then the transmission 

coefficient is zero, indicating that  the density is totally opaque. The 

brightness equation 4 is also a formal sum instead of an integral. This is 

because, a t  each surface intersecting a ray, we are adding the brightness 

contribution of the surface at  that  point. 

It would appear tha t  equation 4 would always yield an infinite quantity, 

but recall that  the terms of the formal sum will be zero where there are 

no surfaces and behind any surface the optical depth will be high and 

will a t tenuate  all contributions to zero. Thus the sums are finite. 

Calculation of the incident intensities I~ are computed by using equation 

1 reeursively. That  is, a ray is shot from the point P to each light source 

i (figure 1). The transmission coefficient is calculated from equation 1. 

The intensity I~ is simply the brightness of the light source at tenuated 

by the transmission coefficient along the segment PC~. 

The algorithm just  outlined would be impossibly expensive if the sums 

were to be evaluated by adding terms corresponding to every point along 

the original ray. The algorithm presented in the next section approxi- 

mates these sums by a Monte Carlo t reatment  tha t  computes expected 

values of random samples along the ray, in the spirit of distributed ray 

tracing (Cook, et al. 1984). 

Texe l  R e n d e r i n g  A l g o r i t h m  

The texel rendering algorithm computes the above sums by approxi- 

mating them with with expected values of random samples along the 

ray. To find the intensity of light emanating backwards from a given 

ray, the intersection of the ray and each texel boundary is calculated. 

The distances along the ray of these intersections then forms an interval 

from tnear to t.far along the ray, shown as point A and D of figure 1. To 

compute the sum, we use the technique known as stratified sampling. 
We divide up the ray into a series of segments (delineated by tick marks 

along the ray in figure 1). In each segment a random point is chosen to 

calculate the scattering term, e.g. point P.  The il lumination Ii is calcu- 

lated by recursively shooting a ray toward each light source as discussed 
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in the previous section. Finally the sum over segments are calculated 

to approximate the quantities in equations 3 and 4. 

1. Intersect a ray with the all texel boundaries to find tnear , ~far for 

each texel. Sort all intersections frora front to back and match with 

distance. Let Tnear ~ min ~near where the minimum is over all 

segments. Similarly Tfar = m a x  ~far. 

2. Divide up the ray from Tnear to Tfa r into ray segments ~i of length 

L, where 1 is a reference length parameter, the number of sexnples per 

unit distance in world coordinates set by the user. (The last segment 

may be shorter than L). 

3. Set transparency to unity. 

4. FOIl. each segment. 

4.1 Shoot shadow rays from the sa*nple toward every light source to 

calculate the amount of light reaclfin s tiffs point. 

4.2 Calculate b~ightness from li~shting model and illumination intensity 

and multiply by transparency to give overall brightness contribution 

to the pixelpiffel = pixel + trans * lightblodel. 

4.3 Multiply transparency by e to, the transmission coefficient of the 

segment. 

5. At the end segment, calculate brightness as above but normalize by fractional 

length of the segr~¢nt. 

Step 5 in the algorithm above is required to avoid bias in the Monte 

Carlo calculation. If the final segment were to be treated as a full 

length section then the averages would be thrown off. This has an 

effect of making the edges of the volume appear slightly more opaque 

than they should be. 

This section presents an algorithm for rendering a single texel. However, 

to make pictures of fuzzy objects, four steps must be carried out. These 

are the creation of the texels, the mapping of texels into world space, 

the intersection of rays with texels, and the computation of the lighting 

model. 

G e n e r a t i n g  Texe ls  fo r  H a i r  

We will now direct our attention to methods for generating texels that  

represent patches of hair. The  general problem involves long flowing 

hair. Particle systems could be used to trace the trajectories of the 

individual hairs through a three-dimenslonal  array. The particle would 

leave an ~anti-aliased" trail of density that  would be summed in with 

previous densities. 

A texel representing hair may be simplified by storing only the density 

p and the frame B at each point. The bidirectional reflectance function 

is constant for each hair and common to all hairs (if the hair does 

not change color). Thus it is not necessary to store it throughout the 

volume. For the lighting model derivation we t reat  an individual hair 

as an infinitely thin cylindrical surface. Thus, the only element of the 

frame that  is necessary is the tangent vector along the hair. The rest 

of the frame B, normal and binormal, do not enter into the lighting 

calculations and were omitted. Thus a particle system generating hair 

would not only leave a track of density but also store a tangent vector 

representing the direction of the velocity of the particle. 

The teddy bear model presented in this paper uses a single texel repli- 

cated over the bear 's  skin. The contents of the texel were generated 

using a much simplified version of the particle system approach. All 

hairs on the teddy bear are straight lines that  point in the same direc- 

tion, perpendicular to the scalp (in texel space). This implies that  the 

hairs will lie along an axis 6f the three-dimensional array used to store 

the texel. Thus the tangent vectors are all the same in that  they all 

perpendicular to the scalp. Thus  they were also excluded from volume 

structure. 

The bear 's  fur texel was stored as a 40x40xl0 array. The contents of 

the array were designed based on several criteria: 

1. The "hairs" axe distributed as a Poisson disk. 

2. The Poisson disk is created with a torus topology, so the single texel can tile 

tim entire bears surface without showing seams. 

3. Animal fur often comes in two layers, an "overcoat," and an "undercoat." 

The undercoat is a dense cover of short fur, while the overcoat is a sparser 

distribution of long hair. We have found this to be an important feature for 

avoiding a brushlike appearance. 

A "modeling" program allowed us to search the parameter space and presented 

us with top and side projections of the texel. Using purely aesthetic (and largely 

arbitrary) judgement, the texel used in figures 15 azld 16 was created. 

M a p p i n g  Texe l  To W o r l d  S p a c e  

By placing texels over the surface of the bear, we created a bear whose 

fur flows smoothly over its entire body, while at the same time shows 

local randomness. However, a texel representcd as a three-dlmensional 

array, is shaped as a rectangular sohd, at least in texel space. The texels 

must be mapped onto the shape of the bear in a continuous way to avoid 

gaps. 

The teddy bear was modeled using a new technique called generative 

models. Each body part  (head, body, ear, arm, leg, and nose) was 

constructed by designing a parametric mapping (I' from a rectangle U 

(parameterized by u and v) into world space R 3. If we were to render the 

bear as polygons (as we do in the case of the bear 's  nose), we would chop 

the rectangle into a mesh of n x m small squares. Each square would 

be mapped vertex by vertex through if9 into world space. The resulting 

objects (bihnear patches) would then be rendered (usually by further 

approximating each patch as two triangles). Figure 3 demonstrates  

this approach. For the sake of simplicity, all figures will present just 

two dimensions when possible. The  extension to three dimensions is 

obvious. 

The texel cubes are mapped into world space in exactly the same way. 

The parameterized rectangle is chopped into n × m small squares. Each 

square is mapped  into world space and is identified with the base of 

a texel (figure 4). (In the case of the teddy bear, a single texel was 

replicated over the entire surface of the bear.) 

The mapping q) defined by the generative modeling specifies what hap- 

pens only to the base of each texel; The  texel's third dimension (height) 

must also be mapped into world space. This mapping specifies ff the 

fur on the bear stands straight out or if it lies down. The extension of 

4) to the third texel dimension need only be defined for the corners of 

the texel. Once the corners of the texels are mapped,  they are no longer 

necessarily boxes. Additionally, the gaps between adjacent texels dis- 

appear (figure 5). The hnear nature of the texel interpolation described 

in a following sections assures that  the hairs within a texel will flow in 

the same general direction as the corners. 

A modeling program was created tha t  allowed the designers to manipu- 

late the orientation of the corners of the texels. The program starts with 

the corners of each texel sticking straight out (i.e., the corners of each 

texel correspond with the surface no rman  of the scalp). The corners 

are then perturbed by global Fourier maps. 

I n t e r s e c t i n g  R a y s  W i t h  Texels  

A texel is shaped as a rectangular solid in texel space. The mapping 

of the texel into world space as described above changes each of the six 

faces of the rectangular solid into a bihnear patch. The intersection of 

a ray with a texel is accomplished by intersecting the ray with the six 

faces of the texel in world space. 

Intersecting Rays with Bilinear Patches 

Each edge of a bilinear patch, as well as all "horizontal" and "vertical" 

cross sections on the patch are straight lines. All other cross sections of 

a bihnear patch are quadratics. Therefore, it seems reasonable that  the 

ray-patch intersection calculation should involve solving the quadratic 

equation. 
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A ray is defined by the equation R = at + b with 0 <_ t. The 3-vectors 

a and b specify the origin and direction cosines of the ray. A bilinear 

patch is of the form P - ~  A u v + B u + C v + D  with 0 _< u < 1 and 

0 < v < 1 where A, B, C, and D are also triples. 

The intersection of the ray R with the patch P occurs when R = /9. 

Expanding into components yields three equations of the form, 

A l u v  + B l u  + Clv + D l t  + El  = 0, (5a) 

A2uv + B2u + C2v + D2t + E2 = 0, (5b) 

and 

A3uv + B3u + Czv + D3t + E3 = 0. (5c) 

These equations should be reordered so tha t  the first is the one with 

the largest D coefficient. This will assure that,  in the case of a patch 

aligned with an axis~ the denominators in the equations that  follow will 

be reasonable (thereby avoiding floating point overflows). 

The first equation is solved for t, yielding 

A~uv + B=u + C~v + E~ 
t = D= ' (6) 

which can be subst i tu ted into the remaining two equations to remove 

references to t, result ing in two equations of the form 

F2uv + G2u + H2v + / 2  = 0 (7a) 

and 

Fsuv + G n u +  Hsv + Is = 0. (7b) 

These two equations can be multiplied by Fs and F2 respeetivelyj and 

the uv term can be eliminated, giving a linear equation relating u and 

v. Solving for u and backsubsti tut ing into equation (7a) or (7b) results 

in a quadratic equation in v. Once v is determined, u quickly follows, 

as does t. 

When solving the quadratic equation (of the form ax e + bz + c = 0), 

there is a possibility tha t  the coefficient on the square term (a) may 
be very small. This could occur, for example, when the four points of 

the bilinear patch are coplanar. Since we are looking only for values of 

0 _< u < 1, we can compute if a is too small  using the equation 

b + sgn(b)X/V - 4ac < 2a. (8) 

If the equation falls to hold, then the root would be out of the range 

- 1  < u < 1, and need not be computed. This and similar tests will 

help avoid floating point overflows. 

M a p p i n g  R a y - T e x e l  I n t e r s e c t i o n s  t o  Texe l  Space  

Once the intersections of the ray with the texel have been computed, 

they must  be mapped into texel space. Then the texel properties (such 

as density and tangent  vector) can be found by trilineax interpolation 

from the texel arrays. 

To compute the mapping, all the intersections are sorted. Ideally, they 

will come in pairs, the first of the pair (anear ' )  representing the ray en- 

tering the texel, and the second (afar,) representing the ray leaving the 

texel. The intersections yield pairs of the form (fn . . . .  u . . . . .  v . . . . .  tnear) 

and (flat, tafar,°far~tfar), where f is the index of the face intersected, 

(u, v) is the patch coordinate for the intersection in face f, and t is the 

distance along the ray for the intersection. 

Each intersection is mapped back to the texel in texel space, resulting 

in points of the form (z . . . . .  Yn . . . .  Z . . . . .  t . . . .  ) and (zf~, Yfar, Zfar,tfar), 
where (z, y, z) is the coordinate withing the unit texel of the intersection. 

The t values remain unchanged. 

The (x, y, z) coordinates of an intersection in texel space will fall in the 

unit cube. At least one of the components will actually be either 0 or 1, 

except when an intersection happens for t < 0. In this case, the (x, y, z) 

coordinates of the intersection must be adjusted by interpolation to 
match the point on the ray where t -- 0. 

To render the scene, the shader must know the value of the texel at  many 

points along the ray. Because the t parameter  is invariant under the 

texel-space-to-world-space mapping, we can use it as the interpolant 

to compute the texel space coordinate for any value of t. The three 
components are 

and 

t -- tnear 
- -  - - ~ -  ( x f ~  - -  z . . . .  ) + z . . . . .  
Har --~near 

t - t  ..... ( y f ~ r - y  . . . .  ) + v  . . . . . .  

tfa r -- tnear 

t - t . . . .  (Zf~r - Z . . . .  ) + z . . . . . .  
tfa r ~ tnear 

L i g h t i n g  m o d e l  for  h a i r  

(9a) 

(gb) 

There are two components forming the lighting model for a single hair, 

the diffuse and specular. The diffuse component is derived essentially 

from the Lambert shading model applied to a very small cylinder. The 

specular component is an ad hoc model similar to the Phong light re- 

flection model that  has been modified for cylindrical surfaces. 

A more rigorous approach to defining a lighting model would be some- 

thing along the lines of Kajiya (1985), of Cabral, Max, and Springmeyer 

(1987), or of Krueger (1988). These papers propose algorithms to con- 

vert the the surface microgeometry to be represented in the volume 

directly to lighting models. We have found, however, the exact form of 

the details of the lighting model not to be particularly critical to the 

quali ty of the images. Examination of the images show tha t  our ad hoc 

approach is adequate. 

The geometry for deriving the hair lighting model is shown in figure 6. 

An individual  hair is a line segment specified by a position x0 and a 

tangent vector t. The light vector I points from Xo to the light source. 

The eye vector e indicates the direction of the scattered light toward 

the eye. All of these vectors are assumed to be of unit  length. The 

projection I I of 1 onto the plane perpendicular to t forms the second 

basis vector. The third basis vector b is chosen to be perpendicular to 

both the previous basis vectors. 

The diffuse component 

The diffuse component of the hair reflection model is obtained by in- 

tegrating a Lambert  surface model along the circumference of the half 

cylinder facing the light source. As shown in figure 7, we integrate over 

the half circle visible from the light source. The back of the surface is 

not il/umlnated. The orthonormal basis formed from the three vectors 

t~l', b are easily calculated. The first basis vector is t, which is perpen- 

diculax to the texel base. The second vector E is the projection of the 

light vector l onto plane P containing all the normMs to the cylinder. 

The vector l t is given by 

r = z -  (t .  1)t (lO) 

IIz - ( t  . z)ttl  " 

It is easy to see that  b, orthogonal to t and l ~ is calculated as 

b = l × t .  (11) 

These three vectors are shown in figure 6. 

The total  amount of light scattered per unit  length of cylinder is inte- 

grated over the semicircle from shadow terminator  to shadow termina- 

tor (figure 7). Let us parameterize the position along the cylinder by 0 

where 0 ranges between 0 and ~r radians. As a function of 0 the normal 

vector n to the cylinder is 

= b(cos0) + V(sin o). (12) 
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The Lambert  model gives the intensity of reflected l ight as ~(~) = (kd)l. 

n, where /ca is the diffuse reflection coefficient. Thus to find the total  

amount of light per unit  length we integrate along the circumference 

of the half cylinder. The line integral element ds along the cylinder is 

given in terms of 8 by r dO, so 

// ~dif]use = hd l" n r dO 

f/ = ke r Z. (b(cosO) + l ' (s in 0)) dO ( la)  

f/ = kd r l . l '  sinOdO 

= ( g d ) l .  l' 

where Kd absorbs all the quantit ies independent of l and l ~. Substitut- 

ing the definition of l ~ into the definition yields a part icularly simple 

expression for the diffuse component: 

l - ( t .  l)t  

~a,.rf~,~ = K,~ l lit - ( t  Otll 

= Kd 1 -  ( t . l )  2 (14) 

= Kd sin(t , l) .  

Thus the diffuse fighting component is proportional to the sine between 

the light and tangent vectors. Thus if the tangent of the hair is pointing 

straight at  the fight, the hair is dark. This is readily observed in real 

hair. 

The specular component 

Calculating the highlights on a hair requires some term capturing spec- 

ularity. We could have derived a specular term in a similar manner 

s tar t ing from the ad hoe Phong specular model. However, the process 

is more difficult and the result ing model quite complex. We chose in- 

stead to invent an ad hoc specular model in the same spirit  as the Phong 

model modified to approxlmat~ some diffraction around the hair. The 

model is motivated by figure 8. 

Any light striking the hair is speeularly reflected at  a mirror angle along 

the tangent.  Since the normals on the cylinders point  in all directions 

perpendicular to the tangent,  the reflected light should be independent 

of the azimuthal  component of the eye vector. Thus the reflected light 

.forms the cone whose angle at  the apex is equal to the angle of incidence 

as shown in figure 8. The actual  highlight intensity is given as 

• , p o , , , ,  = k, cos~(e, e') (15) 

where k, is some specular refect ion coefficient, e is the vector pointing 
to the eye, and e n is the specular reflection vector contained in the cone 

closest to the eye vector, and p is the Phong exponent specifying the 

sharpness of the highlight. The highlight is thus a maximum when the 

eye vector is contained in the reflected cone and falls off v~ith a Phong 

dependence. 

To calculate this model we note that  the only quanti t ies  entering into 

the calculation are the angle of incidence and the angle of reflection with 

respect to the tangent vector, 0 and 0 ~. The intensity is given by 

~]TA/ap¢cula r ~ ha COSP 0 - -  OI 

= hdcose cos0' + sin0 sine'), (16) 

= h , ( t .  1 t s + sin(t ,  l) einCt, e))~ 

These quantit ies are easily calculated from the original vectors. 

R e s u l t s  

Figure 9 shows a single texel of hair. Discounting the base plane, no 

geometric model has been used to create this image. Figure 10 shows 

a closer view of the r ightmost  edge of figure 9. Note tha t  the painter 's 

illusion breaks down on the close up view. We should switch from the 

texel representation to actual  geometry when viewing the model at this 

resolution. 

Figures 11, 12, 13 and 14 show a number test images displaying torli 

covered by texels, modeling brushlike fur. These show what  happens 

when the corners of the texels are not deformed by ¢.  

Figures 11 and 12 are identical except tha t  figure t l  was rendered with 

the shadows turned off, so that  every cell is always i l luminated.  It is 

evident that  self shadowing of the texel is one of the principal cues for 

realism. 

Figures 15 and 16 show two versions of a teddy bear. The underlying 

geometric model is identical for each bear. Different Fourier coefficients 

were used for defining each local texel  deformation. Fewer, larger texels 

appear in figure 15. The processor time for each of these images was 

substantially the same. These images have a resolution of 1280 by 1024 

pixels. No antialiasing was done. 

Precise measurements of the CPU time are somewhat problematic, as 

each image was rendered concurrently on a network of large IBM main- 

frames. We used a total  of twelve 3090 processors and four 3081 pro- 

cessors. On average, we obtained approximately 30%-50% of each pro- 

cessor. Total wall clock t ime was about  2 hours. 

F u r t h e r  W o r k  

The question of how to turn geometry into texture has not yet been 

solved. Thi~ paper  represents only a start  on the problem. An auto- 

matic way of generating texel densities from complex geometric models 

is currently unknown to us. We speculate tha t  the theory known as 

geometric measure theory may provide the key mathemat ica l  insights 

into this problem. 

Applying texels to other complex scenes is also left open: consider the 

problem of rendering a forest covering a mountainside in the distance. 

Instead of having thousands of polygons, each tree and bush could be 

modeled as an appropriate texel. When the texels themselves become 

very small, one can merge several into a larger texel, somehow adding 

densities and merging lighting functions. 

We have not modeled long hair, or curly hair; only fur. This is an 

interesting modeling task especially when one decides to include the 

dynamical  behavior of long hair in an animation. We believe tha t  the 

methods presented in this paper will  adequately render long hair once 

the modeling problems are solved. 
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