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ABSTRACT
Recent research shows that significant energy saving can be achieved
in wireless sensor networks with a mobile base station that collects
data from sensor nodes via short-range communications. How-
ever, a major performance bottleneck of such WSNs is the signifi-
cantly increased latency in data collection due to the low movement
speed of mobile base stations. To address this issue, we propose
a rendezvous-based data collection approach in which a subset of
nodes serve as the rendezvous points that buffer and aggregate data
originated from sources and transfer to the base station when it ar-
rives. This approach combines the advantages of controlled mobil-
ity and in-network data caching and can achieve a desirable balance
between network energy saving and data collection delay. We pro-
pose two efficient rendezvous design algorithms with provable per-
formance bounds for mobile base stations with variable and fixed
tracks, respectively. The effectiveness of our approach is validated
through both theoretical analysis and extensive simulations.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Archi-
tecture and Design—wireless communication; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems—Routing and layout

General Terms
Algorithms, Performance, Theory

Keywords
Sensor Networks, Controlled Mobility, Energy Efficiency, Real-
time Systems

1. INTRODUCTION
Energy is a paramount concern to wireless sensor networks (WSNs)

that must operate for an extended period of time on limited power
supplies such as batteries. A major portion of energy expenditure of
WSNs is attributed to multi-hop wireless communications. Recent
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research has exploited controlled mobility as a promising approach
to reduce communication energy consumption of WSNs. For in-
stance, a mobile base station (BS) may roam about a sensing field
and collect data from sensor nodes through short-range commu-
nications. The energy consumption of static nodes is thus reduced
because fewer number of wireless relays are needed in the network.
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Figure 1: An example of data collection in a 500 × 500 m2

sensing field. The BS moves at 0.5 m/s. It takes the BS about
20 minutes to visit all rendezvous points located within 100 m
from the center of field. It takes more than 2 hours to visit 100
source nodes randomly distributed in the field.

The major performance bottleneck of WSNs with a mobile BS
is the increased latency in data collection. The typical speed of
practical mobile sensor systems (e.g., NIMs [21], Packbot [24] and
Robomote [6]) is about 0.1 − 2 m/s. As a result, it takes a mobile
BS hours to tour a large sensing field, which cannot meet the delay
requirements of many sensing applications. The low movement
speed is a fundamental design constraint for mobile BSs because
increasing the speed will lead to significantly higher manufacturing
cost and power consumption. For instance, the power consumption
of the Packbot node [24] is about 60 W when moving at 1 m/s, and
increases quadratically with speed [4].

In this paper, we propose a rendezvous-based data collection ap-
proach that explores the controlled mobility of BS and the capa-
bility of in-network data caching. Specifically, a subset of static
nodes in the network will serve as the rendezvous points (RPs) and
aggregate data originated from sources. The BS periodically visits
each RP and picks up the cached data. An example of rendezvous-
based data collection is illustrated in Fig. 1. This approach has
several key advantages. First, a broad range of desirable trade-
offs between energy consumption and communication delay can be
achieved by jointly optimizing the choices of RPs, motion path of
BS and data transmission routes. Second, the use of RPs enables
the BS to collect a large volume of data at a time without traveling
a long distance, which mitigates the negative impact of slow speed



of BS on overall network throughput. Third, mobile nodes commu-
nicate with the rest of the network through RPs at scheduled times,
which minimizes the disruption to the network topology caused by
mobility.

This paper makes the following contributions. 1) We formulate
the rendezvous design problem for WSNs with a mobile BS, which
aims to find a set of RPs that can be visited by the BS within a
required delay while the network cost incurred in transmitting data
from sources to RPs is minimized. 2) We develop two efficient
rendezvous design algorithms with constant approximation ratios.
The first algorithm places RPs on an approximate Steiner Minimum
Tree (SMT) of source nodes, which allows the data to be efficiently
aggregated at RPs while shortening the data collection tour of BS.
The second algorithm is designed for mobile BSs that must move
along fixed tracks. Based on the analysis on the optimal structure of
connection between sources and a fixed track, we can find efficient
RPs within bounded BS tour on the track. 3) Simulation results
show that both algorithms can achieve satisfactory performance un-
der a range of settings. The theoretical performance bounds of the
algorithms are also validated through simulations.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 introduces the basic model and assumptions
of this work. The rendezvous design problems with a variable and
fixed BS track are studied in Section 4 and 5, respectively. Section
6 presents the simulation results and Section 7 concludes the paper.

2. RELATED WORK
Recent work has exploited controlled mobility to enhance the

connectivity of sparse ad hoc networks [8, 25], and reduce the en-
ergy consumption of WSNs. We review three different approaches
[3] of utilizing controlled mobility in data collecting WSNs.

Motivated by the observation that the nodes in the vicinity of the
base station deplete energy first as they forward more data, several
projects [16, 7, 27] propose to use mobile base stations to achieve
balanced energy usage. It is showed in [16, 7] that the optimal
path of BS is the perimeter of the sensing field. However, the aver-
age network energy consumption in this approach is high as nodes
must communicate with the mobile base stations through multi-hop
routes. Moreover, as base stations often change their paths dynam-
ically, additional overhead is incurred in maintaining efficient net-
work topology. In this paper, we explore the delay-tolerant nature
of many WSN applications by caching data inside the network and
transferring to the BS when it arrives. Furthermore, we assume a
data aggregation model in which nodes close to the BS may not
consume more energy than other nodes as data traffic can be ag-
gregated before being relayed. The results of [16, 7] are derived
without accounting for data aggregation and hence are not applica-
ble to our problem.

In the second approach, the BS visits source nodes and gather
data from them via one-hop communications. Shah et al. [22]
model the performance of BS based on the random mobility model.
Several heuristics are proposed in [9, 24] to schedule the movement
of BS such that the source nodes can be visited before buffer over-
flow. While this approach minimizes the network energy consump-
tion by completely avoiding multi-hop wireless transmissions, it
incurs high latency when collecting data from large sensing fields
due to the slow speed of BS.

The third is a hybrid approach that jointly considers multi-hop
network transmissions and the movement of BS in data collec-
tion. The rendezvous approach studied in this paper falls into this
category. In [13, 12], the data are sent from other nodes to the
nodes close to the path of BS. The BS then picks up the cached
data when it passes by. Wang et al. [26] show that constraining

the BS in the vicinity of the base station can maximize the net-
work lifetime. These projects are not concerned with collecting
data within bounded delay. In [10], urgent messages are sent to the
source nodes that are visited by the BS more frequently in order to
achieve early delivery. As the BS picks up most data (except the
urgent messages) from data sources, such a scheme results in high
latency in large networks. Moreover, different from our objective of
minimizing network energy consumption in data collection within
bounded delays, the urgent messages are assumed to be infrequent
in [10] and hence have limited impact on network energy consump-
tion. Xing et al. [29] proposed two algorithms for planning the data
collection tours of mobile nodes. However, the mobile nodes must
travel along network routing trees in [29]. In this work, we aim to
jointly optimize data routing paths and the BS tour. In addition,
our algorithms are based on a data aggregation model that is not
considered in [29].

Our problem formulation is related to the Traveling Salesman
Problem (TSP) [1]. However, new techniques are needed for our
problem as the tour of BS and network routes of data should be
jointly considered in order to determine the optimal locations of
rendezvous points while only the tour of visiting a fixed set of sites
needs to be found in TSP.

3. BASIC APPROACH AND ASSUMPTIONS
In this section, we first provide a brief overview of the problem,

and then introduce the network model used in this paper.

3.1 Problem Description
In our problem, a set of source nodes generate data samples that

must be delivered to the base station (BS) within time interval D.
Our objective is to find a tour of the BS that visits a set of nodes
referred to as rendezvous points (RPs). The RPs cache the data
originated from sources and send to the BS via short-range trans-
missions when it arrives. The total energy consumption incurred
by the network to transmit the data from sources to the RPs should
be minimized under the constraint that all data must be delivered to
the BS before the deadline D. An important characteristic of this
problem is that the BS tour and data transmission routes must be
jointly designed in order to find the optimal RP locations. We refer
to this problem as rendezvous design in data collection.

The delay bound may be imposed for two different reasons. First,
applications often require data to be delivered within certain dead-
line. For instance, a user may issue the following sliding-window
query: “sample seismic data every 10s and archive at the base sta-
tion every 10 minutes", where the deadline is 10 minutes. Second,
the delay bound may also be imposed due to the recharging cycle of
the BS. For instance, the battery of Robomote node lasts for about
30 minutes [6] during movement. Although a mobile BS can pe-
riodically replenish its energy (e.g., by moving to a fixed docking
station), frequent battery recharging should be avoided to reduce
the disruptions to normal operation of the network.

3.2 Network Model
According to several empirical studies [5], the speed that data

packets are relayed in a WSN is about several hundred meters per
second, which is much higher than the speed that a mobile device
moves. Therefore, the data collection deadline can be mapped to
the maximum allowable length of the BS tour that visits all RPs.
We denote the maximum length of the BS tour, L = vmD, where
D is a data collection deadline and vm is the average movement
speed of BS.

We assume that data from different sources can be aggregated
at a node before being relayed. Data aggregation [18] has been



widely adopted by data collection applications to reduce network
traffic. Specifically, we assume the N-to-one aggregation model
in which a node can aggregate multiple data packets it received
into one packet before relaying it. Such a model is applicable to
a number of scenarios such as collecting the maximum or average
value of samples from different sensors.

We assume that nodes are densely deployed in a region and all
nodes use the same transmission power. Accordingly, the total en-
ergy consumed by transmitting a data packet along a multi-hop path
is proportional to the Euclidean distance between sender and re-
ceiver. This assumption is justified by the fact that the Euclidean
distance between two nodes in a dense wireless network is approx-
imately proportional to the hop count between the same nodes [20].
We note that such an energy model is also adopted by several ex-
isting power-efficient data communication protocols in WSNs [14].
This assumption also allows the BS to estimate the network energy
consumption without knowing the global network topology.

We assume that the storage capacity of a node is large enough
to buffer the total volume of data generated by the sources within
delivery deadline D. Several recent sensor network platforms [19]
can integrate 10 ∼ 100 Mb NAND flash memory with ultra-low
power consumption. Finally, nodes and the BS are assumed to
know their own physical locations through the GPS units on them
or a location service in the network.

3.3 Overview of the Approach
We investigate two rendezvous design problems in this paper. In

the first problem, the BS may freely move within the network de-
ployment region. In the second problem, the motion of the BS is
constrained on a fixed track. Although such limited mobility re-
duces the contacts with fixed nodes in a network, it significantly
simplifies the motion control of BS and improves the system relia-
bility. For instance, several mobile sensor systems (e.g., XYZ [17]
and NIMs [2, 21]) are designed to move along fixed cables.

For each rendezvous design problem, we develop an approxima-
tion algorithm that is executed by the BS to find a data collection
tour, a set of RPs on the tour, and a set of routing trees that are
rooted at the RPs and connect all sources. As we assume that the
BS does not have the global information about the network except
the locations of sources, the RPs found are physical locations at
which there may not exist real nodes. This issue can be addressed
in the following two ways. First, the BS may find a real node near
each RP through the network. For instance, it may send an area
anycast [11] message addressed to the physical location of an RP.
The message will be delivered to a node in the vicinity of the in-
tended location, which may serve as the RP. Alternatively, the BS
may travel along the calculated tour and recruit nodes to serve as
RPs.

4. RENDEZVOUS DESIGN WITH A VARI-
ABLE BS TRACK

In this section, we study the rendezvous design problem when
the BS can freely move in the network deployment region along any
track. Our objective is to find a BS tour no longer than L and a set
of routing trees that are rooted on the tour and connect all sources,
such that the total Euclidean length of the trees is minimized. The
problem is formally defined as follows.

DEFINITION 1. (Rendezvous Design with a Variable BS Track)
Given a set of sources S, find 1) a tour U no longer than L and
2) a set of geometric trees {Ti(Vi, Ei)} that are rooted on U and
S ⊆ ∪iVi; such that

�
i

�
(u,v)∈Ei

|uv| is minimized, where (u, v)

is an edge of tree Ti and |uv| is its Euclidean length.

An example of the solution is illustrated in Fig. 3(b). The BS
tour visits three RPs: RP1, RP2 (which is also a source node) and
RP3. Two trees1 are rooted at RP1 and RP3 and connect all sources.
The objective is to minimize the total edge length of the two trees.

This problem can be shown to be NP-hard by a reduction from
the Euclidean Traveling Salesman Problem (TSP). Specifically, a
special case of the decision version of the problem is to ask if there
exists a set of RPs such that the network energy consumption is
zero. In order to incur zero network energy consumption, all the
sources must be RPs as well. In other words, the BS must visit all
the RPs on a tour no longer than L. This is exactly the decision
version of the GTSP problem in which a salesman needs to visit a
set of sites on a tour no longer than a given bound.

4.1 A SMT-based Approximation Algorithm
In order to find the optimal RP locations, the BS tour and the data

routing paths need to be jointly designed. When the BS is fixed,
the optimal routing tree under the N to one aggregation model
is the Steiner Minimum Tree (SMT). For a given set of nodes V
on a plane, finding the shortest tour that visits all the nodes is a
TSP problem. Interestingly, the SMT of the nodes in V is a lower
bound of the optimal TSP tour because the SMT connects all nodes
using the shortest length of edges and does not contain any cycle.
This fact suggests that positioning RPs on the SMT of source nodes
may lead to short BS tour while maintaining good data aggregation
performance. Motivated by this observation, we develop an SMT-
based approximation algorithm referred to as Rendezvous Design
for Variable Tracks (RD-VT). The basic idea is to find a subtree of
an approximate SMT of sources such that all the RPs on the subtree
can be visited by a BS tour no longer than L while the total edge
length of the rest of the SMT is minimized. The pseudo code of the
algorithm is shown in Fig. 2.

/*S is the set of source node locations, L is the maximum BS
tour length, σ is a positive constant smaller than L*/
Input: S = {si}, L, σ
Output: RP list R

1. Find an approximate Steiner minimum tree T that con-
nects all points in S. Randomly choose a source B as
the root of the tree.

2. Y=L/2;

3. Traverse T from B in the preorder until the total length
of edges visited is Y . Denote the subtree traversed as
T ′.

4. R = {ri| ri is the intersection between T ′ and path si →
B on T}.

5. if X = L − TSP (R) > σ

6. Y=Y+X/2; goto 3;

7. else exit;

Figure 2: The pseudo code of the RD-VT algorithm.

The algorithm first constructs an approximate SMT, T , which
is rooted at source B and connects all other sources. Then T is
traversed in the preorder until a length of L/2 edges is covered.
The preorder (also referred to as depth-first) traversal of tree T is
the recursive process of visiting all the nodes on T , starting from
the root, and then traversing in the preorder each of the subtrees of
the root. Denote the subtree traversed as T ′. In the example shown
in Fig. 3(b), T ′ is composed of the highlighted edges. An RP may
lie on an edge of T because each edge approximates a multi-hop
1Edge (RP2,S2) can be viewed as a single-edge tree.



network path. The white circles in Fig. 3(b) represent the RPs on
T ′. Each RP is the intersection between T ′ and a source-to-root
path on T . For instance, RP3 is the intersection between T ′ and the
path from s2 to BS.

After the set of RPs, R, is found on subtree T ′, the algorithm
finds a tour that visits all RPs by executing a TSP solver. Sup-
pose TSP (R) is the length of the TSP tour visiting all the RPs. If
X = L − TSP (R) > σ where σ is a small constant in the input,
T ′ is then expanded to include a length of X/2 more edges of T .
This process repeats until the difference between the length of the
TSP tour and L is smaller than σ. σ can be set according to the
desirable trade-off between solution quality and time complexity.
The rationale for the iterative process of RD-VT is that each itera-
tion explores more edges of the approximate SMT while ensuring
that the current RPs can always be visited by a BS tour no longer
than L.
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Figure 3: An example of the RD-VT algorithm’s execution.
Source nodes and RPs are denoted by white and black circles,
respectively. si/RPj represents a source node that serves as a
RP as well. (a) The initial approximate SMT. (b) L/2 length of
tree edges are traversed in preorder (c) The final TSP tour is
no longer than L.

4.2 Performance Analysis
In this section, we first show the correctness of RD-VT and then

derive its approximation ratio. We define the following notation.
For a given graph G, c(G) represents the total edge length of G.
The correctness of RD-VT can be proved by showing that all the
found RPs can be visited by a BS tour no longer than L. We have
the following theorem.

THEOREM 1. Suppose Ri represents the set of RPs found at
step 4 in iteration i of RD-VT. Then there always exists a BS tour no
longer than L that visits all the RPs in Ri. That is, L−TSP (Ri) ≥
0 always holds before the algorithm exits.

PROOF. Suppose Ti is the subtree traversed at step 3 in iteration
i of the algorithm. We first show that there exists a tour which visits
all vertices of Ti and has a length no greater than 2c(Ti). Walking
along the edges of Ti in preorder from the root and returning to
the root on the same route passes each edge exactly twice. Hence,
the total length of such a tour is 2c(Ti). We refer to such a tour
as the preorder walk of Ti hereafter. For instance, in Fig. 3(b),
the preorder walk of the highlighted subtree is B → RP1 → s1 →
RP3 → s1 → RP1 → B.

According to the definition of RPs (step 4 in Fig. 3), Ri is a
subset of the vertices of Ti. If the tour found by the TSP solver
is longer than 2c(Ti), we replace it with the preorder walk of Ti.
We now prove the theorem by induction. In the first iteration,
TSP (R1) ≤ 2c(T1) = L. Suppose TSP (Ri) ≤ L holds in
iteration i. According to step 6 in iteration i + 1 of the algorithm,
we have:

c(Ti+1) − c(Ti) =
L − TSP (Ri)

2
(1)

As tree T is always traversed in preorder (step 3), the edges in
Ti+1 \ Ti are connected. The length of the preorder walk of these
edges is equal to 2(c(Ti+1) − c(Ti)). A tour that visits all RPs in
Ri+1 can be constructed by appending this preorder walk to the
TSP tour in iteration i. We have:

TSP (Ri+1) ≤ TSP (Ri) + 2(c(Ti+1) − c(Ti))

= TSP (Ri) + 2 · L − TSP (Ri)

2
= L

We now analyze the performance of RD-VT. We define the fol-
lowing notation. SMTS denotes the SMT connecting all sources
S = {si}. Let β be the ratio of L to the total edge length of
SMTS , i.e., β = L

c(SMTS)
. We assume β � 1. When this condi-

tion does not hold, the BS tour is close to or directly includes many
source nodes. As a result, data aggregation does not play a signifi-
cant role in cost saving because the opportunity for a node to relay
the data originated from more than one source is low. Let α be the
best known approximation ratio for the SMT problem. We have the
following theorem regarding the performance of the RD-VT algo-
rithm.

(b) (c)(a)

Figure 4: (a) The approximate SMT used as input and the BS
tour found by RD-VT. (b) The optimal RPs and BS tour; the
black tree inside the BS tour is SMTQ∗ , the SMT connecting
the BS and RPs; A∗ includes the gray trees rooted at RPs. (c)
SMTS - the SMT connecting all sources.

THEOREM 2. The approximation ratio of the RD-VT algorithm
is no greater than α + β(2α−1)

2(1−β)
.

PROOF. We first derive a lower bound of the optimal solution.
Suppose Q∗ represents the set of the BS and the RPs in the optimal
solution. A∗ represents the set of the trees rooted at the optimal
RPs and connect all sources. A∗ includes all the edges in gray
and the end nodes on them. The cost of optimal solution, i.e., to-
tal distance that data travels before being picked up at the RPs, is
therefore c(A∗). SMTQ∗ and SMTS represent the SMT with the
terminal nodes as RPs in Q∗ and the sources in S, respectively.
Fig. 3 illustrated the graph structures defined above. As the union
of SMTQ∗ and A∗ is a Steiner tree with terminal nodes S, the total
edge length of them must be no smaller than that of SMTS :

c(A∗) + c(SMTQ∗) ≥ c(SMTS) (2)

Suppose T ∗ represents a tree connecting the BS and all the opti-
mal RPs, which is created by removing an arbitrary line segment
between two RPs on the optimal BS tour. c(T ∗) is smaller than the



length of the BS tour and hence also smaller than L. Moreover, T∗

is a Steiner tree with terminal nodes Q∗. Therefore,

c(SMTQ∗) ≤ c(T ∗) < L (3)

From (2) and (3), we have:

c(A∗) ≥ c(SMTS) − c(SMTQ∗ ) > c(SMTS) − L (4)

Suppose T is an α-approximation SMT connecting the BS and the
source nodes, and T ′ is the subtree of T covered by the BS tour
found by the RD-VT algorithm. We have c(T ) ≤ αSMTS . The
cost of the solution found by the RD-VT algorithm, i.e., the total
distance that data travels on T before being picked up by the BS is
equal to c(T )−c(T ′). According to Theorem 1, at least a length of
L/2 tree edges are covered by the BS tour2. That is, c(T ′) ≥ L/2.
We have:

c(A∗) ≥ c(SMTS) − L

≥ c(T )/α − L

=
c(T ) − L/2

α
− (2α − 1)L

2α
(5)

≥ c(T ) − c(T ′)
α

− (2α − 1)L

2α

Since c(A∗) ≥ c(SMTS) − L and L = β · c(SMTS), we have
L ≤ β

1−β
c(A∗). Combining with (5), we have:

c(T ) − c(T ′) ≤ α

�
c(A∗) +

2α − 1

2α
L

�

= α

�
c(A∗) +

2α − 1

2α
· β

1 − β
c(A∗)

�

≤ c(A∗)
�

α +
β(2α − 1)

2(1 − β)

�

We now analyze the complexity of RD-VT. According to The-
orem 1, the length of BS tour increases in each iteration as the
number of RPs to be visited grows. Therefore, the total number
of iterations of RD-VT before termination depends on L and how
fast the length of the TSP tour increases. In iteration i + 1, if the
number of RPs remain unchanged, the increase of the TSP tour is
likely greater than c(Ti+1)−c(Ti). This is because removing an ar-
bitrary line segment between two consecutive RPs on the TSP tour
results in a tree connecting all RPs. Hence, c(Ti+1)−c(Ti) is likely
smaller than the partial TSP tour connecting the nodes in Ti+1 \Ti.
According to (1), c(Ti+1) − c(Ti) =

L−TSP (Ri)
2

. Therefore, the
length that the current TSP tour can be expanded (initially L) is
reduced by at least half in each iteration. Therefore, the number of
iterations of RD-VT is approximately O(log L). In each iteration,
a TSP tour is computed for all RPs. As each source is on one ag-
gregation tree, the number of RPs is no more than |S|. There exist
many efficient TSP algorithms, which have different solution qual-
ity and complexity trade-offs. The algorithm in [1] has an approxi-
mation ratio of (1 + 1/b) and a complexity of O(|S|(log |S|)O(b))
for any fixed b > 1. We note that RD-VT is only run by the BS,
which has more computational power than sensor nodes.

2L/2 is a tight lower bound on the length of the edges of T′. When
the first edge of T visited in preorder is longer than L/2, T ′ only
includes the partial edge of length L/2.

5. RENDEZVOUS DESIGN WITH A FIXED
BS TRACK

In this section, we study the rendezvous design problem when
the BS moves on a fixed track. Although a fixed track reduces
the contacts between the BS and the fixed nodes in the network, it
significantly simplifies the motion control of the BS and is hence
adopted by several mobile sensor systems in practice. For exam-
ple, in the NIMS system deployed at the James Reserve, data col-
lecting sensors can only move along fixed cables between trees [2,
21]. Moreover, a fixed track improves the system reliability. For
instance, the BS can be recharged any time during the movement.

We assume that the track consists of non-intersecting contigu-
ous line segments, which is consistent to several practical mobile
sensor systems [2, 21]. Specifically, a track is specified by P =

{pipi+1 | 1 ≤ i ≤ n − 1} where pipi+1 does not intersect with
pjpj+1 if |i − j| > 1.

Our objective is to find a continuous tour no longer than L along
the track and a set of routing trees rooted on the tour that connect
all sources, such that the total Euclidean length of the trees is min-
imized. The problem can be formally defined as follows.

DEFINITION 2. (Rendezvous Design with a Fixed BS Track)
Given a set of sources S and a track specified by P = {pipi+1 |1 ≤
i ≤ n − 1}, find 1) a tour U on P that is no longer than L and
2) a set of geometric trees {Ti(Vi, Ei)} that are rooted on U and
S ⊆ ∪iVi; such that

�
i

�
(u,v)∈Ei

|uv| is minimized, where (u, v)

is an edge of tree Ti and |uv| is its Euclidean length.

5.1 An Approximation Algorithm
As this problem can be easily shown to be NP-Hard, we focus

on the design of approximation algorithms. When the BS moves
along the track, a tour of length L corresponds to a partial track of
length L/2. If the track is shorter than L/2, the problem is trivial
because the BS can simply move back and forth along the whole
track. Therefore, we focus on the case where the track is longer
than L/2.

When the BS tour is given, the problem becomes minimizing
the total length of edges that connect sources to the tour. Fig. 7
(a) shows an example in which sources connect to the BS tour at
RPs {ri} on the track. It can be seen that the optimal solution is
composed of a set of Steiner Minimum Trees (SMTs) that connect
sources to {ri}. However, our problem cannot be mapped to the
SMT problem because {ri} are not known. On the other hand, it is
known that MST is a good approximation of SMT in the Euclidean
space. For a given BS tour ρ, denote MSTρ as the optimal set of
MSTs that connect sources to ρ. That is, MSTρ has the minimum
total edge length among all sets of MSTs connecting sources to ρ.
In this section, we develop an approximation algorithm based on
the analysis on the properties of MSTρ.

By definition of MST, any edge of MSTρ lies either between
two sources or between a source and a point on ρ. MSTρ has the
following important property. If an edge lies between a source si

and a point ri on ρ, ri is closest to si among all points on ρ. This
is because, if there was another point r′i on ρ closer to si than ri,
replacing edge (si, ri) with (si, r

′
i) leads to a lighter tree, which

contradicts the fact that (si, ri) is an edge of MST. Note that ri is
either a start/end/turning point of ρ or the projection of a source on
ρ. Fig. 7 (c) illustrates an example of MSTρ. The sources connect
to ρ at r′1 (projection of s2 on ρ), r′2 (projection of s2 on ρ) and r3

(end point of ρ).
Based on the above discussion, MSTρ can be found by extend-

ing the Kruskal MST algorithm [15] as follows. First, for each
source si, find the closest point on ρ, ri. Then, sort all the edges



of the form (si, sj) and (si, rj) in the increasing order of their
lengths. Edges are then tested one by one for insertion. If an edge
does not generate a cycle, it will be added, otherwise, it is dis-
carded. An important distinction with the original Kruskal algo-
rithm is that all the edges (ri, rj) should be inserted before other
edges as they lie on the BS tour and hence do not incur any cost.
The above procedure requires that the BS tour ρ is known. How-
ever, the position of ρ on the track plays an important role in the
quality of the found MSTs. Several heuristics can be used to find
good BS tours. First, the closest points of sources on the track can
be considered as possible start points of BS tours. Second, when
sources are sparsely distributed, a set of equally spaced points can
be added to the track as possible start points of BS tours.

The pseudo code of our algorithm, referred to as Rendezvous De-
sign for Fixed Tracks (RD-FT), is shown in Fig. 5. At step 1, a set
of points are added on the track such that the segment between any
two adjacent points (except the last segment) has a length of ΔL.
At step 2, the sources’ closest points on the track are identified.
Then all the added points are tested in sequence as start points of
BS tours at step 3. Denote Xk as the subset of the added points that
lie on tour ρk. For each tour ρk, find MSTρk using the extended
Kruskal algorithm described above. At step 4, the final solution
is the tour ρ that minimizes the length of MSTρ among all tours
tested.

/*S is the set of source node locations, L is the maximum BS
tour length, ΔL is a positive constant, P is a fixed track com-
posed of n line segments.*/

Input: S = {si}, L, ΔL, P = {pipi+1 | 1 ≤ i ≤ n}
Output: RP list R

1. Find a set of points W = {wi | 1 ≤ i ≤ m, w1 =
p1, wm = pn} on P such that ∀i ≥ 1 |wiwi+1| = ΔL
and |wm−1wm| = |P | − �|P |/ΔL	 · ΔL where |P | is
the total length of the track.

2. Find a set of points on the track that are clos-
est to sources: U = {ui | (ui is on P ) ∧
(|uisi| is minimum)}. Renumber the points in
W ∪ U along the track as X = {x1, x2, · · · , xl}.

3. for 1 ≤ k ≤ l − 1

(a) Starting from xk, find the partial track ρk which
either has a total length of L/2 or includes xl. De-
note Xk the subset of points in X that lie on ρk.

(b) Find a set of MSTs, MSTρk , which connect
sources to the points in Xk and has the minimum
total length.

4. MSTρ = argmin c(MSTρk ) is the set of MSTs with
the minimum total length among all found MST sets.
The BS tour is ρ and the RP list R is composed of the
endpoints of edges of MSTρ that lie on ρ.

Figure 5: The pseudo code of the RD-FT algorithm.

5.2 Performance Analysis
We now analyze the performance of the RD-FT algorithm. As

discussed above, for a given BS tour ρk, the sources connect to ρk

at their closest points on ρk. We prove in the following that at most
three sources connect directly to the start/end point of ρk on edges
not perpendicular to the track.

LEMMA 1. Suppose MSTρk is a set of MSTs found at step 3.b
of the RD-FT algorithm. MSTρk contains at most three edges con-
nected to the start/end point of tour ρk that are not perpendicular
to the track.
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y(pk)

(a) (b)

|x(p')x(pk)| <    L

Figure 6: The track and BS tour are shown as grey and black
lines, respectively. The sources are shown as solid circles. (a)
s1 − s4 connect to xk, the start point of tour ρk and the edges
(si, xi)(1 ≤ i ≤ 4) are not perpendicular to the track. An-
gle s3xis4 < 60o and replacing the longer of (s3, xk) and
(s4, xk) with (s3, s4) reduces the total length of edges. (b)
Tour ρ′ contains the track between x(ρ′) and y(ρ′) and tour
ρk contains the track between x(ρk) and y(ρk). (s1, x(ρ′)) and
(s2, x(ρ′)) are edges of MSTρ′ . (s1, x(ρk)) and (s2, x(ρk)) are
edges of MSTρk . As |x(ρk)x(ρ′)| < ΔL, |s1x(ρk)| + |s2x(ρk)| <

|s1x(ρ′)| + |s2x(ρ′)| + 2ΔL. Edge (s4, y(ρk)) connects to y(ρk)
and is shorter than edge (s4, y(ρ′)) connected to y(ρ′).

PROOF. Without loss of generality, we only prove the lemma
holds for the start point of ρk, xk. Suppose xkx′

k is perpendicu-
lar to the track (shown in Fig. 6 (a)). Suppose there were more
than three sources s1, s2, s3, s4, . . . connecting to xk on edges not
perpendicular to the track. It is easy to see that all these sources
lie on a half plane (denoted by Y ) bounded by xkx′

k because the
sources on the other side of xkx′

k can find closer points on ρk than
xk. As a result, the half plane Y is divided by at least four radials
connecting xk and s1, s2, s3, s4. Hence at least one angle of form
∠sixksj (1 ≤ i, j ≤ 4) is less than 60o. Therefore, replacing the
longer of the two edges (si, xk) and (sj , xk) with (si, sj) will re-
duce the total edge length, which contradicts the fact that MSTρk

has the minimum total edge length among all spanning trees that
connect sources to ρk.

At step 1 of the RD-FT algorithm, a set of points are added on
the track such that the segment between any two adjacent points
(except the last segment) has a length of ΔL. At step 3, these
points together with the closest points of all sources on the track are
considered as possible start points of BS tours. This consideration
ensures that the found BS tour has a good quality compared to the
optimal tour.

LEMMA 2. Suppose BS tour ρ′ has the minimum MSTρ′ among
all tours no longer than L, and ρ is the tour found by RD-FT.
c(MSTρ) − c(MSTρ′) ≤ 3ΔL must hold.

PROOF. Denote x(ρ) and y(ρ) as the start and end points of BS
tour ρ. We consider the following two cases. First, if there exists an
edge between a source and x(ρ′) and it is perpendicular to the track,
RD-FT considers x(ρ′) as the start point of a BS tour at step 2 and
thus ρ′ is examined at step 3.b. According to step 4 of RD-FT, ρ has
the minimum total edge length among all the BS tours examined.
Therefore, c(MSTρ) = c(MSTρ′) and the lemma holds.

We now discuss the case in which no edge between a source
and x(ρ′) is perpendicular to the track. Suppose the sources in set
S′ directly connect to x(ρ′) on MSTρ′ on edges E′. According
to Lemma 1, there exist at most three such edges. As illustrated
in Fig. 6 (b), E′ includes (s1, x(ρ′)) and (s2, x(ρ′)). Suppose
x(ρ′) is between x(ρk−1) and x(ρk) that are the start points of two



adjacent tours found by RD-FT at step 3, and x(ρk) is closer to the
end point of track. According to step 1 of RD-FT, x(ρk) is at most
ΔL away from x(ρ′) on the track. We can create a set of spanning
trees PMSTρk (that connects sources to ρk) by connecting sources
in S′ directly to x(ρk) instead of x(ρ′). The remaining structure is
the same as MSTρ′ because of two facts: 1) MST (ρ′) does not
include any edge with an end point between x(ρ′) and x(ρk) on
the track (because if such an edge exists, it must be perpendicular
to the track and hence be considered by RD-FT as a start point of
a BS tour at step 3, which contradicts the fact that ρk is the BS
tour next to ρ′). 2) y(ρ′) is no closer to the end point of the track
than y(ρk). In other words, these two facts imply that ρk gives the
sources in S \ S′ the same number of or more choices on where
to connect to the track. As illustrated in Fig. 6 (b), sources s1 and
s2 (originally connected to x(ρ′)) connect to x(ρk) on ρk and their
edges get at most ΔL longer.

As S′ contains at most three sources, the total length of the edges
in PMSTρk is at most 3ΔL greater than that of the correspond-
ing edges on MST (ρ′). Notice that we have c(PMSTρk) ≥
c(MSTρk ), which then implies that c(MSTρ) ≤ c(MSTρ′) +
3ΔL holds.
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Figure 7: The track and BS tour are shown as grey and black
lines, respectively. The sources are shown as solid circles. (a)
SMTρ∗ , the optimal solution. The sources are connected to
tour ρ∗ via a set of SMTs. The RPs are r1, r2 and r3. (b)
MST (S ∪ {ri}), the MSTs that connect sources to r1, r2 and
r3. (c) MSTρ∗ , the optimal set of MSTs that connect sources to
ρ∗. The RPs are the points on ρ∗ closest to the sources.

We have the following theorem regarding the approximation ra-
tio of RD-FT.

THEOREM 3. Denote MSTρ and SMTρ∗ as the solution found
by RD-FT and the optimal solution, respectively. Define γ = ΔL

c(MSTρ∗ )
.

Then the approximation ratio of RD-FT is (1 + 3γ) · 2√
3

. That is,

c(MSTρ) ≤ (1 + 3γ) · 2√
3
· c(SMTρ∗ ).

PROOF. Suppose sources in S connect to the track at R = {r1, r2, . . .}
in SMTρ∗ , which is illustrated in Fig. 7 (a). Construct a set of
MSTs that connect sources in S to points in R, as illustrated in Fig.
7 (b). Denote the set of MSTs found as MST (S ∪R). It is known
that the MST connecting a set of points has an approximation ratio
of 2√

3
with respect to the SMT connecting the same set of points.

Therefore, we have:

c(MST (S ∪ R)) ≤ 2√
3
· c(SMTρ∗) (6)

Moreover, the optimal set of MSTs (denoted as MSTρ∗ ) that con-
nect sources to ρ∗ can be found using the extended Kruskal algo-
rithm described above. MSTρ∗ is illustrated in Fig. 7 (c). As
MSTρ∗ has the minimum total length of edges among all sets of
MSTs connecting sources to ρ∗, c(MSTρ∗) ≤ c(MST (S ∪ R)).
Suppose BS tour ρ′ has the minimum MSTρ′ among all tours no
longer than L. We have c(MSTρ′) ≤ c(MSTρ∗). Therefore,

c(MSTρ) ≤ c(MSTρ′) + 3ΔL (Lemma 2)

≤ c(MSTρ∗) + 3ΔL

≤ (1 + 3γ) · c(MSTρ∗)

≤ (1 + 3γ) · c(MST (S ∪ R))

≤ (1 + 3γ)
2√
3
· c(SMTρ∗) (Eqn. (6))

Theorem 3 shows that the performance bound of RD-FT is de-
pendent on γ = ΔL

c(MSTρ∗ )
. As the optimal BS tour ρ∗ is not known,

ΔL can be set to be γ times of the cost of a lower bound of MSTρ∗ .
For instance, the set of MSTs that connect sources to the whole
track, e.g., without considering the length constraint of the BS tour,
is a lower bound of MSTρ∗ . The extended Kruskal MST algo-
rithm has a complexity of |S| log |S| where S is the set of sources.
Hence the complexity of RD-FT is O(

|P |
ΔL

· |S| log |S|) where |P | is
the length of the track. We can see that a smaller ΔL will lead to
a better performance bound at the price of higher overhead. There-
fore, ΔL can be tuned to achieve the desirable trade-off between
the solution quality and running time.

6. PERFORMANCE EVALUATION
This section evaluates the performance of proposed rendezvous

design algorithms. The simulations are based on a geometric net-
work model in which any physical point in the network region can
be chosen as an RP. The performance metric is the total Euclidean
length of routing trees that connect sources to the RPs. Such a geo-
metric network model allows us to validate the design of RD-VT
and RD-FT and the tightness of derived performance bounds.

In all simulations, sources are randomly distributed in a 300m×
300m region. The simulation code is written in C++.

6.1 The Performance of RD-VT
In the implementation of RD-VT, the GeoSteiner software pack-

age [28] is used to compute the SMT of sources. Note that GeoSteiner
is based on an exact SMT algorithm. All the exact SMTs of our
problem instances were found within 5 seconds on a Pentium IV PC
with a 2.4 GHz CPU. A TSP solver based on local search heuristics
[23] is used at step 4 of RD-VT (see Fig. 2). We implemented the
following baseline algorithms for performance comparison. RD-
SMT is a simplified version of RD-VT in which the BS tour is a
preorder walk on the SMT of sources. RD-MST computes an MST
of source nodes first, then the BS walks for a distance of L/2 on
the tree in the preorder. NN is a nearest-neighbor based heuristic
in which the BS always travels to the source closest to the current
source that has been visited. The sources that are not visited by the
BS connect to the closest source on the BS tour. At the beginning of
each simulation, the BS starts moving from the position of source
node closest to the top left corner of region.

Fig. 8 shows the total length of routing trees found by different
algorithms. Total 30 source nodes are distributed in the region. RD-
VT significantly outperforms other baseline algorithms under all
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settings. Moreover, the gap between RD-VT and other algorithms
increases with L, which shows that RD-VT can effectively reduce
network routing cost by taking advantage of a longer delay bound
on data collection. Fig. 8 also shows that RD-VT-MST and RD-
VT-SMT perform similarly as MST is a good approximation of
SMT in the Euclidean space. Fig. 9 shows the performance with
different number of sources. We can see that the total edge length of
routing trees found by all algorithms increases with the number of
sources. Consistent with the results in Fig. 8, RD-VT is superior to
all other algorithms. NN performs the worst as it does not jointly
consider the locations of all sources when computing the tour of
BS.

Fig. 10 shows the measured and derived performance ratios of
RD-VT compared with the optimal solution. The measured perfor-
mance ratios are computed as the ratios of the results of RD-VT to
c(SMTS) − L where SMTS is the exact SMT of sources. Ac-
cording to (4), the value of c(SMTS) − L is a lower bound of the
optimal solution. The derived ratio is plotted according to the equa-
tion given by Theorem 2. We can see that the derived worst-case
ratio approaches the measured ratio when L is small. That is, the
derived performance ratio is tighter for a smaller L. This result is
due to the fact that the theoretical bound is derived under condition
L � c(SMTS). We note that this condition holds in many practi-
cal scenarios. In this set of simulations, there are 30 sources in total
and c(SMT ) is 1147 m. When L is 500 m and the average speed
of BS 3 is 0.1 − 2 m/s, the data collection delay is 4 to 80 minutes,
which satisfy the requirements of many WSN applications.

6.2 The Performance of RD-FT
We evaluate the performance of RD-FT using two tracks shown

in Fig. 11. We varied the value of γ in RD-FT from 0.01 to 0.1 and
observed no obvious difference of performance. γ is set to be 0.01

3The speed is chosen according to several robotic units [21, 24, 6]
used in mobile sensor systems.

in the following simulations. The following baseline algorithms are
used for comparison. RD-FT-CP is a simplified version of RD-FT
in which only the sources’ closest points on the track are considered
as possible start points of BS tours. RD-Track finds the optimal set
of MSTs connecting sources to the track without the constraint of
L.

Fig. 12 shows the performance of RD-FT with a triangle-shape
BS track. Each algorithm is labeled by the name and the value of
L. Interestingly, RD-FT and RD-FT-CP perform similarly under all
settings. Therefore, it suffices to only consider the sources’ clos-
est points on the track as possible start points of BS tours, which
significantly reduces the complexity of RD-FT. Moreover, RD-FT
yields a good performance compared with RD-Track that does not
consider the constraint of L. For instance, the performance of RD-
FT falls within 28% ∼ 45% of that of RD-Track when L is 100 m,
which is only about 14% of the length of whole track.

Fig. 13 shows the performance of RD-FT with a square-shape
BS track when the number of sources is 50. We can see that RD-
FT and RD-FT-CP yield a satisfactory performance compared with
RD-Track. Moreover, Fig. 12 and 13 show that the square-shape
track gives a smaller gap between RD-FT/RD-FT-CP and RD-Track
than the triangle-shape track. However, the triangle-shape yields
shorter routing trees as it crosses the whole region and hence en-
ables the BS to communicate with more nodes directly. These re-
sults provide insights into the design of fixed BS tracks.

7. CONCLUSION
In this paper, we study the rendezvous-based data collection in

WSNs with a mobile base staion. We develop two efficient ren-
dezvous design algorithms with constant approximation ratios. The
first algorithm is based on SMT and allows the data to be efficiently
aggregated at RPs while shortening the data collection tour of BS.
The second algorithm is designed for mobile BSs that must move
along fixed tracks. Based on the analysis on the optimal structure



of connection between sources and a fixed track, we can find effi-
cient RPs within bounded BS tour on the track. Simulation results
show that both algorithms can achieve satisfactory performance un-
der a range of settings. The theoretical performance bounds of the
algorithms are also validated through simulations.
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