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Abstract

The extensive use of petroleum-based synthetic and non-biodegradable materials for packaging applications has caused severe 
environmental damage. The rising demand for sustainable packaging materials has encouraged scientists to explore abundant 
unconventional materials. For instance, cellulose, extracted from lignocellulosic biomass, has gained attention owing to its 
ecological and biodegradable nature. This article reviews the extraction of cellulose nanoparticles from conventional and 
non-conventional lignocellulosic biomass, and the preparation of cellulosic nanocomposites for food packaging. Cellulosic 
nanocomposites exhibit exceptional mechanical, biodegradation, optical and barrier properties, which are attributed to the 
nanoscale structure and the high specific surface area, of 533 m2 g−1, of cellulose. The mechanical properties of compos-
ites improve with the content of cellulose nanoparticles, yet an excessive amount induces agglomeration and, in turn, poor 
mechanical properties. Addition of cellulose nanoparticles increases tensile properties by about 42%. Barrier properties of 
the composites are reinforced by cellulose nanoparticles; for instance, the water vapor permeability decreased by 28% in 
the presence of 5 wt% cellulose nanoparticles. Moreover, 1 wt% addition of filler decreased the oxygen transmission rate by 
21%. We also discuss the eco-design process, designing principles and challenges.

Keywords Biopolymers · Lignocellulosic biomass · Cellulose nanoparticles · Cellulosic nanocomposites · Food packaging · 
Sustainable packaging
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Introduction

Packaging is used to preserve food quality and provide 
hygiene safety for the consumer (Zhang et al. 2014; Wang 
et al. 2019; Gaikwad et al. 2019). It helps in the handling, 
transportation, and storage by protecting food products 
from physical (crushing, abrasions, and shocks), chemi-
cal (ultraviolet radiations), and biological (microorganism) 
damage (Al-Tayyar et al. 2020a; Youssef et al. 2019). It 
also delivers essential information about the ingredients, 
product characteristics, and nutritional content. Addition-
ally, the packaging is considered as a global marketing tool 
as in 2015, around $839 × 109 was the total revenue gener-
ated by the food packaging industry, which is expected to 
peak at a rate of 3.5% between 2015 and 2020, reaching a 
value of $998 billion in 2020. Almost 85% of the packag-
ing sector is occupied by food and beverages, followed by 
pharmaceutical products, constituting 10% (Gaikwad et al. 
2018). The paper packaging industry currently reaches 7.6 
million tons, followed by plastic packaging (6.8 Million 
tons) (Bharimalla et al. 2019).

Over the past decades, the food industry has been using 
petroleum-based plastic materials owing to their attractive 
properties, such as flexibility, safety, versatility, and low 
cost (Gutiérrez and Alvarez 2017a; Padervand et al. 2020). 
Irrespective of these properties, major drawbacks are 
accompanying these synthetic materials, such as non-bio-
degradability, disposal, and recycling (Tice 2003; Khalil 
et al. 2017; Tofa et al. 2019). In addition, environmental 
issues, high prices, and attrition of petroleum resources are 
some of the concerning factors of these materials. With the 
advancement in material science technologies, consumer 
behavior changes and this had led to the emergence of 
sustainable packaging materials, which serves as an alter-
native to conventional synthetic materials (Gutiérrez and 

Alvarez 2017b; Gaikwad et al. 2020). Ongoing research 
aims to meet the environmental legislation and consumer 
demands for innovative and sustainable food packag-
ing (Merino et al. 2019a, 2019). In comparison with the 
petroleum-based conventional materials, biopolymers (cel-
lulose, starch, chitosan) are gaining increased attention 
because of their renewable & cheaper nature (compared 
to the former) and could be derived from agricultural and 
marine sources (Rai et al. 2019; El-Sayed et al. 2020).

Biopolymers are naturally occurring polymers that are 
generally described as polymers that originated from renew-
able resources (Fig. 1). Biopolymers are considered as eco-
friendly materials as well as biodegradable. Among innu-
merable applications, food packaging is the most attractive 
application of biopolymers (Youssef and El-Sayed 2018). 
Properties of some important biopolymers are presented in 
Table 1.

Among various biopolymers, cellulose is an abundant, 
sustainable, and the most prosperous bio-based polymer. 
Millimeter-sized strings made up of continuously little 
microfibers, and microfibers that contain microfibrils of 
nanometer measurements formed the fundamental structure 
of cellulose. Cellulose is anticipated to be less expensive, 
non-toxic, and has a remarkable strength-to-weight ratio 
compelling to be used extensively in the packaging industry 
(Swain and Mohanty 2018). Figure 2 shows the production 
of biodegradable food packaging from cellulosic materi-
als derived from lignocellulosic biomass as a promising 
and attractive approach to solve the plastic food packaging 
problem.

Lignocellulosic biomass contains cellulose (crystalline 
region), hemicellulose, lignin (amorphous region), and 
other non-cellulosic components such as pectin and waxes 
(Osman et al. 2020; Osman et al. 2019; Chen et al. 2019). 
In the 1980s, cellulose nanoparticles were found as a novel 
type of plant-based polymer, which includes cellulose 

Fig. 1  Biopolymers, naturally 
occurring renewable and abun-
dant polymers, are classified 
into three groups based on their 
origin. Some biopolymers, such 
as starch, cellulose, chitosan, 
and alginates, can be extracted 
from biomass through various 
treatments (chemical, mechani-
cal, or biological). Similarly, 
biopolymers, including pul-
lulan, curdlan and bacterial 
cellulose, can be derived from 
microorganisms. A new class of 
biopolymers, such as polyam-
ides, polylactic acid, and car-
boxylic acids, can be syntheti-
cally prepared in laboratories



Environmental Chemistry Letters 

1 3

fibrils and crystals in the nanodimensions. The longitudinal 
measurement goes from a couple of 10’s of nanometers to 
a few microns, and horizontal components extend from 5 
to 20 nm (Zinge and Kandasubramanian 2020). Cellulose 
nanoparticles are categorized as cellulose nanocrystals, cel-
lulose nanofibers, and bacterial cellulose (de Amorim et al. 
2020). Acid hydrolysis treatment on wood or any cellulose-
containing materials results in cellulose nanocrystals with 
the width ranging from 3 to 20 nm and the length of around 
50–500 nm, respectively.

Physical treatments, with or without chemical treat-
ments, could be used to obtain linear or branched chains 

cellulose nanofibers of width and length ranging from 4 
to 50 nm and 500 nm, respectively (Thakur 2013). Bacte-
rial cellulose is chemically similar to plant cellulose and 
is formed according to the bottom-up method, in which 
cellulose in the form of nanofibrils is produced by the 
bacteria, which gathers as a ribbon with the width around 
70–80 nm (Pecoraro et al. 2007). Bacterial cellulose can 
also be synthesized in the pure form, free from the non-
cellulosic components (hemicellulose and lignin), thus 
reducing the cost and usage of chemical reagents for the 
removal of lignin and hemicellulose components (de 
Amorim et al. 2020; Duarte et al. 2015).

Table 1  Composition and properties of some common biopolymers that are used in food packaging applications

Polysaccharide Composition Properties References

Alginate Mannuronic glucuronic acid Brittle
Biodegradable
High water permeability
Cross-link with calcium

Galgano (2015) and Campos et al. (2011)

Chitin N-acetylglucosamine Transparent
Non-toxic
Biodegradable
Biocompatible
Antifungal and antibacterial

Ferreira et al. (2016)

Cellulose Glucose Biodegradable
Transparent
Sensitive to water
Good mechanical properties

Campos et al. (2011) and Cruz-Romero and Kerry 
(2008)

Chitosan D-Glucosamine N-acetyl-D-glucosamine Brittle
Biodegradable
Antibacterial and antifungal
Non-toxic
Barrier to gases

Cazon and Vazquez (2020) and Morin-Crini et al. 
(2019)

Carrageenan Galactose Fragile
Ductile
Biodegradable

Campos et al. (2011)

FucoPol Fucose, galactose, glucose
acetate, succinate, pyruvate

Transparent
Biodegradable
High gas barrier
Poor water resistance

Ferreira et al. (2016)

Gellan gum Glucose
Rhamnose
Glucuronic acid

Edible
Lipid barrier
Biodegradable
Good tensile strength
Excellent gas barrier

Ferreira et al. (2016) and Ferreira et al. (2014)

Galactomannans Galactose
Mannose

Edible
Biodegradable
Semi-permeable barrier to gas

Galgano (2015) and Cerqueira et al. (2011)

Pullulan Maltotriose (three glucose) Edible
Transparent
Biodegradable
Heat sealable
High water solubility
Barrier to oxygen
Oil resistant
Grease resistant

Cheng et al. (2011) and Zhang et al. (2013)

Xanthan gum Glucose, mannose, glucuronic acid, 
acetate, pyruvate

Edible
Biodegradable

Quoc et al. (2015)
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Besides the properties mentioned above of cellulose, the 
use of cellulose is still restricted due to the poor barrier and 
mechanical properties, thermal stability, and water absorp-
tion ability (Cazon and Vazquez 2020). These shortcomings 
hinder the use of cellulose in contrast to orthodox synthetic 
materials. A probable solution to this problem is the use of 
cellulose as a filler to make composite materials. Nanocom-
posites are multi-phase materials, in which the dispersed 
phase constituents possess at least one dimension under 
100 nm or less (Al-Tayyar et al. 2020b). Cellulose nano-
particles display better stiffness with a tensile modulus of 
134 GPa and the tensile strength in the range of 0.8–10 GPa 
(Azeredo et al. 2010; Cao et al. 2008). Kumar et al. (Kumar 
et al. 2019) prepared green nanocomposite films based on 
polylactic acid and cellulose nanofibers using the solvent 
casting method for packaging application. Frone et al. (2019) 
prepared aliphatic polyester-based biodegradable films con-
taining nanocellulose extracted from plum shells agricultural 
waste. Tang et al. (2017) developed biodegradable scaffolds 
for their use in tissue engineering.

Cellulose nanoparticles can be considered as a pioneer-
ing approach for the development of sustainable packaging 
with enriched features. In terms of designing, an effectual 
design may consist of quantitative and qualitative function-
ing of the product (ecological packaging) throughout its 
entire life cycle. Designing process, for the isolation of cel-
lulose nanoparticles, will certify the quality of product and 
the requirements of the product packaging, for instance; size, 
thickness, safety and stress levels, and ergonomics, as well 
as its quantitative life cycle assessment and cost. Therefore, 

the principal role attributed to the designing process is to 
define the possibilities, limitations, and suitability of cel-
lulose nanoparticles for sustainable packaging development 
(Khalil et al. 2016).

In view of the cutting-edge impact of cellulose nanopar-
ticles in food packaging, we divulge the audience with an 
in-depth view of the current research surrounding cellulose 
and cellulose nanoparticles. Detail sketch on the pretreat-
ments, properties of cellulose nanoparticles, nanocomposites 
processing techniques with a special focus on food packag-
ing applications has been reviewed. Finally, the need for 
process designing (for cellulose nanoparticles), as well as 
the principles, importance, and the challenges in sustainable 
food packaging, is also discussed in this work.

Isolation of the cellulose nanoparticles

Extraction of cellulose-enriched materials, having nanoscale 
dimensions (1–100 nm), from lignocellulosic biomass is 
the objective of international research. Lignocellulosic bio-
mass forms a complex and compact hetero-matrix structure 
(Fig. 3) (Xiong et al. 2018). The physicochemical interac-
tions among cellulose, hemicellulose, and lignin are respon-
sible for shielding the cellulose from isolation (Hassan et al. 
2020; Zhong et al. 2020). The multistage procedure for the 
isolation of cellulose nanoparticles from biomass is acquired 
in two steps. The fragmentation of lignocellulosic material 
to recover cellulose (step 1) and the treatment of cellulose to 

Fig. 2  Structural composition of lignocellulosic biomass, which is predominantly composed of cellulose, hemicellulose, and lignin. Cellulose is 
the most abundant component and can be extracted and used for the production of biodegradable food packaging
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Fig. 3  Cell wall structure of the lignocellulosic plant, which is com-
posed of three oxygen-containing high molecular weight biopoly-
mers: cellulose  (C6H10O5)n, hemicellulose  (C5H8O4)m, and lignin 
 (C9H10O3(OCH3)0.9–1.7)n. These components combined to form a 

natural fibril-based composite in which hemicellulose acts as a com-
patibilizer between cellulose and lignin, while lignin protects the cel-
lulose by blocking the bacterial attacks
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get the nanoscale dimension of cellulose (step 2) are shown 
in Fig. 4 (Sfiligoj Smole et al. 2019; Zhong et al. 2019).

Mechanical techniques, such as micro-fluidization, high-
intensity ultra-sonication, grinding, and high-pressure 
homogenization, generate nanofibrillated cellulose by defi-
brillation (Thomas et al. 2018). Kanoth et al. (2015) ground 
coir with a mechanical grinder, followed by a chemical pro-
cess and synthesized 18–20-nm-diameter nanofibrillated cel-
lulose. Stelte and Sanadi fibrillated hardwood and softwood 
pulps to get the nanofibers by refining and homogenizing at 
50 Mpa (Stelte and Sanadi 2009). Wang et al. (2015) stud-
ied the isolation of cellulose nanoparticles employing high-
pressure homogenization. The produced cellulose nanopar-
ticles had a mean particle diameter of 5–20 nm. Xie et al. 
(2018) reported that balls made of cerium-doped zirconia 
of diameter 0.4–0.6 mm were used to prepare the cellulose 
nanofibers spanning in diameter of 90–110 nm.

Wheat straw was studied as a source of cellulose by 
several authors. It was revealed that the crystals obtained 
after the acid hydrolysis of wheat straw are little rods of 
150–300 nm in length, ~ 5-nanometer width and an aspect 
ratio (length to diameter ratio) of 50 (Helbert et al. 1996). 
Alemdar and Sain used wheat straw and soy hulls to synthe-
size cellulose nanofibers. The researchers applied chemo-
mechanical approaches and obtained particles with a length 
of several thousand nanometers and diameter in the range of 
10–80 nm (Alemdar and Sain 2008). Similarly, Fatah et al. 
(2014) applied the chemo-mechanical method on oil palm 
empty fruit bunch for the extraction of cellulose nanofib-
ers with a diameter ranging from 5 to 10 nm and observed 

a decrease in the crystallinity. Chen et al. (2011a) used a 
chemical ultrasonic technique on four different lignocellu-
losic fibers (wood, bamboo, wheat straw, and flax fibers) 
for the extraction of cellulose nanofibers. Nanofibers were 
successfully extracted from wheat straw, wood, and bamboo 
with a diameter of 10–40 nm. Acid hydrolysis treatment was 
employed for the preparation of cellulose nanocrystals from 
ramie cellulose, and the prepared cellulose nanocrystals 
had 85.4 ± 25.3 nm diameter and 538.5 ± 125.3 nm (aver-
age) length (Lu et al. 2006). Similarly, cellulose nanocrys-
tals were prepared by acid hydrolysis of flax fibers and the 
obtained cellulose nanocrystals were slender rods with 
an average length of 327 ± 108 nm and the diameter of 
21 ± 7 nm (Cao et al. 2007).

Costa et al. (2015) initially alkali-bleached corn husk, 
followed by the hydrolysis with 64% sulfuric acid at 4 °C 
for 15–60 min and isolated cellulose nanocrystals. Cellulose 
nanocrystals were also extracted from sisal fibers by com-
bined bleaching and hydrolysis at 60 °C for about 40 min. 
Cellulose nanofibers were successfully prepared from water 
hyacinth cellulose via alkaline-bleaching and sodium chlo-
rite treatment. According to the result, obtained particles 
showed a diameter in the range between 20 and 100 nm 
(Marimuthu and Atmakuru 2015). Mandarin residue, left by 
citrus juice processing and global production around 8–20 
million tons per year, was used to obtain cellulose nanofib-
ers of 2–3 nm thickness (Hiasa et al. 2014). The chardonnay 
grape skin underwent organic extraction; acid and base dis-
solution; and basic and acidic oxidation to yield 16.4% cel-
lulose nanocrystals with high cellulose crystallinity (59.4%) 

Fig. 4  Cellulose nanoparti-
cles can be isolated via two 
methods. The chemical method 
results in the isolation of cel-
lulose nanocrystals, whereas 
the mechanical method isolates 
cellulose nanofibers. Both types 
of cellulose differ in terms of 
their specific surface area (Sofla 
et al. 2016)
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and diameter of 48.1 ± 14.6 nm (Lu and Hsieh 2012). Neto 
et al. (2013) hydrolyzed soy hulls at 40 °C and analyzed 
the aggregates of nanocrystals and individual needle-like 
particles. After 30 min of treatment, nanocellulose of 73.5% 
crystallinity with an average cross-sectional dimension of 
2.73 nm was obtained. Conversely, with the increase in 
time, a decrease in crystallinity was observed, which was 
attributed to the removal of both amorphous and crystalline 
domains.

Teixeria et al. (Teixeira et al. 2009) isolated cellulose 
nanofibers (length: 360–1799 nm and diameter: 2–11 nm) 
from cassava bagasse and reported the 54.1% crystallin-
ity after acidic treatment. By an alkali treatment at 130 °C, 
followed by sulfuric acid hydrolysis, cellulose whiskers of 
diameter ranging from 20 to 40 nm with the crystallinity of 
73.4% were prepared from branch-barks of white mulberry. 
Ribbon-like cellulose nanocrystals (33% weight by weight) 
were extracted from miscanthus x giganteus pulp by hydro-
chloric acid and sulfuric hydrolysis with the crystallinity 
index of 94%; 60–70 aspect ratio; width 8.5 nm and the 
thickness of 2.8 nm (Cudjoe et al. 2017).

Alternatively, nanocellulose can be prepared by the oxida-
tive process. Before mechanical treatment, cellulose may be 
oxidized with 2,2,6,6-tetramethylpiperidine-1-oxyl, which is 
known as TEMPO, radicals under mild aqueous conditions, 
in which hydroxyl groups of cellulose converted to a carbox-
ylic acid (Isogai et al. 2011; Habibi and Vignon 2008). Saito 
et al. (2009) pretreated hardwood with the 2,2,6,6-tetrameth-
ylpiperidine-1-oxyl-mediated and extracted cellulose in the 
range of 3–4 nm width. Recently, Patiño-Masó et al. (2019) 
prepared cellulose nanofibers using oxidation with the same 
reagent (2,2,6,6-tetramethylpiperidine-1-oxyl) on bleached 
kraft eucalyptus pulp. Some researchers reported a similar 
study yielded cellulose nanofibers by the same oxidation 
approach with the same reagent (Petroudy et al. 2018; Iwa-
moto et al. 2011).

The utilization of enzymes, which is known to be an 
environmentally friendly treatment process, has also been 
reported. Henriksson et al. (2007) and Paakko et al. (2007) 
disintegrated wood fiber pulp into the microfibrillated cellu-
lose by using endoglucanase. Tibolla et al. (2014) compared 
the enzymatic pretreatment with chemical pretreatment for 
the preparation of cellulose nanofibers. Zhao et al. (2017) 
extracted cellulose nanofibers from the softwood and hard-
wood with endoglucanase. On the whole, chemically treated 
biomass yield is much higher than that of enzymatically pro-
duced nanocellulose; however, the enzymatic approach is 
more favorable to maintain the principles of green chemistry.

In recent times, the production of cellulose nanoparticles 
at a commercial scale is also reported. Inventia, Sweden, 
set up the first pilot-scale production plant in 2011. Con-
versely, most of the cellulose nanoparticles’ plants are based 
in Europe, Canada, the USA, China, Japan, Iran, and India. 

Among countless methods for the production of cellulose 
nanoparticles, acid hydrolysis for cellulose nanocrystals and 
mechanical processes for the cellulose nanofibers are the 
most trusted methods. Although these two methods con-
sidered successful at the industrial scale, the high cost of 
chemicals, maintenance of equipment operated in the acidic 
environment, acidic effluent, and energy-intensive mechani-
cal processes are the major concerns associated with these 
two methods (Sharma et al. 2019).

Properties of cellulose nanoparticles

On decreasing the dimensions of cellulose from micro-
scale to nanoscale, quite a few properties may alter that are 
expected to open new pathways for the utilization of nano-
particles. Some of the major properties that can be influ-
enced are specific surface area, aspect ratio, morphological, 
tensile, rheological, and thermal properties.

Speci�c surface area

Reduction in the particle size leads to an increase in spe-
cific surface area (total surface area per unit mass). Cellulose 
nanoparticles, especially cellulose nanocrystals, have a large 
surface area which is ascribed to the nanodimension of the 
structural elements, which are greater than 100 m2 g−1 to sev-
eral hundreds of  m2 g−1. The large surface area of cellulose 
nanoparticles governs the interaction (hydrogen bonding) 
between the filler and the polymer matrix, as the high aspect 
ratio diameter of cellulose nanoparticles offer improved sur-
face contact of cellulose with the respective polymer. The 
superior surface contact enhances the surface reactivity and 
chain mobility of the polymer, consequently improving the 
properties of the nanocomposites. The average geometri-
cal dimensions method is considered more reliable for the 
determination of specific surface area compared to the gas 
adsorption isotherm technique, which is often incorrect 
because of the aggregation of particles upon drying. While 
converting sisal fibers-extracted cellulose nanofibers to cel-
lulose nanocrystals, the values of 51 m2 g−1 and 533 m2 g−1, 
respectively, were reported (Siqueira et al. 2009). A sharp 
upsurge is noted when the diameter falls below 20 nm, which 
corresponds to the diameter range of cellulose nanocrystals 
(Dufresne 2019). Besides the high surface area, cellulose 
nanoparticles tend to agglomerate within themselves, result-
ing in poor composite reinforcement.

Aspect ratio

Aspect ratio, the ratio of the length to width, is deliberated 
as an important parameter for the cellulose nanoparticles, 
as the aspect ratio signifies the reinforcing properties and 
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the anisotropic phase formation. It is well known that the 
mechanical percolation approach is extremely pertinent to 
express the mechanical properties of cellulose-based nano-
composites when prepared through casting or evaporation 
techniques. This method proposes the formation of a contin-
uous network of nanoparticles, combined through hydrogen 
bonding, which leads to an exceptional strengthening effect. 
Additionally, this can only occur above a critical volume 
fraction of filler, which is defined as the percolation thresh-
old. It was experiential that the tensile modulus amplifies on 
increasing the aspect ratio of reinforcing nanoparticles. The 
determination of the aspect ratio of cellulose nanocrystals 
is easier, and it is found to depend on the source of cellulose 
and the conditions under which hydrolysis had occurred. For 
instance, the aspect ratio of cotton, tunicin, and soy hulls 
are 10, 67, and 100, respectively (Dufresne 2017a, 2019). 
A higher aspect ratio could improve the properties of nano-
composites due to its nanoenabled functional features, such 
as percolation and tangling effects.

Morphology

Dimensions and shapes of cellulose nanoparticles have sig-
nificant importance, for both research and practical applica-
tions. Many properties of cellulose nanoparticles and cellu-
lose nanoparticles-based materials are stringently influenced 
by the characteristic dimensions and shapes of nanoparticles. 
Without any clear idea of nanoparticles arrangements, the 
end properties of the composites cannot be predicted. For 
example, in Isogai’s review (2011), it is recommended that 
the cellulose nanoparticles can be used as reinforcement in 
bulk materials, cellulose nanoparticles can be used as inde-
pendent materials or as filler, 2,2,6,6-tetramethylpiperidine-
1-oxyl-oxidized or known as TEMPO-oxidized cellulose 
fibers and nanofibrils can be used as a coating, and pos-
sibly also as a filler. Li et al. (2013) reported that cellulose 
nanocrystals extracted from cotton linters could improve the 
performance of packaging films if used as a coating. Dimen-
sions and crystallinity of cellulose nanoparticles (cellulose 
nanocrystals and cellulose nanofibers) extracted from vari-
ous renewable sources are listed in Tables 2 and 3.

In the following tables, dimensions and crystallinity were 
discussed according to the different sources from which cel-
lulose nanoparticles were extracted. The vast distribution of 
sources provides assistance to choose the raw material based 
on the cost, availability, and potential applications. Second, 
in the tables, dimensions of the cellulose nanoparticles are 
listed; these dimensions clearly show that the diameter var-
ies in the range of 3 to 50 nm. The length range of cellulose 
nanoparticles is wide, which is likely to be dependent on 
the different conditions of acidic hydrolysis treatment. The 
aspect ratio of tunicate, ramie, algae, banana, coconut husk, 
and bacterial cellulose nanocrystals are relatively larger than 

the rest of the others, pointing out that cellulose nanocrystals 
have inherently exceptional mechanical properties.

Microfibrillated cellulose, on the other hand, exhibits 
a larger diameter, which is attributed to the limitations of 
mechanical treatments. Microfibrillated cellulose is sig-
nificantly longer than cellulose nanoparticles, resulting in 
a higher aspect ratio and more suitable as a promising filler.

Mechanical properties

Mechanical properties of fillers play a substantial role in 
determining the absolute properties of a composite. It is also 
known to be helpful in the selection of materials for rein-
forcement purposes. In cellulose nanoparticles, the crystal-
line region delivers high stiffness and good strength to the 
polymer matrix. Savadekar and Mhaske (2012) reported that 
cellulose nanocrystals displayed high elastic modulus (up to 
145 GPa) and Young modulus (150 GPa). The Young axial 
modulus and mechanical strength of cellulose nanocrystals 
are estimated to be five times higher than magnesium alloy 
or mild steel. Every kind of cellulose has its own crystalline 
structure, which ultimately results in different mechanical 
properties, as mechanical properties depend on the crys-
tallinity of cellulose. A wide range of values for tensile 
modulus (56–220 GPa), with an average of 130 GPa, have 
been reported (Dufresne 2017b). Lower crystallinity of 
cellulose nanofibers results in a lower modulus of around 
100 GPa (average value) (Dufresne 2013). Furthermore, 
cellulose with high crystallinity and a density of around 
1.5–1.6 g cm−3 can be considered as a lightweight material.

Specific tensile modulus, the ratio between tensile mod-
ulus and density, for cellulose nanocrystals and cellulose 
nanofibers was about 85 and 65 J/g, respectively, while 
for steel, it is approximately 25 J g−1 (Dufresne 2017b). 
According to Chen et al. (2011b), cellulose nanoparticles 
can achieve higher properties for nanocomposites which are 
attributed to its fibrous structure, which can be adjusted and 
aligned along a matrix axis. The reason behind the recent 
use of cellulose in composites formation is its high specific 
modulus, strength, and low energy consumption compared 
to other conventional materials. Mohamed et al. (2015) 
observed that the reinforcement of cellulose nanocrystals 
into polylactic acid positively affected the thermal and 
mechanical properties of nanocomposites.

Thermal properties

The cellulosic-based materials are characterized by their 
quick thermal deterioration at the low to moderate tem-
perature ranges that occur at about 400 °C and below. The 
high crystalline structure of cellulose is the chief factor of 
the high thermal resistance. Due to the strong stabilization 
of the hydrogen bond, cellulose chains are packed in a 
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Table 2  Morphological properties of cellulose nanocrystals, including length, width, and crystallinity, along with the characterization techniques 
used for the identification of morphology (Li et al. 2015a)

Type Extraction method Length (nanometer) Width (nanometer) Crystallinity (%) Characterization for morphol-
ogy

Aivcel Sulfuric acid 105 ± 35 15 – Transmission electron micros-
copy

Aivcel Sulfuric acid 128 ± 4 5.5 ± 0.1 83 Transmission electron micros-
copy

Algae (Valonia) Hydrochloric acid + enzy-
matic

> 1000 10–20 – Transmission electron micros-
copy

Bamboo Sulfuric acid 200–500 < 20 72 Transmission electron micros-
copy

Bamboo Sulfuric acid 300–400 5–14 – Atomic force microscopy

Bamboo Sulfuric acid ~ 500 4–14 – Atomic force microscopy

Bagasse Sulfuric acid 96.7 ± 39 7.5 ± 2.3 89 Transmission electron micros-
copy

Bagasse Sulfuric acid 170 35 85 Transmission electron micros-
copy

Bagasse Sulfuric acid + alkaline treat-
ment

> 1000 20–25 – Scanning electron microscopy

Banana Sulfuric acid 500–1000 20 – Transmission electron micros-
copy

Banana Fermentation > 1000 50 71 Scanning electron microscopy

Banana Hydrochloric acid 624–855 16–17 – Transmission electron micros-
copy

Bacterial cellulose Hydrochloric acid 290 ± 130 20 ± 5 91–96 Transmission electron micros-
copy

Bacterial cellulose Hydrochloric acid 88 ± 5 6.5 ± 0.2 70 Transmission electron micros-
copy

Buckeye Sulfuric acid
Hydrochloric acid

60–576 60–576 67–82 Transmission electron micros-
copy, Scanning electron 
microscopy

Cassava Sulfuric acid 1150 15 54.1 Transmission electron micros-
copy

Curaua Sulfuric acid 185 11 83–85 Transmission electron micros-
copy

Coconut husk Sulfuric acid > 1000 2.3 50–57 Atomic force microscopy

Eucalyptus Sulfuric acid 142 ± 49 11 ± 4 82 Transmission electron micros-
copy

Flax Ultra-sonication > 1000 15–100 78.3 Scanning electron microscopy

Flax Hydrochloric acid 144 ± 5 38 ± 0.1 75 Atomic force microscopy, 
Transmission electron 
microscopy

Grape Sulfuric acid Sphere 48.1 55 Transmission electron micros-
copy

Hemp Sulfuric acid 160 ± 72 5 ± 1 – Atomic force microscopy

Hemp Sulfuric acid 144 ± 41 3 – Transmission electron micros-
copy

Hemp Hydrochloric acid 148 ± 3 5.8 ± 0.1 73 Transmission electron micros-
copy

Hardwood Sulfuric acid 518 ± 183 22 ± 13 – Transmission electron micros-
copy

Jute 2,2,6,6-Tetramethylpiperi-
dine-1-oxyl

100–200 3–10 69.7 Transmission electron micros-
copy

Kenaf Bast Sulfuric acid 100–20 10–20 75–82 Transmission electron micros-
copy
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highly ordered manner with a compact structure. The for-
mation of the highly crystalline cellulose is considered to 
generate high thermal resistance due to a compact crystal-
line structure which cannot be burned or destroyed by high 
temperature, averting the cellulose from melting. After 
the drying of cellulose nanoparticles, a film is formed, 
which has a low thermal expansion coefficient owing to 
the high crystallinity and strong cellulose network inter-
actions (Kargarzadeh et al. 2017). While using the low 
thermal expansion coefficient of cellulose nanoparticles, 
the thermal expansion coefficient of the polymer nano-
composites can be reduced if the strength of the network 
formed between the cellulose and the polymer is strong. 
Sulfuric acid hydrolysis significantly reduces the ther-
mal stability of cellulose nanocrystals compared to raw 
cellulose fibers. It is due to the presence of sulfate ester 
groups on the surface of the cellulose nanoparticles (Lin 
and Dufresne 2014).

Rheological properties

The rheological parameters of cellulose nanocrystals are 
predominantly influenced by liquid crystallinity, ordering, 
and gelation properties. The suspensions of dilute cellulose 
nanocrystals exhibit shear-thinning behavior, which shows 
concentration dependence at low rates. At higher concentra-
tions, cellulose nanocrystals suspensions are lyotropic, which 
reveals anomalous behavior which was attributed to the rod-
shaped nanocrystals that tend to align at a critical shear rate. 
As the shear rate reaches a critical point, the chirality of the 
cellulose nanocrystals suspension breaks down in favor of a 
simple nematic structure (Azizi Samir et al. 2004). Moreover, 
the aspect ratio of cellulose nanocrystals governs the relaxa-
tion time constant, as cellulose nanocrystals with higher 
aspect ratios stay aligned for longer times even after shear. 
Besides these, the acid used for the hydrolysis process has an 
impact on the rheological properties of cellulose nanocrystals 

Table 2  (continued)

Type Extraction method Length (nanometer) Width (nanometer) Crystallinity (%) Characterization for morphol-
ogy

Mengkuang Alkali treatment + sulfuric 
acid

50–400 5–25 70 Transmission electron micros-
copy

Mulberry Alkali treatment + sulfuric 
acid

400–500 20–40 73.4 Atomic force microscopy

Pea Hull Sulfuric acid 400 ± 200 12 ± 6 – Transmission electron micros-
copy

Ramie Sulfuric acid 50–250 3–15 87.8 Atomic force microscopy

Ramie Sulfuric acid 120–280 6–8 – Transmission electron micros-
copy

Ramie Sulfuric acid 100–250 3–10 – Transmission electron micros-
copy

Ramie Sulfuric acid 75–193 6.3–15.3 – Transmission electron micros-
copy

Ramie Sulfuric acid 100–150 6–8 – Transmission electron micros-
copy

Sisal Sulfuric acid 195 15 – Transmission electron micros-
copy

Sisal Sulfuric acid 120–370 5–8 – Transmission electron micros-
copy

Sisal Enzymatic + shearing + sul-
furic acid

170–300 6–8 – Transmission electron micros-
copy

Sisal Enzyme 230–560 6–13 – Transmission electron micros-
copy

Sisal Sulfuric acid 215 ± 67 5 ± 1.5 – Scanning electron microscopy

Softwood Sulfuric acid 234 ± 60 6 ± 2 – Atomic force microscopy

Softwood Sulfuric acid 2500 25 – Transmission electron micros-
copy

Tunicate Sulfuric acid 1000 15 – Transmission electron micros-
copy

Tunicate Sulfuric acid 500–2000 15 – Transmission electron micros-
copy



Environmental Chemistry Letters 

1 3

suspensions. Crystals treated with sulfuric acid show some 
shear thinning that is independent of time. In contrast, crys-
tals treated with hydrochloric acid reveal much higher shear 
thinning behavior, anti-thixotropy at lower concentrations, and 
thixotropy at higher concentrations (Araki et al. 1999).

Rheometry measurements have been performed on cel-
lulose nanofibers prepared via 2,2,6,6-tetramethylpiperidine-
1-oxyl oxidation. These cellulose nanofibers’ suspensions also 
showed shear-thinning behavior following a power-law and 
thixotropy, which are explained through percolation in the 
fibrils and flock formation. In this case, gelation was observed 
to onset (storage modulus four-loss modulus) at about 0.5% 
cellulose (Lasseuguette et al. 2008). Li et al. (2015b) inves-
tigated the structure-morphology-rheology relationships for 
cellulose nanoparticles and observed that the viscosity of the 
cellulose nanocrystals suspensions gradually increases as the 
concentration increases because of the growth in the collision 
possibility of cellulose nanocrystals. However, the viscosity 
monotonically declines as the shear rate increases over the 
whole investigated shear rate ranges, exhibiting a typical shear 
thinning behavior.

Preparation of the cellulosic 
nanocomposites

Renewability, biodegradability, abundance, and low cost 
are some of the main highlights of cellulose-containing 
materials, which suggests that these particles have the 
potential for a wide range of applications. The most effi-
cient way to exploit and enhance the properties of cellu-
lose nanoparticles is to reinforce it in a polymer. Numerous 
methods have been discussed in the literature for the prep-
aration of cellulose nanoparticles-based polymer compos-
ites. This review aims to present the most promising tech-
niques that are used for the preparation of nanocomposites. 
Table 4 shows the processing techniques of nanocellulosic 
based polymer composites extracted from different types 
of crops. The majority of the cellulose nanocrystals-based 
polyvinyl alcohol composites are reported to be prepared 
through solvent casting technique, while solution casting 
is found to be a more universal or efficient technique that 
can deal with different kinds of matrices.

Table 3  Morphological properties of microfibrillated cellulose, including length, width, and crystallinity, along with the characterization tech-
niques used for the identification of morphology (Li et al. 2015a)

Type Extraction method Length (nanometer) Width (nanometer) Crystallinity (%) Characterization for morphology

Bagasse Homogenizer > 1000 5–18 – Atomic force microscopy

Bagasse Homogenizer > 1000 6–22 – Atomic force microscopy

Bagasse Homogenizer > 1000 7–30 74–76 Transmission electron microscopy

Bamboo Homogenizer > 1000 23–42 – Atomic force microscopy

Bamboo Ultra-sonication > 1000 10–40 55 Scanning electron microscopy

Flax HCl + shear homogenizer > 1000 30–50 80 Transmission electron microscopy

Flax Ultra-sonication > 1000 15–100 78.3 Scanning electron microscopy

Hardwood Grinder 200–3000 10–20 – Atomic force microscopy

Perennial Ryegrass Homogenizer 300–4600 3–9.1 – Transmission electron microscopy

Rice Straw Homogenizer > 1000 2–5 40 Transmission electron microscopy

Rice Straw Homogenizer > 1000 4–13 – Transmission electron microscopy

Rice Straw Homogenizer > 1000 52 ± 15 – Transmission electron microscopy

Sisal Homogenizer > 1000 52 ± 15 – Scanning electron microscopy

Sisal Refining (beater) > 1000 25–250 87.2 Scanning electron microscopy

Softwood Ultra-sonication > 1000 10–20 56 Scanning electron microscopy

Softwood Homogenizer > 1000 50–60 – Atomic force microscopy

Wheat Straw Ultra-sonication > 1000 15–35 59.9 Scanning electron microscopy

Wheat Straw Homogenizer > 1000 4 80 Atomic force microscopy, Trans-
mission electron microscopy, 
X-ray diffraction
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Table 4  Processing techniques for the preparation of cellulose nanoparticles-based polymer composites that are used in the food packaging 
application

Fibers Cellulose type Filler (wt%) Matrix Processing technique References

Barley straw and husk Cellulose nanocrystals 1–3 – Solvent casting Fortunati et al. (2016)

Industrial waste cotton Cellulose nanocrystals 5 Polyvinyl alcohol Solvent casting Thambiraj and 
Shankaran (2017)

Sugarcane bagasse Cellulose nanocrystals 0.5–10 – Solvent casting El Achaby et al. (2017)

Sugarcane bagasse Cellulose nanocrystals 0.5–5 – Solvent casting El Miri et al. (2015)

Kiwi pruning stalk Cellulose nanocrystals 3 – Solvent casting Luzi et al. (2017)

Softwood kraft pulp Cellulose nanocrystals 5 – Solvent casting Khan et al. (2012)

Rice straw Cellulose nanocrystals 1–5 – Solvent casting Perumal et al. (2018)

Red algae Cellulose nanocrystals 1–8 Polyvinyl alcohol Solvent casting El Achaby et al. (2018)

Softwood kraft pulp Cellulose nanocrystals 1–8 Alginate biopolymer Solution casting Huq et al. (2012)

Cotton wool Cellulose nanocrystals 5–15 Polyvinyl alcohol Solution casting Popescu (2017)

Kenaf fibers Cellulose nanocrystals 2–10 Thermoplastic cassava 
starch

Solution casting Zainuddin et al. (2013)

Wheat straw Cellulose nanofibers – Thermoplastic starch Solution casting Alemdar and Sain 
(2008)

– Nanocellulose 0.1–1 – Solution casting Khan et al. (2010)

Microcrystalline cel-
lulose

– 1–10 Alginate biopolymer Solution casting Abdollahi et al. (2013)

Bleached dry eucalyp-
tus pulp

Cellulose nanofib-
ers and cellulose 
nanocrystals

10 Polyethylene oxide Solution casting Xu et al. (2013)

Gluconacetobacter 

Xylinum

Bacterial cellulose 
nanocrystals

2 and 4 Hydroxyl-propyl-
methyl cellulose

Solution casting George et al. (2014)

Gluconacetobacter 

Xylinum

Bacterial cellulose 
nanocrystals

1–5 Gelatin Solution casting George (2012)

Acetobacter xylinum Bacterial cellulose 
nanocrystals

4 Polyvinyl alcohol Solution casting George et al. (2011)

Potato Cellulose nanofibers 3.3 Starch Solution casting Dufresne et al. (2000)

Pea hull fibers Cellulose nanocrystals 30 Starch Solution casting Chen et al. (2009)

Eucalyptus wood pulp Cellulose nanocrystals 0–6 – Solution casting de Mesquita et al. 
(2012)

Sunflower stalks Cellulose nanofib-
ers and cellulose 
nanocrystals

0.4 (volume/volume) Gelatin Solution casting Fortunati et al. (2016)

Jute and bacterial 
cellulose

Bacterial cellulose 
nanocrystals

50 Starch matrix Film casting Soykeabkaew et al. 
(2012)

Luffa Cylindrica Cellulose nanocrystals 0–12 Polycaprolactone Film casting Follain et al. (2013)

Softwood kraft pulp Cellulose nanocrystals 5 Polycaprolactone Compression molding Khan et al. (2013)

Cotton linter pulp Cellulose nanocrystals 0–30 Soy protein isolate Compression molding Wang et al. (2006)

Needle leaf bleached 
kraft pulp

Cellulose nanofibers 10 Polylactic acid Compression molding Iwatake et al. (2008)

Commercial cotton 
paper

Cellulose nanocrystals 1–12 – Casting Pereda et al. (2014)

– Cellulose nanocrystals 0–20 – Casting Azeredo et al. (2010)

– Cellulose nanofibers 50 – Casting Fernandez et al. (2010)

– Cellulose nanofibers 32 – Casting Wu et al. (2014)

Bamboo Cellulose nanocrystals 2 Poly(3-hydroxybu-
tyrate)

Casting Dhar et al. (2015)

Cotton linter Cellulose nanowhisk-
ers

0–20 – Evaporation Li et al. (2009)

Kenaf pulp Cellulose nanofibers 1–5 Polylactic acid Twin-screw extrusion Jonoobi et al. (2010)
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Solvent casting method

The solvent casting method is known as one of the simplest 
methods for the preparation of nanocomposites (Fig. 5). 
Nanocellulose is dispersed within a given medium (water 
or organic media) to prepare the homogenous suspension at 
room temperature, followed by the mixing of polymer solu-
tions (Bandyopadhyay-Ghosh et al. 2015). The composites 
are developed, followed by drying in a vacuum oven. This 
processing technique strongly influences the mechanical 
properties of the nanocomposites. It has been reported that 
the nanocomposites designed by the solution casting tech-
nique produce superior results compared to melt extruded 
composites (Bharimalla et al. 2019). This is attributed to 
the better dispersion of the nanoparticles and the possibility 
of hydrogen bonding between the nanofiller and the matrix.

Being an ecological and low-temperature process, the sol-
vent casting technique entails a small quantity of nanofiller 
to produce the nanocomposite films of uniform thickness. 
This method has some flaws, which include high time and 
energy consumption, limited to the laboratory scale, and 
only useful when a very small amount of filler is required 

(Khoshkava 2014). Svagan et al. (2007) efficaciously cast 
nanostructured cellulose shared with a 50/50 amylopec-
tin–glycerol blend. The resulting film revealed superior 
tensile strength and modulus owing to the satisfactory 
dispersion of cellulose. The water uptake property of pure 
plasticized starch film was reduced in the presence of cel-
lulose nanofibers (70 wt%). For the production of packaging 
materials, the casting technique is not a common approach 
and therefore, very unlikely, it will become the main way to 
use nanocellulose in packaging applications. It can be con-
sidered as a good way to understand, at a laboratory scale, 
the behavior of cellulose nanoparticles and the opportunities 
for producing cellulosic nanocomposites using technologies 
more reliable for larger productions (Bharimalla et al. 2017).

Melt intercalation process

In 1993, the melt intercalation process was used to prepare 
polymer composites. Vaia (1993) first used this method in 
1993 to process polymer composites. Since then, it is known 
as the most favorable and valuable technique for the synthe-
sis of nanocomposites. This method is used in the polymer 

Table 4  (continued)

Fibers Cellulose type Filler (wt%) Matrix Processing technique References

Phormium Tenax 
leaves

Cellulose nanocrystals 1–3 Polylactic acid Twin-screw micro 
extruder

Fortunati et al. (2014a) 
and Fortunati et al. 
(2014b)

– Cellulose nanowhisk-
ers

– Polylactic acid Melt extrusion Oksman et al. (2006)

– Cellulose nanocrystals 10 Polyvinyl alcohol Heating Paralikar et al. (2008)

Wood Cellulose nanofibers 2.5 Polyvinyl alcohol 
polypyrrole

In situ polymerization Bideau et al. (2016)

Fig. 5  Representation of the 
solvent casting method. Polymer 
composites can be prepared by 
mixing the natural fibers into 
the mixture of polymer and 
solvent. Appropriate dispersion 
of the natural fibers in the solu-
tion, followed by the evapora-
tion of solvent resulted in the 
natural fiber-reinforced polymer 
composites
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processing industries through compounding devices, such 
as extruders or mixers. The process of melt intercalation is 
shown in Fig. 6a. This is a top-down method that involves 
the mixing of nanoparticles with a fused polymer. Nanocom-
posites are formed when the mixture of filler and the poly-
mer are above the glass transition temperature. Intercalation 
is induced when polymer chains penetrate the reinforcement. 
On compatibility (filler and matrix) terms, either interca-
lated nanocomposites or exfoliated nanocomposites can be 
obtained. Eco-friendly and simple melt intercalation process 
decreases the interfacial tension and improves the matrix 
reinforcements interactions (Bharimalla et al. 2019). Those 
polymers which are not suitable for solution intercalation, 
in situ polymerization or adsorption methods can be used to 
prepare the nanocomposites. This method is more flexible 
and does not require chemical reactions or solvents.

In situ polymerization

In situ polymerization is the first method used for the synthe-
sis of nanocomposites. The process mechanism of the in situ 
polymerization is shown in Fig. 6b. The in situ polymeri-
zation of monomers with nanocellulosic fillers is benefi-
cial compared to the conventional processing approaches 
because even dispersion of the nanofiller in the polymer can 
be attained by reducing the agglomeration. Reduction in the 
moisture absorption behavior and the improvement in the 
biodegradability of the nanocomposites are achieved by this 

method. However, this method is more specific because it is 
only used when polymerization is carried out in the liquid 
phase, where liquid monomers are polymerized in the pres-
ence of cellulose (Bharimalla et al. 2019). Conventionally, 
this process is used to synthesize thermoplastic nanocom-
posites. At the same time, for thermosets, a curing agent or 
peroxide is added to initiate the polymerization or increase 
in temperature can also help in initiating the polymeriza-
tion reaction. The in situ polymerization method can be set 
up at an industrial scale and can significantly increase the 
development of cellulosic nanocomposites products. Many 
novel cellulosic nanocomposites have been made through 
this technique with potential applications, e.g., polymeth-
ylmethacrylate, polyacrylamide, polyurethane, polypyrrole 
(Bharimalla et al. 2019).

Coating

Coatings lead to a composite structure as thin layers, 
either external or packed inside two substrates (Li et al. 
2019). The layer thickness varies from one-tenth of the 
nanometer to micrometer range. The high performance and 
functional biomaterials thin layer composites can replace 
thick oil-based conventional plastics films. To enhance the 
sustainability of packaging materials, a prodigious interest 
is developing in the favor of coating technology, which 
in particular lessens the thickness of oil-based conven-
tional plastic films, by using a thin layer of functional and 

Fig. 6  Cellulose nanoparticles-
based polymer composites 
preparation techniques. a Melt 
intercalation process for the 
preparation of composites, 
in which polymer solubilize 
and nanocellulose swell in 
the solvent, respectively. The 
solubilize polymer and swell 
nanocellulose combined to form 
melt-intercalated cellulosic 
nanocomposites; b In situ 
polymerization mechanism for 
the preparation of nanocom-
posites using monomers and 
nanocellulose (Bharimalla et al. 
2017)
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high performing bio-based material. Highly crystalline 
cellulose nanoparticles were investigated as a functional 
layer on various substrates. Aulin et al. (2010) coated 
carboxymethylated microfibrillated cellulose on papers 
and observed the oxygen permeability at different relative 
humidity levels. At very low relative humidity level, the 
microfibrillated cellulose films exhibited considerably low 
oxygen permeability, like that of conventional synthetic 
films (such as ethylene-vinyl alcohol). Meanwhile, the 
dense structure formed because of the cellulose layers and 
resulted in high oil barrier properties. On the other hand, 
at higher relative humidity values, an increase in oxygen 
permeability was observed.

Hult et al. (2010) investigated the coating of the micro-
fibrillated cellulose on the papers and paperboards. Their 
results showed that the coating technology, as a high bar-
rier, is beneficial in packaging applications. Sanchez-Gar-
cia et al. (2010) enhanced the water barrier properties by 
incorporating the cellulose nanoparticles in a carrageenan 
matrix (novel bio-nanocomposites) suggested for applica-
tions in food packaging and coating applications (Kuswandi 
2017). Da Silva et al. (2012) produced nanocomposite films 
of cassava starch plasticized with the sucrose and inverted 
sugar and reinforced by the cellulose nanocrystals extracted 
from the eucalyptus. Besides good mechanical proper-
ties, the water resistance properties of the nanocomposites 
were meaningfully improved with the addition of cellulose 
nanocrystals (which formed a rigid network because of the 
high crystallinity of cellulose nanocrystals). Moreover, their 
results may be applied to the development of biodegradable 
packaging to enhance the shelf life of food products. In con-
clusion, the coating technique has great potential in produc-
ing novel materials, especially novel packaging materials 
(Kuswandi 2017; Ferrer et al. 2017).

Properties of cellulosic nanocomposites

Composite materials are known to have enhanced capabili-
ties compared to the parent material, as they are reinforced 
with fillers. Polymer composites based on cellulose nano-
particles exhibit extraordinary mechanical properties even 
at low loading percentages (Dufresne 2017a). The reason 
behind such magnificent properties is a network of nano-
particles spread in the polymer matrix. The aspect ratio of 
cellulose nanoparticles significantly influences the stiffness, 
as the aspect ratio is directly related to mechanical properties 
(Bras et al. 2011). With the increase in aspect ratio, the stiff-
ness of the percolating cellulose nanocrystals increases, and 
thus mechanical properties are increased. Some important 
properties of cellulose nanoparticles-based polymer com-
posites are represented in Table 5.

Food packaging applications

Cellulose nanoparticles reinforced polymer composites 
for the food packaging applications are represented in 
Table 6. The nanoscale dimensions of the cellulose nano-
particles can build a strong entangled nanoporous network 
that allows scientists and technologists to use it most effi-
ciently. Plentiful materials have been incorporated with 
cellulose nanoparticles by various approaches to obtain 
multifunctional properties, such as enhanced mechanical 
and barrier properties, improved coloration, and dyeing. 
Chitin, a second most abundant natural biopolymer, is 
a non-toxic, biodegradable, biofunctional, and biocom-
patible material. It has strong antibacterial and antifun-
gal activities, according to many researchers (Darmadji 
and Izumimoto 1996). Films made from chitin have been 
used successfully as a packaging material. Moreover, it 
was revealed that cellulose nanocrystals loading (3–5%) 
in chitin gave the best tensile strength values, which is 
attributed to the formation of a percolating network and 
stronger filler-matrix interactions.

The surface morphology of the nanocomposites indi-
cated the homogenous structure due to the adequate dis-
persion of the cellulose nanocrystals into the chitin matrix. 
Because of the excellent barrier properties and mechani-
cal properties, the film produced would have promis-
ing impacts on food packaging (Jo et al. 2001). Elonga-
tion decreased, but Young modulus and tensile strength 
increased at higher concentrations of cellulose in the 
matrix. Boumil et al. (2013) prepared antimicrobial diffu-
sion films for food applications, which showed the high-
est tensile strength in storage. Nanocomposite based on 
nanocellulose and alginate biopolymer was developed by 
Abdollahi et al. (2013) using solution casting method and 
found that with the increase in nanocellulose content from 
0 to 5%, the tensile strength of the composite increased; 
however, the additional increment of filler decreased the 
tensile strength. High (10%) increment of cellulose nano-
particles in the matrix reduced the transparency of the 
composite film, which suggested the agglomeration of 
filler in the matrix results in poor mechanical and struc-
tural properties.

Polylactic acid, a versatile biodegradable polymer, is 
a suitable matrix for the preparation of cellulosic-based 
nanocomposites. The effect of cellulose nanofibers in the 
polylactic acid matrix, in terms of mechanical properties 
and dynamic mechanical properties for food packaging, 
was investigated by Jonoobi et al. (2010). They observed 
that the nanocomposite films showed an increase in the 
tensile strength and Young modulus until 5% cellulose 
content. A study conducted by Ghaderi et al. (2014) on 
the cellulose nanofibers, extracted from the sugarcane 
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bagasse, showed that water vapor permeability of nano-
composites increased with more dissolution time. The 
preparation of polylactic acid composites is a method to 
improve properties. Song et al. (2014) observed that incor-
porating modified nanocellulose fibers in the polylactic 
acid improves the water vapor barrier properties of the 
matrix (Bharimalla et al. 2019). Polylactic acid is a food 
packaging polymer for short-term products, for instance, 
drinking cups, containers, wrappers, and laminated films; 
however, water vapor and gas barrier properties of polylac-
tic acid is not efficient for long term solutions. Besides cel-
lulosic nanocomposites, some of the efficient biocompos-
ites reinforced with inorganic filler are listed in Table 7.

Sustainable packaging

Sustainable packaging refers to the manufacturing of pack-
aging films by using recyclable and biodegradable materials 
with their proper life cycle assessment. The proper measure 
of life cycle assessment helps to eliminate ecological foot-
prints and their negative impact on the environment. The 
measured use of sustainable packaging materials ensures 
a cleaner environment for future generations. The organi-
zation of sustainable packaging outlines packaging that is: 
(http://www.susta inabl epack aging .org, accessed 10 Decem-
ber 2011)

1. Favorable, harmless, and vigorous for the populations 
throughout its life cycle.

2. Fulfills market standards for both presentation and price.
3. Obtained, manufactured, conveyed, and reprocessed 

using renewable energy.
4. Processed using sanitized manufacturing machines.
5. Produced from materials which are harmless and safe.
6. Physically designed to optimize material and energy.
7. Using biotic and industrial closed-loop sequences.

With the growing consciousness of customers with envi-
ronmental issues, people favor the packaging that is manu-
factured from sustainable materials. Many countries are 
introducing biomaterials-based packaging into their markets. 
Competition among the manufacturers forces them to shift 
to totally sustainable packaging for safe survival in their 
competitive markets. The manufacturers are struggling to 
produce extraordinarily, high-quality materials that are sus-
tainable and energy efficient. Leading retailers in the indus-
tries, for example, “Unilever” is committed to producing sus-
tainable packaging products to reduce the problem of plastic 
waste in our daily life (Bavcon Kralj et al. 2020). A Swedish 
company, “Billerud”, is manufacturing bio-based packag-
ing material and aims to create sustainable development of 

the earth’s resources by working with natural and renewable 
materials (Mülhaupt 2013).

Principle of sustainable packaging

Sustainable packaging is a composite theory which involves 
studies and certification to assess the packaging design, 
material assortment, treating, and life span (Yam and Lee 
2012; Zhang et al. 1997). The purpose of sustainable pack-
aging is to combine useful and advanced ingredients in pack-
aging that stimulate cost-effective and ecological wellbeing. 
Packaging sustainability is frequently well-thought-out to be 
an advertising tool for supporting a distinctive new pack-
ing material. Packaging sustainability is crucial for organi-
zations, such as the organization of sustainable packaging 
coalitions in the USA. The sustainable packaging alliance 
described sustainable packaging based on the literature 
review with four major criteria (Lewis et al. 2010). Firstly, 
the use of sustainable materials is crucial. The materials 
intended for the bundling must help reasonable advance-
ment, while adequately ensuring the nature of the items. 
Normally, materials for sustainable packaging are manufac-
tured to fulfill rules and regulation according to economics, 
material durability, and their demand in the market (Ljun-
gberg 2007). The development of the material starts with 
a proper choice of the material, its performance, and the 
impact on the life cycle of the material. The second criterion 
of the sustainable packing is to meet the effective recovery 
challenge of material to reduce waste (Davis and Song 2006) 
along with the biological recovery, recycling, and energy 
recovery (Ljungberg 2007; Davis and Song 2006). The third 
norm of sustainable packaging includes the manufacturing 
of such sort of material, which is durable and has reusability 
for several times with minimum degradation in properties 
and the manufacturing of contaminant-free material. The 
last norm of sustainable packing is to use clean material 
that is safe and sound for human beings along with the safe 
removal of hazard materials associated with such a process 
(Zhang et al. 1997).

Cellulosic �bers in the sustainable packaging

Cellulose has excellent mechanical properties with low 
weight and biodegradable nature that possess high mechani-
cal strength and stiffness, along with the best barrier resist-
ant properties that can be used in the manufacturing of paper 
and biocomposites. Cellulose fiber-based packaging materi-
als do not have any effect on medicines or pharmaceuticals 
that are packed in it. They are also harmless to a human’s 
body. They are, in fact, green materials for food packaging 
and pharmaceutical industries. Properly manufactured com-
posites, according to its end use, ensure a cleaner environ-
ment and harmless situations for human beings.

http://www.sustainablepackaging.org
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Design process

In the field of product manufacturing technology, good 
design is crucial. A product designed by expert profession-
als has different sets of quality and durability. To design a 
product of known quality, it may require various engineering 
principles and reproducibility. The end use of the product 
defines how much we should invest to claim its consistent 
quality. This is a very technical and sensitive step for any 
development in a product (Fricke 1996). The first step in 
designing a product of effective quality with biodegradable 
nature is the planning. Planning of design will decide the 
optimum cost, quality of the product, and its recyclability 
with minimum effect on the environment. Bieniawaski et al. 

(1992) reported a series of steps with coherent classification 
to design a sustainable packaging product of defined quality. 
Figure 7 shows the design methodology adopted for sustain-
able packaging.

De�nition of the problem statement

The definition of the problem statement is known to be 
the first step in any design process (Chikofsky and Cross 
1990). Regarding the problems that could happen in the 
early design stages of the process for the cellulose nanofib-
ers sustainable packaging products. The definition incorpo-
rates point-to-point data on cellulose nanofibers generation 
from natural fibers and its application towards sustainable 

Table 7  Available bio-nanocomposites and their properties in food packaging application

Bio-nanocomposites Properties References

Alginate/nanosilver Spoilage reduction
Lower water loss
Improvement of sensory attributes

Jiang et al. (2013)

Corn starch/talc nanoparticles Increased Young modulus
Increased yield stress
Reduction in water permeability
Reduction in oxygen permeability

López et al. (2015)

Calcium alginate/zinc oxide nanoparticles Reduction in microbial load Akbar and Anal (2014)

Chitosan/polyvinyl alcohol/titanium nanoparticles Antibacterial activity against algae and bacteria
Extended shelf life

Youssef et al. (2015)

Whey protein isolate/montmorillonite Increased tensile strength
Reduced swelling

Wakai and Almenar (2015)

Polyvinylpyrrolidine/silver nanoparticles Edible coating
Greener colour
Lower water loss
Hindered growth of microorganisms

An et al. (2008)

Soy protein isolate/montmorillonite Thermal stability
Improvement of mechanical properties
Water vapor permeability due to montmorillonite

Kumar et al. (2010)

Nanoemulsion coating of chitosan and mandarin essential 
oil

Reduction of population of microorganisms Donsì et al. (2015)

Silver nanoparticles-based cellulose absorbent pads Reduction in population of aerobic bacteria
Reduction in microbial activity
Retarded the senescence of fruits
Gave juice appearance

Fernandez et al. (2010)

Sodium alginate solution containing silver nanoparticles Antibacterial film
Reduced weight loss
Reduced soluble protein loss
Increased shelf life

Mohammed Fayaz et al. (2009)

Nanozinc oxide neem-oil chitosan Enhanced hindrance of bacterial activity Sanuja et al. (2015)

Starch/halloysite/nisin Improved mechanical properties
Improved antimicrobial activity

Meira et al. (2016)

Wheat-gluten lignin nanoparticles Reduced water absorption ability
Improved thermal stability
Improved tensile strength

Yang et al. (2015)

Pectin/nanohybrid layered double hydroxide salicylate Improved elongation at break
Improved water vapor barrier property
Extended shelf life

Gorrasi and Bugatti (2016)

Tilapia skin gelatin hydrophilic-hydrophobic nanoclays Improved mechanical/barrier properties Nagarajan et al. (2014)



Environmental Chemistry Letters 

1 3

packaging. In the later step, pertinent data on existing mate-
rial other than cellulose nanofibers should be collected to 
create issue identification. The problem statement must 
address the difficulties and limitations associated with the 
packaging. Then finally, the criteria for success should be 
established. In this step, a conceivable solution should be 
considered for the problem statement.

Though the final design should be finalized based on 
some criteria to produce nanocellulosic material for bio-
degradable sustainable packaging, the following criteria 
should be followed: (1) the process should be economic and 
environmentally friendly, such as the process of cellulose 
nanofibers production for the bio-based sustainable packag-
ing should be user-friendly and automatic with minimum 
interference by humans. (2) The produced cellulose nanofib-
ers should have high mechanical and chemical properties, 
for this purpose, a process which can deliver high properties 
is hydrodynamic alignment by the flow-focusing concept. 
(3) The product (cellulose nanofibers) should be fully bio-
degradable and renewable. However, other parameters in 
terms of mechanical strength and good chemical stability 
are very necessary. From the above discussion, we conclude 
that there is still a lot of work that has to do for the produc-
tion of biodegradable, environmentally friendly and high 
mechanical strength sustainable cellulose nanofibers.

Collect speci�c information to eliminate the ambiguities

The required information on physical, chemical, conduc-
tive strength, and stiffness of cellulose nanofibers should 
be collected. This should be performed based on the kind of 
material to be packed, either the food or non-food, tempera-
ture-sensitive medicine or consumer specified product. The 
nature of the product and its end-use application will define 
its required packaging specifications (Kalia et al. 2011). 
The engineering design of cellulose nanofibers is uncer-
tain; the core reason for this uncertainty is that the design 
is performed without a holistic study survey. To develop 
biodegradable, eco-friendly cellulose nanofibers based on 
sustainable packaging products, we have to study the whole 
scenario starting from raw material till to the properties 
of the product to be packed. The proper knowledge about 
the properties of the raw material, source of the packing 
material, its contact time and temperature with the item 

to be packed, the shelf life of a product, and the chemical 
specifications of the product is a very time-consuming and 
challenging task. The complete study before designing the 
packaging product will ensure the delivery of the product to 
the customer without any compromise in the desired quality 
of the product (Gonzalez et al. 2011; Gon et al. 2012).

The plainness of the design methodology adopted

The objective of the plainness of the design procedure is 
to eliminate the ambiguities and mistakes during product 
design. It should be as straight forward because the holis-
tic design factors are being considered while designing the 
packaging product (Benavides 2011). The design proce-
dure will be adopted based on the likely output of the study 
design procedure. A recent study explains the freeze-drying 
procedure for the manufacturing of cellulose nanofibers used 
in the air filters (Nemoto et al. 2015). Nonetheless, there is 
a lot of work to do in the field of cellulose nanofibers-based 
sustainable packaging.

Optimization of the design procedure

This step involves adjusting the procedure according to the 
available sources to make it happen. Optimization minimizes 
and troubleshoots the risk involves in the design procedure. 
There are many methods of optimization available like lin-
ear optimization, linear least square optimization for differ-
ent sorts of areas, including production, data plotting, and 
maintenance schedule. The holistic optimization of design 
procedure includes the economics of the process, limitation 
of resources; safety factors; renewability and recyclability; 
sustainability; and properties adjustment of the raw material. 
In the preparation of cellulose nanofibers, the optimization 
can be applied in the treatment process. The designer can 
perform statistics or mathematical optimization. Designers 
are using “Design of Experiments” to perform the optimiza-
tion procedure while developing the product design process 
(Hossain et al. 2012).

Execution of the design procedure

Execution of the design procedure is the final and most sen-
sitive stage. The process design should fulfill the criteria 

Fig. 7  Engineering design process of cellulose nanofibers for sustainable packaging applications via defining the problem, collecting specific 
information, the plainness of design methodology, optimization of the design procedures, and finally executing the design procedure
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for targeted success. The failure to do so will declare the 
design an invalid practice (Benavides 2011). So, it demands 
plenty of revision and attention to reprise the design proce-
dure carefully. The approach that is adopted while design-
ing the procedure should be robust and valid concerning 
practical manners. The design input information should be 
comprehensive for parameters and limitations defined while 
designing the procedure. The validity analysis of the proce-
dure must be performed in order to avoid any failure while 
implementing a design procedure.

Importance of designing the cellulose nano�bers

Creative methodologies utilizing cellulose nanofibers can 
be helpful for the development of ecological and biodegrad-
able sustainable packaging. The scientific design of cellu-
lose nanofibers with measured qualitative and quantitative 
aspects can guarantee a sustainable packaging approach for 
the coming era (Mishra et al. 2012). The scientific design 
of cellulose nanofibers will ensure the efficient production 
process and its recycling. The most important and prom-
ising prose is that we can manage its waste by recycling 
(Davis and Song 2006; Marsh and Bugusu 2007). The spe-
cific engineering design of cellulose nanofibers according to 
target application will be helpful to apply known limitations 
concerning the environment, recycling, and sustainability of 
the packaging product. The well-known engineering design 
of the product can be helpful for the researcher to launch 
an efficient, sustainable packaging product with a targeted 
approach that can compete for the market.

Engineering design challenges

The basic approach of sustainable product manufacturing 
is the development of bio-based material with optimized 
cost and a high-quality product. This is a basic challenge on 
which the holistic product design process works. To meet 
this challenge, many factors must be considered while doing 
research and development on cellulose-based specific pack-
aging products. Some of these factors are the durability of 
the product, technology adopted to manufacture the product, 
sustainability, and recyclability. The target market and end-
use application limit these factors because the cost-efficient 
product can compete in the market. Engineering design is 
primarily important to manufacture the cost-efficient and 
sustainable cellulose-based product (Vargas et al. 2012).

The research and development on a pilot scale have been 
conducted to utilize cellulose-based material in sustainable 
packaging applications. The research on the laboratory-scale 
explores the current problems and their solutions before 
launching the idea on an industrial scale. Still, there is a need 
to perform research and planning on a small scale with the 
help of technical experts and material engineers to analyze 

the problems and for their appropriate solutions, so that cel-
lulose can be utilized in different areas of biodegradable and 
sustainable packaging applications (Poole and Simon 1997). 
The pollution-free environment with minimum waste is the 
hot topic of the present age.

Conclusion

The utilization of nanocomposites comprised of abundant 
and biodegradable fillers and polymers has opened new 
avenues for both academia and industry to make sustain-
able products that could replace conventional synthetic 
materials causing environmental pollution. Nanocompos-
ites, especially those which are reinforced with cellulose 
(which is known as the most abundant biopolymer on the 
sphere), have been highlighted as a significant replacement 
of synthetic products. Transformation of cellulose into nano-
particles through acidic, alkaline, 2,2,6,6-tetramethylpiperi-
dine-1-oxyl and other methods (mechanical and biological) 
have enriched many properties, such as tensile strength, 
barrier, thermal and optical properties, and specific surface 
area; which increased from 51 m2 g−1 (cellulose nanofib-
ers) to 533 m2 g−1 (cellulose nanocrystals). However, the 
energy-intensive and costly isolation process of cellulose 
nanoparticles caused hindrance in its utilization. Among 
various techniques used for the preparation of cellulosic 
nanocomposites, melt intercalation, solvent casting, in-situ 
polymerization, composite extrusion, and casting were found 
to be the most efficient and simple techniques that had a 
form of practicality to allow its adoption in an industry set-
ting. Besides these processing techniques, the melt blend-
ing (through extruders) approach has been used quite a few 
times and proved a simple and efficient technique and has 
the potential to be used at the commercial level. Regardless 
of these, compatibility issues of hydrophilic filler (nanocel-
lulose) with hydrophobic polymer and dispersion of filler in 
polymer matrices are some of the flaws of these materials. 
Practical and proper designing of the whole process was 
highlighted as potential future work and should be neces-
sary for the identification of possibilities, suitability, and 
limitations of nanocomposites for food packaging applica-
tions. The utilization of cellulosic nanocomposites in food 
packaging applications has shown potential by improving 
barrier properties (189.61–0.1799 cm3 µm/m2 d kPa), water 
permeability (6.3 g mm m−2 day kPa (without cellulose 
nanocrystals) to 4.7 g mm m−2 day kPa (with 1 wt% cellu-
lose nanocrystals)), and mechanical properties (Young mod-
ulus of cellulose nanocomposite increased 87% as compared 
to pure polypropylene), which suggests that in near future 
nanocomposites made from biopolymers will start to replace 
conventional synthetic plastic products only if:
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• The isolation process of cellulose and its conversion into 
nanoparticles would be cost and energy effective.

• The variability of extracted fibers properties should be 
reduced.

• The compatibility issues between hydrophobic natural 
fibers (cellulose) and hydrophilic polymers would be 
solved.

• Adhesive agents, coupling agents or compatibilizers 
should be developed from renewable sources.

• Life cycle assessment and biodegradability of nanocom-
posites should be properly researched.

• New processing technologies should be developed.
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