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Fig. 1. We present the first practical method for rendering specular reflection from arbitrary high-resolution microstructure (represented as discretized
heightfields) using wave optics. Le�: Rendering with previous work [Yan et al. 2016], based on the rules of geometric optics. Middle: Using wave optics, even
with a single fixed wavelength, our method generates a more natural appearance as compared to geometric optics. Right: A spectral rendering additionally
shows subtle but important color glint e�ects. Insets show enlarged regions and representative BRDFs generated using each method. We encourage readers to
zoom in to be�er see color and detail, and to view the full resolution supplementary images to see the subtle details in all of the figures.

Simulation of light re�ection from specular surfaces is a core problem of
computer graphics. Existing solutions either make the approximation of
providing only a large-area average solution in terms of a �xed BRDF (ig-
noring spatial detail), or are specialized for speci�c microgeometry (e.g. 1D
scratches), or are based only on geometric optics (which is an approximation
to more accurate wave optics). We design the �rst rendering algorithm based
on a wave optics model that is also able to compute spatially-varying specu-
lar highlights with high-resolution detail on general surface microgeometry.
We compute a wave optics re�ection integral over the coherence area; our
solution is based on approximating the phase-delay grating representation
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of a micron-resolution surface height�eld using Gabor kernels. We found
that the appearance di�erence between the geometric and wave solution is
more dramatic when spatial detail is taken into account. The visualizations
of the corresponding BRDF lobes di�er signi�cantly. Moreover, the wave
optics solution varies as a function of wavelength, predicting noticeable
color e�ects in the highlights. Our results show both single-wavelength
and spectral solution to re�ection from common everyday objects, such as
brushed, scratched and bumpy metals.
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1 INTRODUCTION

Simulation of material appearance is a core problem of computer
graphics, and specular highlight appearance is among the most
common e�ects. One of the most fundamental questions is: given a
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Fig. 2. Le�: Rendering of a laptop with a point light and environment lighting using our method. Top right: Close up rendering of the corner of the laptop with
the same lighting condition. Bo�om right: A photograph of a MacBook (around 20 cm × 4 cm region) lit by a small LED light in a dark room. Our method is
able to produce appearance that is perceptually similar to the photograph, showing colored glints from the underlying noisy microstructure of the aluminum
laptop body.

height�eld specifying the microgeometry of a surface, how do we
compute the surface re�ection according to laws of physics?
Most existing solutions either make the approximation of pro-

viding only a large-area average solution in terms of a mean BRDF
(ignoring spatial detail), or are based on geometric optics (an ap-
proximation to wave optics), or both. For example, the standard
microfacet BRDF models commonly used in rendering [Cook and
Torrance 1982] assume the surface consists of in�nitely small unre-
solved microfacets, which act as perfect mirrors following the rules
of geometric optics. Thus, these models make both of the approxi-
mations mentioned (no spatial variation and no wave optics).
Some previous research focused on lifting one or the other of

these two limitations. Several wave optics re�ection models have
been proposed in various areas of physics, including Kircho� and
Harvey-Shack re�ection theories [Krywonos 2006], and versions of
these have been used in computer graphics, but always assuming
large-area averages.

Large-area averages are successful for distant views and smooth il-
lumination, but the high-frequency spatially-varying structure seen
in real specular highlights cannot be replicated without modeling
discrete, �nite microgeometry features. Recent work on rendering
glints [Yan et al. 2014, 2016] has moved beyond large-area aver-
ages, by presenting solutions for surfaces de�ned by explicit high-
resolution height�elds (or normal maps). However, these methods
continue using the rules of geometric optics at scales approaching
micron resolution, where they are known to become less accurate.
Moreover, recent work has introduced solutions based on wave
optics that are capable of handling high-resolution surfaces of a
speci�c kind, de�ned by a �at surface with randomly oriented 1D
scratch curves [Werner et al. 2017].

This leads to the question: can we design a BRDF model based on
the more accurate wave optics, but also able to compute spatially-
varying solutions with high-resolution detail? To our knowledge,

our paper is the �rst to consider this question in full generality,
modeling the surfaces as arbitrary discretized height�elds.
We present an algorithm that can evaluate a spatially varying

BRDF for a given position and incoming/outgoing directions, by
computing a wave optics re�ection integral over the coherence areas
around the position of interest. This requires more computation
than in the geometric optics solutions, which makes our method
slower, but not prohibitively so; see Table 1. Our solution is based
on approximating the micron-resolution surface wave e�ects using
Gabor kernels (products of Gaussians with complex exponentials).
We use a reciprocal modi�cation of the Harvey-Shack theory in our
results, but our approach also applies to other wave optics models.
We found that the di�erence between the geometric and wave

solution is more dramatic when spatial detail is taken into account.
The visualizations of the corresponding BRDF lobes di�er dramati-
cally, with the sharp folds typical of geometric normal distribution
functions (NDFs) replaced by very di�erent directional patterns
more akin to laser speckle (Figure 10). The rendered highlights
change appearance, typically with more realistic-looking sharper
peaks and longer tails. Moreover, the wave optics solution varies
as a function of wavelength, predicting noticeable color e�ects in
the highlights (Figure 1). Our results show both single-wavelength
and spectral solutions to re�ection from common everyday objects,
such as brushed, scratched and bumpy metals; see the result �gures
and supplementary video.

2 RELATED WORK

We organize the related work into four areas, based on whether they
use geometric or wave optics, and whether they target large-area
average BRDFs or spatially-varying �ne-scale details and “glints”.

Large-area, geometric optics. Microfacet BRDFs have become a
standard tool in rendering [Burley 2012; Butler et al. 2015; Cook and
Torrance 1982; Walter et al. 2007; Westin et al. 2004]. The distribu-
tion of the normals of the microfacets is modeled using a smooth
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normal distribution function (NDF), and the BRDF additionally con-
tains Fresnel and shadowing-masking terms. This approach models
only directional, not spatial variation; the latter is normally added
by texturing and bump/normal mapping, which has limitations at
high resolutions and under high-frequency lighting. Furthermore,
geometric optics is theoretically accurate only if surface features
are locally �at at the scale of microns; many real surfaces violate
this assumption, but empirically the microfacet approach often still
provides good results.

Large area, wave optics. Rough surface re�ection models based
on wave optics have been heavily studied in physics. Common ap-
proximations include Beckmann-Kircho� theory [Beckmann and
Spizzichino 1968] and variations of Harvey-Shack theory[Harvey
1979]; a good overview is the thesis of Krywonos [2006]. In graphics,
wave-based re�ection models have been developed for surfaces with
stationary statistics, either random [He et al. 1991] or periodic [Stam
1999], usually characterized by their power spectral density. A vari-
ety of methods have been proposed to measure such statistics for
speci�c types of real surfaces, especially periodic ones [Dhillon et al.
2014; Lanari et al. 2017; Toisoul and Ghosh 2017]. Dong et al. [2015]
acquired the surface microgeometry of real metallic surfaces us-
ing a pro�lometer, and applied Kirchho� theory to successfully
predict their large scale BRDFs. A combined microfacet-di�raction
model was recently proposed by Holzschuch and Pacanowski [2017],
demonstrating better �ts to measured BRDF data for some mate-
rials than microfacet models alone. Levin et al. [2013] designed
special multi-planar surfaces that can be lithographically fabricated
to match a target BRDF using wave optics, essentially inverting the
rendering process.

Wave optics has also been used to predict appearance from thin-
�lm or layered materials (e.g., [Belcour and Barla 2017]), but we
will only consider single-layer opaque surfaces here. Several meth-
ods support longer-range multi-surface interference e�ects (e.g.,
[Cuypers et al. 2012]), but that is beyond the scope of this paper.

Spatially-varying, geometric optics. Yan et al. [2014; 2016] pre-
sented algorithms for rendering glinty surfaces de�ned by explicit
high-resolution height�elds (or normal maps), under geometric
optics. These approaches are successful at simulating very high-
resolution, spatially varying glinty behavior. The key idea is to
extend the NDF from microfacet theory to a patch-based P-NDF,
essentially replacing the large-area average for the whole surface
by a unique solution per given small patch of the surface. In the �rst
paper, they introduce an algorithm that evaluates P-NDFs by turn-
ing the problem into integration over the patch P, �nely discretized
into triangles. The second paper considers the same problem, but
proposes a higher-performance algorithm. Instead of discretizing
the normal map into triangles, they �t small Gaussian elements to
texels of the normal map. Our approach is related, but instead of
real Gaussians, we use complex Gabor kernels, which are better
matched to approximating the underlying complex integrals. Jakob
et al. [2014] also simulated glinty surfaces but used a statistical
distribution of tiny mirror-like �akes rather than an explicit surface.
In addition to these general approaches, other methods [Bosch et al.
2004; Mérillou et al. 2001; Raymond et al. 2016] focus speci�cally
on scratched surfaces, also under geometric optics.

Spatially-varying, wave optics. The only previous work we are
aware of in this area is the recent paper byWerner et al. [2017] (with
a real-time extension by Velinov et al. [2018]), rendering surfaces
with collections of randomly oriented scratches using a Harvey-
Shack-based wave optics model. This work represents the surface
as a collection of one-dimensional scratches over a smooth BRDF.
Under this assumption, they are able to compute the re�ection e�-
ciently and analytically. In contrast, our method can render arbitrary
height�elds (e.g. Figure 2 and 13), including but not limited to ones
containing scratches. Additionally, our scratched height�elds can
contain more variety and imperfections, resulting in glinty high-
lights that only roughly align in lines, compared to the smooth line
highlights of Werner et al (see Figure 1, esp. insets).

3 WAVE BRDF THEORY

In wave optics, light is described by �elds that satisfy appropri-
ate boundary conditions and governing di�erential equations (e.g.,
wave or Helmholtz equations). We will consider each wavelength
(denoted λ) separately and use complex-valued �elds to encode both
magnitude and phase. The local light energy is related to the squared
magnitude of the �eld at that point. Scalar di�raction models, such
as Harvey-Shack [Krywonos 2006] or Kirchho� [Ogilvy 1991], can
be used to estimate the re�ected �eld from a rough surface. Unlike
in geometric optics, the contributions from di�erent parts of the
surface can sum non-linearly due to interference e�ects, to create
the characteristic di�raction e�ects of wave optics.

Let us assume we have a surface height�eld H (s ) (as in Figure 3)
such that for a given 2D point s = [sx , sy ], the corresponding 3D
point on the rough surface is [sx , sy ,H (s )]. In our approach, the

H(s)

n

Planar

projection

Detailed surface

S̄

ψ

ωi

ωo

ψ̄

Light

Sensor

S

n

Fig. 3. Heightfield surface and BRDF directions example.

i Imaginary unit for complex numbers, i2 = −1
λ Wavelength of light
n Average surface normal (equal to z-axis)
s 2D point (on the XY plane)

H (s ) Height of surface above s
H
′(s ) Gradient of height function
S̄ Domain of height function (region on XY plane)
AS̄ Area of S̄
ωi Direction from which light arrives (3D unit vector)
ωo Direction of re�ected light (3D unit vector)
ψ ψ = ωi +ωo

ψ 2D projectionψ (removing its z-component)
fr Bidirectional re�ectance distrib. function (BRDF)
F Surface re�ectance (e.g., from Fresnel equations)

ξ1, ξ2, ξ3 See Figure 6

Fig. 4. List of symbols.

ACM Trans. Graph., Vol. 37, No. 4, Article 75. Publication date: August 2018.



75:4 • Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi

Fig. 5. Le�: A discretized surface heightfield at 1 micron resolution, showing
an area of about 64× 64microns. For visualization purposes, we complete the
heightfield into a continuous function H (s ) by bicubic interpolation. Right:
The real component of the reflection function R (s ) of this surface patch,
specifying the spatially varying phase shi�. The imaginary component looks
similar.

Di�raction
BRDF Model

Equation Components
ξ1 ξ2 ξ3

1. OHS |ωo ·n | F

λ2 |ωi ·n |
1 2

2. GHS |ωo ·n | F

λ2 |ωi ·n |
1 ψ ·n

3. R-OHS |ψ ·n |
2
F

4λ2 |ωi ·n | |ωo ·n |
1 2

4. R-GHS |ψ ·n |
2
F

4λ2 |ωi ·n | |ωo ·n |
1 ψ ·n

5. Kirchho� |ψ ·n |
2
F

4λ2 |ωi ·n | |ωo ·n |
1 −

ψ ·H ′ (s )
ψ ·n ψ ·n

Fig. 6. BRDF integrals for five scalar di�raction models (see equations (1)
and (2)). The first two are based on the Original-Harvey-Shack (OHS) and
the Generalized-Harvey-Shack (GHS) models. The next two are reciprocal
versions of these models we created by substituting Kirchho� propagation
instead of Fourier: Reciprocal OHS (R-OHS) and Reciprocal GHS (R-GHS).
The fi�h is a fully Kirchho�-based BRDF model. Detailed derivations of
these models can be found in the supplemental material.

height�eld is typically discretized at the resolution of 1 µm per
texel. Figure 5 (left) illustrates a small example height�eld. Our goal
is to estimate the surface’s Bidirectional Re�ectance Distribution
Function (BRDF) fr (ωi,ωo), which is de�ned as the ratio between
the re�ected radiance in direction ωo and the incident irradiance
from directionωi. Light re�ecting from di�erent parts of the surface
will travel di�erent distances depending on the local surface height.
This causes phase shifts in re�ected waves which then interfere
with each other to determine the BRDF.

These phase shifts can be approximated using a planar surface
that re�ects light with a spatially-varying phase shift, speci�ed by
its re�ection function:

R (s ) = ξ2 e
−i 2π

λ
ξ3H (s ) . (1)

Figure 5 (right) shows a visualization of the real component of this
function. The values of ξ2 and ξ3 depend on which di�raction model
is chosen (see Figure 6 for examples). We represent the directions
ωi and ωo as 3D unit vectors. Let ψ = ωi + ωo and ψ be its 2D
projection (by discarding its z-component). The BRDF of this planar

proxy can be computed using a surface integral of the form:

fr (ωi,ωo) =
ξ1

AS̄

�
�
�
�
�

∫

S̄

R (s ) e−i
2π
λ
(ψ · s ) ds

�
�
�
�
�

2

(2)

where S̄ is the domain of the height�eld (i.e. the projection of the
rough surface onto the XY plane), AS̄ is its area, and ξ1 depends on
the chosen di�raction model (see Figure 6) .
The parameters for �ve di�erent di�raction models are listed in

Figure 6 and detailed derivations of these models are provided in
the supplemental material. These models are closely related and
often produce similar results, especially for low-slope surfaces and
paraxial directions. One advantage of our approach is that it can
be used to compute any of these models. The �rst four are derived
from the Harvey-Shack family of di�raction models [Harvey and
P�sterer 2016]. The �rst uses the phase shift approximation from
Original-Harvey-Shack (OHS) and the second uses the more ac-
curate phase shift from Generalized-Harvey-Shack (GHS). These
produce non-reciprocal BRDFs (i.e. fr (ωi,ωo) , fr (ωo,ωi)). Recip-
rocal BRDF estimates are often preferred in rendering, since real
world BRDFs are reciprocal, and reciprocity also simpli�es some
light transport algorithms. Therefore we created reciprocal versions
(R-OHS and R-GHS) by keeping the same planar proxy and phase
shift approximations, but using the Kirchho� propagation integral
instead of the usual Fourier-based propagation. The �fth model is
equivalent to the Kirchho�-based BRDF from Dong et al. [2015]
and is also reciprocal. In our results we use the third method (R-
OHS), with its convenient simplicity and reciprocity, except where
otherwise noted. In the supplementary material, we include some
comparisons using the other models, showing that (for computer
graphics purposes) the results are often quite similar.

3.1 Coherence area

The spatial size over which the incident light’s phase remains cor-
related (i.e. coherent) is known as its coherence area. Equation 2
was derived using incident light with an in�nite coherence area, but
realistic sources have �nite ones (typically inversely related to their
solid angle [Mandel andWolf 1995]). For example, sunlight [Mashaal
et al. 2012] has a measured coherence area diameter of roughly one
hundred wavelengths, or ∼50 microns.
Coherent contributions must be summed using their complex

�eld values, while incoherent ones are accumulated by summing
their energy (or equivalently, averaging their BRDF values). This
is commonly simulated (e.g., [Dong et al. 2015; Levin et al. 2013;
Werner et al. 2017]) by spatially limiting the surface integrals using
a coherence kernelw (s ), and then averaging multiple such BRDF
evaluations over the region of interest (e.g., the pixel footprint). The
principal e�ect of limiting the coherence area is a small angular
blurring of the BRDF. The BRDF estimate for one coherence area
becomes:

fr (ωi,ωo) =
ξ1

Ac

�
�
�
�
�

∫

S̄c

R⋆ (s ) e−i
2π
λ
(ψ · s ) ds

�
�
�
�
�

2

(3)

R⋆ (s ) = w (s−xc)R (s ) (4)

where S̄c is the portion of S̄ within the support of the coherence
kernel centered at xc, the corresponding normalization factor is
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Ac =
∫
|w (s ) |2 ds , and R⋆ is the product of R (s ) and the coherence

kernel. This has the advantages of limiting our integrals to small
surface regions and e�ectively pre�ltering the BRDF to remove
high frequency angular features that we expect are too small to
be resolved. Generally we do not need to exactly match the real
coherence area. Overestimating it leads to high angular frequency
aliasing that can be resolved by using more light samples, while
underestimating it causes some angular over-blurring of the BRDF.
During rendering, rather than trying to estimate each source’s

coherence area, we use a �xed size, which should be at least as large
as for any expected light source. For w we use a Gaussian with
standard deviation of 10 microns (similar to [Werner et al. 2017]).

3.2 Fourier Interpretation

Let us denote the Fourier transform of a 2D function f (s ) as:

F [f ] (v ) ≡ f̃ (v ) ≡

∫

R2
f (s ) e−i2π (s ·v ) ds (5)

wherev is a 2D frequency vector. Equation (3) can be rewritten as:

fr (ωi,ωo) =
ξ1

Ac

�
�
�
�
�

R̃⋆

(
ψ

λ

)
�
�
�
�
�

2

(6)

Thus the BRDF can be computed using the Fourier transform of
R⋆ (s ) evaluated atψ/λ. One approach could be to compute and store
the full Fourier transform, either analytically or numerically via the
Fast Fourier Transform (FFT) algorithm. However we use tabulated
height�elds which have no simple analytic Fourier transform, and
precomputing FFTs for each surface position would require far too
much storage. Computing full FFTs at render timewould also be very
ine�cient as we typically only need one, or at most a few, values
for each BRDF evaluation. Also R⋆ (s ) typically contains very high
frequencies, much higher than those in the original height�eld, so
using an FFT would require an extremely �ne discretization step of
0.1 microns or less. We could evaluate just R̃⋆ (ψ/λ) as needed using
numerical quadrature, but this would similarly be expensive and
require high sampling rates. However, we do use the FFT approach
as a ground truth for checking the correctness of our approach in
Section 6.

4 EFFICIENT BRDF EVALUATION

In this section, we discuss how to evaluate the BRDF integrals for our
wave optics di�raction models. Our high-level idea for e�ciently
approximating the integral in equation (3) is to approximate the
phase-delay re�ection function R⋆ (s ) by a weighted combination of
Gabor kernels, which are products of a 2D Gaussian with a complex
exponential (plane wave). These kernels are well suited to repre-
senting the high-frequency features found in typical R⋆ (s ), while
also having other desirable properties.

Notably, Gabor kernels have an analytical Fourier transform that
is itself a Gabor kernel. This means that the kernels and their trans-
forms both have spatially localized support (ignoring negligibly
small values of the Gaussian component), which is a key property
for designing an e�cient pruning algorithm.

4.1 Gabor kernels

Let us de�ne a Gabor kernel as the product of a 2D Gaussian and a
complex exponential:

д(s; µ,σ ,a) = G2D (s; µ,σ ) e−i2π (a · s ) (7)

where G2D (s; µ,σ ) = 1
2πσ 2 exp

(
−
∥s−µ∥

2

2σ 2

)
is a normalized 2D

isotropic Gaussian. Here µ is the center, σ the width and a the
plane wave parameter. This de�nition is similar to others used in
the literature; the normalization constant of the Gaussian and the ad-
ditional 2π factor in the complex exponential are chosen to simplify
the following derivations.

The Fourier transform of a Gabor kernel can be written as another
Gabor kernel:

F [д(s; µ,σ ,a)](v ) = e−i2π (µ · (v+a )) e−2π
2σ 2 ∥v+a ∥2

=

1

2πσ 2
e−i2π (µ ·a ) д

(
v ;−a,

1

2πσ
, µ

)
(8)

4.2 Approximating R with Gabor kernels

We �rst subdivide the height�eld domain S̄ into a grid of cells.
We use a uniform grid so all the cells are identically-sized squares,
matching the original height�eld texels, but an adaptive subdivision
could also be used. Then we select a set of cells, with centersmk ,
that covers the support of the current coherence kernel. Since the
cells are much smaller than the coherence area, we approximate
the coherence kernel as being constant over a cell with valuewk =

w (mk − xc). Then we place a Gabor kernel centered on each grid
cell designed to approximate R (s ) in its neighborhood. Together
this gives us an approximation for R⋆ (s ) of the form:

R⋆ (s ) ≈
∑

k

wkRk (s ) =
∑

k

wkCk д(s;mk ,σk ,ak ) (9)

where Ck is a complex constant, incorporating an appropriate scal-
ing coe�cient and phase shift.
We choose σk = lk/2, where lk is the side length of the cell.

This choice was found to give good results experimentally. A sum
of Gaussians is not an exact partition of unity; this leads to slight
approximation error that manifests itself as spurious periodic copies
of the main transform image in the Fourier domain. However, for
the choice σk = lk/2, the copies are weak enough that we do not
observe them in practice.

Next, we approximate the height�eld H (s ) in each cell by its �rst
order expansion aroundmk :

H (s ) ≈ H (mk ) +H
′(mk ) · (s −mk ) (10)

= H
′(mk ) ·s +

(
H (mk ) −H

′(mk ) ·mk

)
(11)

whereH ′(mk ) is the gradient of the height�eld atmk . Substituting
this approximation into the de�nition of R (s ), we can approximate
a single grid cell’s contribution as:

Rk (s ) = B2D (s;mk , lk ) ξ2 e
−
i2π ξ3
λ

H (s ) (12)

≈ l2
k
G2D (s; µk ,σk ) ξ2 e

−
i2π ξ3
λ

(
αk+H

′ (mk ) · s
)

(13)

where αk = H (mk ) − H
′(mk ) ·mk . B2D is a binary box function

indicating the domain of the grid cell, which integrates to the cell’s
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ground truth 2x2 kernels / texel 1 kernel / texel

1 kernel / 2x2 texels 1 kernel / 4x4 texels 1 kernel / 8x8 texels

Fig. 7. A color-mapped (range [-1,1]) visualization of the real component
of R (s ) for the isotropic noise heightfield (the imaginary component looks
similar). The area depicted is about 64 × 64 texels, using the resolution
of 1 micron / texel. Note the common structure seen in these functions:
high-frequency ripples aligned with slopes of the original heightfield, with
frequency increasing proportional to slope. This structure is ideal for approx-
imation by Gabor kernels. These images show the approximation quality
for various kernel sampling densities. All our results use 1 kernel per texel
(i.e. per micron). Note that as the number of kernels decreases, the approxi-
mation degrades, as expected.

area l2
k
. Then we replace the box function with a 2D Gaussian of

the equal area.
Comparing Eqn. 13 with the de�nition in Eqn. 9, we have

Ck = l
2
k
ξ2e
−
i2π ξ3
λ

(
H (mk )−H

′ (mk ) ·mk

)
(14)

ak =
ξ3H

′(mk )

λ
(15)

which completes our Gabor approximation for R⋆ (s ).
Figure 7 shows R (s ) for an example height�eld compared to its

approximation as a sum of Gabor kernels. At the density of 1 kernel
per texel, though the sampling pattern is just visible, we obtain a
su�ciently good approximation that reproduces the relevant details.

4.3 BRDF approximation

Finally we use our Gabor kernel approximation to evaluate the
BRDF. Starting from Equation 6 we have:

fr (ωi,ωo) =
ξ1

Ac

�
�
�
�
�

R̃⋆

(
ψ

λ

)
�
�
�
�
�

2

(16)

≈
ξ1

Ac

�
�
�
�
�
�
�

∑

k

wkCkF [д(s;mk ,σk ,ak )]

(
ψ

λ

) �
�
�
�
�
�
�

2

(17)

where we can use the above de�nitions of the quantities Ck and
ak , and equation (8) to evaluate the Fourier transform of the Gabor
kernel. Thus we can evaluate the sum in a straightforward manner
by iterating over all the cells within the coherence area. We also
apply pruning to non-contributing cells, as detailed in Section 5.

Appendix A brie�y sketches an alternate derivation of ourmethod
where the surface is approximated by overlapping planar elements.

5 IMPLEMENTATION

In this section, we provide key implementation details of our Gabor
kernel solution.

Height�elds and Gabor kernels. We use pre-de�ned high resolu-
tion (8K × 8K ) height�elds as texture maps to specify the microge-
ometry, where each texel represent a �xed size of 1 square micron
in the real world. The height�elds are tiled repeatedly to achieve
a high resolution over a surface. The texels in a height�eld form
a uniform grid naturally, so, we convert each texel into a Gabor
Kernel, as speci�ed in Sec. 4.
For simplicity, we assume no distortion from the texture map,

i.e. the texture coordinates are de�ned to be area preserving and
orthogonal in terms of u and v directions in the world coordinate
system.

Acceleration by pruning. To accelerate computation, the key is
to quickly decide whether a Gabor kernel contributes to the de-
sired outgoing direction ωo. Regardless of the cancellation from
the complex numbers, each Gabor kernel is bounded by a Gaussian
G2D (s;mk ,σk ) positionally and by G2D (v ;−ak ,

1
2πσk

) direction-
ally. Although in theory Gaussians have in�nite support, in practice
we limit them to within ±3 standard deviations, and clamp them to
zero outside this region so they have only localized support.
We pre-generate a mipmap-style hierarchy for each height�eld,

where each node contains both positional and directional bounding
boxes of its 4 child nodes. For each BRDF query, we perform a
top-down traversal of this hierarchy, discarding nodes that are not
within the coherence region S̄ using their positional bounding boxes.
At the same time, we use the directional bounding boxes to prune
the nodes that will not contribute to the query directionψ/λ.

Figure 9 shows the number of evaluations towards di�erent direc-
tions to generate an example BRDF image. In general, each Gabor
kernel contributes to a much larger range directionally in wave
optics than the elements in geometric optics [Yan et al. 2016]. This
explains the soft appearance in these images, as well as slower per-
formance of wave optics. However, our hierarchical pruning is still
e�cient. In practice, we have a more than 50× speedup as compared
to the un-accelerated implementation.

Importance sampling. With the Gabor kernels de�ned to represent
a height�eld, it is straightforward to perform BRDF importance
sampling to get the outgoing ray for global illumination. First, we
randomly pick a Gabor kernel within the coherence region according
to its weighting function w (s ). Then, we immediately know that
the chosen Gabor kernel contributes to a Gaussian directionally, as
analyzed in the acceleration part. By sampling this Gaussian, we
have the sampled query directionψ/λ and thus the corresponding
outgoing directionωo.
The sampling weight can be calculated as the BRDF evaluation

with sampledωo, divided by the sampling pdf. However, in practice,
we found that wave optics e�ects are essentially not observable
in indirect lighting. So, we assume that our sampling weight is
always 1, i.e. discarding the complex cancellations and assuming
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Fig. 8. The heightfields used in this paper. Le� to right: isotropic bumps, brushed metal, scratched metal. These are 5122 crops of the full 81922 maps. The
units (horizontal and vertical) are microns (µm), so the full maps cover a square area about 8.2 mm × 8.2 mm large.

# evaluations (isotropic) # evaluations (brushed)

Fig. 9. Visualization of the numbers of Gabor kernels that are evaluated to
calculate the BRDF values toward di�erent directions. Note that the shapes
of the corresponding BRDFs are captured well, and that a large number of
evaluations are successfully pruned.

contribution only from the Gaussian part of each Gabor kernel. This
gives us signi�cant speed-up, allowing the indirect illumination
to use more samples to converge. This is roughly equivalent to
reducing the coherence area used for indirect illumination to the
size of our Gabor kernels.

Practical rendering pipeline. For convenience, we separate the �nal
rendered image into three components. First, direct illumination
from point lights. Second, indirect illumination from point lights.
Third, illumination from other lights, including the environment
lighting, both direct and indirect. The separation allows us to use
very few samples per pixel to render the most time-consuming �rst
part, usually only 4 to 25 samples on a regular sub-pixel grid.

Spectral rendering. For each BRDF evaluation, we compute for
di�erent wavelengths ranging from 0.36 microns to 0.83 microns,
i.e. the visible spectrum. We �nd that using 8 spectral samples is
generally good enough to produce identical results to those gener-
ated using more samples. We split the wavelength range into bins
and use the midpoints (not endpoints) of the bins as the samples.
We follow the standard spectrum samples→XYZ→RGB method to
eventually convert the spectral values to the sRGB color space.

We also �nd it useful to perform the top-down pruning only once
using the largest wavelength. In this way, we record all contributing
Gabor kernels �rst, then evaluate them for all spectrum samples at
once. As a result, our computation time scales sub-linearly with the

number of spectrum samples, which gives us another 3× speedup,
compared with brute force spectral rendering.

6 RESULTS

6.1 Heightfield and BRDF visualizations

Figure 8 shows a color-mapped visualization of the height�elds used
in our results. For all height�elds, we use a discretization step of 1
micron. The height�elds were generated procedurally by inverse
FFT noise generation, and (in the case of scratches) by drawing lines
with randomized positions, depths, and widths.

In Figure 10, we show visualizations of the outgoing BRDF lobes of
our model and geometric optics, for a �xed incoming direction and
footprint (coherence area). This illustrates the di�erences between
geometric and wave optics, and also the di�erences between a single-
wavelength and spectral simulation. Note that the appearance of
high-frequency features is clearly di�erent in the geometric and
wave solutions: the geometric solutions contain sharp folds in areas
where the normal map Jacobian becomes singular [Yan et al. 2014].
The wave optics solutions have no such features, and the high
frequencies in them are more reminiscent of laser speckle. Also note
the signi�cant color e�ects in the full spectral wave optics version.

In Figure 11, we show BRDF lobes computed with our approach
(for a single wavelength) side-by-side with lobes computed using the
FFT algorithm applied to equation 6. Note the close match, despite
our method taking a completely di�erent approach of Gabor kernel
approximation.

6.2 Rendered results

In this section, we illustrate our method’s capability to render actual
scenes using wave optics, as shown in Figures 1, 2, 12, and 13. To
show that the results computed separately at each frame are tempo-
rally coherent, please see the accompanying video. We implement
our method using Mitsuba [Jakob 2010], and run all renderings in
720p (1280 × 720) on a 6-core Intel i7-4770K desktop at 3.5 GHz,
hyperthreaded to 12 threads.

Scene con�gurations and performance comparisons are listed in
Table 1. In general, for direct illumination from point lights, our
method with a single wavelength is about 5 − 20× slower than geo-
metric optics, and about another 3.5× slower with 8 spectral samples.
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geometric single spectral
optics wavelength

Fig. 10. Visualizations of the outgoing BRDF lobes on the projected hemi-
sphere. Top: isotropic bumps, middle: brushed, bo�om: scratched. Note the
clearly di�erent high-frequency features predicted by geometric and wave
optics. Also note the significant color e�ects predicted by wave optics (here
we are using 8 spectral samples).

isotropic bumps brushed metal

Fig. 11. Comparison of BRDF lobes computed using our Gabor kernel ap-
proach (le� image in each pair) to ground truth computed by evaluating
equation 6 using the FFT algorithm (right image).

This is because of the wide directional spread predicted by wave
optics, as analyzed in Section 5. However, direct illumination only
takes up about half of the overall computing time. Considering indi-
rect lighting and environment lighting together, the performance of
our wave optics method is within 1.5× of geometric optics, and is
thus a practical solution. In the rest of this section, we will discuss
individual scenes.

Patch. This is a simple scene showing a 5 cm × 5 cm patch. The
camera is looking towards the center of the patch from an elevation
angle of 45◦. The point light is on the opposite side, and moves left
and right in the video. Figure 12 shows renderings of three di�erent
height�elds (isotropic noise, brushed and scratched), each rendered
using multiple wavelengths, single wavelength (0.4 microns) and
geometric optics for comparison. We added isotropic noise on top

Table 1. Scene configurations including materials of the main objects and
number of samples per pixel, and performance comparisons between geomet-
ric optics andwave optics with 1 and 8 spectral samples. For the performance
of the Patch scene, we use the isotropic noise heightfield as representative.

Scene Patch Cutlery Laptop Tumbler
# Point light(s) 1 1 1 2
# Env. light 0 1 1 1
Material Al Ag Al Fe
# Samples (direct) 4 9 25 25
# Samples (ind.+env.) N/A 256 1024 1024
Direct (geom.) 9.6s 3.1s 37.4s 19.8s
Direct (single) 3.7m 0.8m 6.4m 1.9m
Direct (spectral) 13.1m 2.4m 21.1m 6.4m
Indirect + env. N/A 4.0m 25.1m 9.7m
All (geom.) N/A 4.2m 25.7m 10.0m
All (single) N/A 4.8m 31.5m 11.6m
All (spectral) N/A 6.4m 46.2m 16.1m

of the brushes and scratches to make them more visible under the
point light.

From these images, we can clearly see that our method is able to
produce characteristic structures from the underlying height�elds:
intuitively, round highlight for isotropic, vertical anisotropic high-
light for brushed and spiderweb-like highlight for scratched. These
shapes indicate the correctness of our method. Also, since di�erent
wavelengths behave di�erently in wave optics, colors are expected
from spectral rendering.

Cutlery. This scene shows silver cutlery with strong scratches,
rendered using a point light with static grayscale environment light-
ing, in order to make sure that the colors are from di�raction. In
Figure 1, we can clearly see the colored scratches rendered using
multiple wavelengths. Also, even with a single wavelength, our
method is able to generate a more convincing result, as we com-
pare with the geometric method by Yan et al. [2016]. The geometric
method arguably produces harsher glints, due to the sharper folds
in the BRDF lobes predicted by the P-NDF theory.
In the video, we move the point light back and forth, so that we

can see the scratches and highlights changing consistently. We also
compare with geometric optics. We can clearly see strong cross-
shaped highlights from geometric optics, but they’re more subtle in
wave optics.

Laptop. This scene shows a laptop with a roughened aluminum
matte �nish (modeled as a Gaussian random height�eld). It is ren-
dered using a point light and environment lighting. We can observe
colored glints in Figure 2. Albeit subtle, these colored glints are
pervasively observed in the real world. To further verify this e�ect,
we illuminated a MacBook using an LED light from a cell phone in
a dark room; this leads to obvious colored highlights. Our method
is able to produce perceptually similar appearance.
In the video, we move the light to show how the colored glints

change. We also show comparisons with geometric optics, which
produces much more “noisy” glints. This can also be observed from
the BRDF images in Figure 10, where geometric optics preserves
every detail from the height�eld, including sharp edges and corners,
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isotropic brushed scratched

Fig. 12. The Patch scene showing renderings of di�erent heightfields with
a point light. (Top row) Spectral. (Middle row) Single wavelength. (Bo�om
row) Geometric.

Wave
optics

Geometric
optics

Wave
optics

Geometric
optics

full rendering dir.+ind.+env. dir. illum. only

Fig. 13. The Tumbler scene rendered with two point lights and environment
lighting, showing brushed aluminumwith strong anisotropy. Insets compare
our spectral method (top row) with the geometric method (bo�om row).
We can see that the geometric method produces wider highlight peaks but
narrower highlights overall, and misses the colored glints.

while wave optics smooths the details out. This is also expected in
theory, because wave optics tells us that the light will “ignore” struc-
tures whose sizes are comparable or smaller than the wavelength.

Tumbler. This scene illustrates a tumbler with brushed metal on
the body under two point lights and environment lighting. As shown

in Figure 13, our method is able to handle the anisotropic appear-
ance, resulting in two vertical lines of highlights. From the insets,
we can also see that the geometric method generates wider highlight
peaks but narrower highlights overall, while our method is able to
produce thin peaks but with much wider spread. This observation
corresponds to the brushed BRDF images in Figure 10, where most
energy concentrates in the central vertical line for wave optics. A
similar observation was noted by Dong et al. [2015]. Moreover, the
observation is also in accordance with the geometric GGX BRDF
[Walter et al. 2007], well known for its “long tail” and its ability
to better represent slow fallo�s of highlights than other geometric
BRDFs such as Beckmann. The question of why wave optics often
leads to longer tails is complex; a simple though incomplete expla-
nation is that wave optics is less in�uenced by �ner scale roughness,
leading to sharper peaks, while o�-peak dropo� depends on de-
structive interference which tends to be somewhat random and
incomplete, leading to stronger tails.

Limitations and future work. Currently our approach only looks
at single specular re�ection, ignoring inter-re�ection, layered mate-
rials, refraction, or complex 3D structures (e.g., in biological irides-
cence). Our computational expense currently requires separation of
direct illumination due to small lightsources from other components,
and using a di�erent (cheaper) BRDF for these components; further
accelerations should be explored. Improved importance sampling
techniques would also help. Physical measurement to acquire the
height�elds would be another interesting addition.

7 CONCLUSION

As computer graphics has pursued ever increasing realism in mate-
rial appearance, there has been a trend from strictly using geometric
optics to introducing wave optics in the derivation of BRDF models
and in the simulation of speci�c iridescence e�ects. In this paper we
have taken this process to a new level, introducing the �rst practical
technique for simulating full di�raction e�ects in completely arbi-
trary micron-scale height-�eld geometry. The result is a dramatic
change in the predicted BRDF due to re�ection from small areas of
surface: the unrealistically sharply de�ned structures of geometric
optics give way to softer results that depend on wavelength, intro-
ducing color into the BRDF. In practice, the new model produces
softer, more natural looking re�ections from microgeometry, with
subtle color e�ects visible under sharp lighting.
BRDF models that are derived from wave optics predict di�er-

ent appearance than microfacet models, but the results can often
be nearly matched by microfacet models with somewhat di�erent
parameters. In the case of surface detail, the geometric model will al-
ways predict re�ection patterns with hard edges induced by folds in
the set of re�ected rays. Here moving to wave optics—the model ap-
propriate to the scale in question—produces fundamentally di�erent
results, with smooth highlight edges and color e�ects.

An exciting implication of our work is that it provides the ability
to represent surface features at all scales with the appropriate type
of model: large features can be handled with geometry; smaller
ones down to a fraction of a millimeter can be represented using
geometric normal maps; and features down to wavelength scale
are represented as di�racting height �elds. Smaller features than
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that are not optically relevant and are not needed in any visual
simulation. Though the speed and memory footprint of our initial
implementation can be further reduced in future work, our method
is already e�cient enough to use routinely in o�ine rendering. We
can represent the appearance of rough surfaces with no excuses
about wave e�ects being assumed irrelevant or surface details being
left out of the model.
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A ALTERNATE METHOD DERIVATION

Here we brie�y sketch an alternative, but mathematically equiva-
lent, derivation of our method. One can also view our method as
approximating the rough surface by a set of small planar elements,
or �akes, with one per grid cell. These �akes have soft overlap-
ping boundaries in S̄, de�ned by a Gaussian �ake shape function
K (s ) = l2

k
G2D (s ; 0,σk ), which assuming a uniform grid, is the same

for all �akes. K is normalized so that its integral is equal to the grid
cell area. The �akes are centered at the grid cell centersmk .

Approximating the coherence kernel as constant over a �ake with
wk = w (mk −xc), and evaluating Equation (3) as a sum over the
�ake approximation of the surface gives:
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Then we can expand R (s ) using (1), substitute the per-�ake planar
height approximation,H (s ) = H (mk )+H

′(mk ) · (s −mk ), and after
some rearranging of terms, recognize that the integral has the form
of a Fourier transform (5) of K . Combining these steps we get:
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ϕk =
ξ3H (mk ) + (ψ ·mk )

λ
(20)

K̃ (v ) = l2
k
e−2π

2σ 2
k
∥v ∥2 (21)

where we have assumed ξ2 and ξ3 are constant per �ake.
Since K̃ is a Gaussian, the expression in the sum can be interpreted

as evaluations of Gabor kernels. If we expand out the expression
inside the sum from our prior derivation (17), we �nd that they
match exactly. This alternate derivation may provide some addi-
tional intuition about our approximation and can also be applied to
other types of �ake shape functions.
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