Renewable Energy in Power Systems

Leon Freris

Centre for Renewable Energy Systems Technology (CREST), Loughborough University, UK

David Infield

Institute of Energy and Environment, University of Strathclyde, UK

Contents

For	oreword	
Pref	face	xiii
Ack	cknowledgements	
1	Energy and Electricity	1
1.1	The World Energy Scene	1
	1.1.1 History	1
	1.1.2 World energy consumption	1
	1.1.3 Finite resources	2
	1.1.4 Energy security and disparity of use	3
1.2	The Environmental Impact of Energy Use	3
	1.2.1 The problem	3
	1.2.2 The science	5
	1.2.3 The Kyoto protocol	6
	1.2.4 The Stern Report	7
	1.2.5 Efficient energy use	8
	1.2.6 The electricity sector	10
	1.2.7 Possible solutions and sustainability	11
1.3	Generating Electricity	11
	1.3.1 Conversion from other energy forms – the importance of efficiency	11
	1.3.2 The nuclear path	12
	1.3.3 Carbon capture and storage	13
	1.3.4 Renewables	13
1.4	The Electrical Power System	16
	1.4.1 Structure of the electrical power system	16
	1.4.2 Integrating renewables into power systems	18
	1.4.3 Distributed generation	19
	1.4.4 RE penetration	19
	References	20
2	Features of Conventional and Renewable Generation	21
2.1	Introduction	21
2.2	Conventional Sources: Coal, Gas and Nuclear	22
2.3	Hydroelectric Power	23
	2.3.1 Large hydro	24
	2.3.2 Small hydro	25

2.4	Wind Power		27
	2.4.1 The resou	rce	27
	2.4.2 Wind varia	ability	28
	2.4.3 Wind turb	ines	30
	2.4.4 Power var	riability	33
2.5	PV and Solar The	ermal Electricity	36
	2.5.1 The resour	rce	36
	2.5.2 The technol	ology	37
	2.5.3 Photovolta	aic systems	38
		mal electric systems	40
2.6	Tidal Power		42
	2.6.1 The resour	rce	42
	2.6.2 Tidal enha	ancement	43
	2.6.3 Tidal barr	rages	43
		al strategies	44
	-	ent schemes	45
2.7	Wave Power		47
	2.7.1 The resou	rce	47
	2.7.2 The techno		48
	2.7.3 Variability		49
2.8	Biomass		50
	2.8.1 The resour	rce	50
	2.8.2 Resource	sustainability	51
2.9		er Generation Characteristics	52
2.10	Combining Source		53
	References		53
3	Power Balance/	Frequency Control	55
3.1	Introduction	Frequency control	55
5.1		r balance issue	55
3.2	Electricity Demai		56
5.2	3.2.1 Demand c		56
	3.2.2 Aggregation		57
	00 0	side management – deferrable loads	58
3.3	Power Governing	· ·	59
5.5	•	s nversion chain	59
	3.3.2 The gover		60
		peration of two generators	61
		peration of two generators prator system	62
			63
2.4		y state power-frequency relationship ncy Control of Large Systems	64
3.4	• •		64
	3.4.1 Demand m		65
	3.4.2 Demand f		67
	3.4.3 Frequency		
		n scheduling and reserve	68
		y control at different timescales	68
		lemand and ensuring reliability	70
25		factor and capacity credit	71
3.5	*	able Generation on Frequency Control and Reliability	72
	3.5.1 Introducti	on on of sources	72 73
	3.5.2 Aggregati		

	3.5.3 Value of energy from the wind	76
	3.5.4 Impact on balancing	76
	3.5.5 Impact on reliability	79
	3.5.6 Discarded/curtailed energy	79
	3.5.7 Overall penalties due to increasing penetration	80
	3.5.8 Combining different renewable sources	81
	3.5.9 Differences between electricity systems	81
	3.5.10 Limits of penetration from nondispatchable sources	81
3.6	Frequency Response Services from Renewables	84
	3.6.1 Wind power	84
	3.6.2 Biofuels	85
	3.6.3 Water power	86
	3.6.4 Photovoltaics	86
3.7	Frequency Control Modelling	86
	3.7.1 Background	86
	3.7.2 A modelling example	89
3.8	Energy Storage	91
	3.8.1 Introduction	91
	3.8.2 Storage devices	91
	3.8.3 Dynamic demand control	93
	References	94
	Other Useful Reading	95
4	Electrical Power Generation and Conditioning	97
4.1	The Conversion of Renewable Energy into Electrical Form	97
4.2	The Synchronous Generator	98
	4.2.1 Construction and mode of operation	98
	4.2.2 The rotating magnetic field	101
	4.2.3 Synchronous generator operation when grid-connected	103
	4.2.4 The synchronous generator equivalent circuit	104
	4.2.5 Power transfer equations	105
	4.2.6 Three-phase equations	106
	4.2.7 Four-quadrant operation	107
	4.2.8 Power-load angle characteristic: stability	108
4.3	The Transformer	108
	4.3.1 Transformer basics	108
	4.3.2 The transformer equivalent circuit	110
	4.3.3 Further details on transformers	112
4.4	The Asynchronous Generator	112
	4.4.1 Construction and properties	112
	4.4.2 The induction machine equivalent circuit	114
	4.4.3 The induction machine efficiency	116
	4.4.4 The induction machine speed-torque characteristic	117
	4.4.5 Induction generator reactive power	120
	4.4.6 Comparison between synchronous and asynchronous generators	121
4.5	Power Electronics	121
	4.5.1 Introduction	121
	4.5.2 Power semiconductor devices	122
	4.5.3 Diode bridge rectifier	124
	4.5.4 Harmonics	126
	4.5.5 The thyristor bridge converter	126

	4.5.6 The transistor bridge	128
	4.5.7 Converter internal control systems	133
	4.5.8 DC-DC converters	133
4.6	Applications to Renewable Energy Generators	134
	4.6.1 Applications to PV systems	134
	4.6.2 Applications to wind power	137
	References	147
5	Power System Analysis	149
5.1	Introduction	149
5.2	The Transmission System	149
	5.2.1 Single-phase representation	151
	5.2.2 Transmission and distribution systems	152
	5.2.3 Example networks	153
5.3	Voltage Control	153
5.4	Power Flow in an Individual Section of Line	156
	5.4.1 Electrical characteristics of lines and cables	156
	5.4.2 Single-phase equivalent circuit	156
	5.4.3 Voltage drop calculation	157
	5.4.4 Simplifications and conclusions	158
5.5	Reactive Power Management	160
	5.5.1 Reactive power compensation equipment	160
5.6	Load Flow and Power System Simulation	163
	5.6.1 Uses of load flow	163
	5.6.2 A particular case	164
	5.6.3 Network data	165
	5.6.4 Load/generation data	165
	5.6.5 The load flow calculations	167
	5.6.6 Results	168
	5.6.7 Unbalanced load flow	168
5.7	Faults and Protection	169
	5.7.1 Short-circuit fault currents	169
	5.7.2 Symmetrical three-phase fault current	170
	5.7.3 Fault currents in general	170
	5.7.4 Fault level (short-circuit level) – weak grids	171
	5.7.5 Thévenin equivalent circuit	171
5.8	Time Varying and Dynamic Simulations	172
5.9	Reliability Analysis	173
	References	173
6	Renewable Energy Generation in Power Systems	175
6.1	Distributed Generation	175
	6.1.1 Introduction	175
	6.1.2 Point of common coupling (PCC)	176
	6.1.3 Connection voltage	176
6.2	Voltage Effects	177
	6.2.1 Steady state voltage rise	177
	6.2.2 Automatic voltage control – tap changers	178
	6.2.3 Active and reactive power from renewable energy generators	179
	6.2.4 Example load flow	180

6.3	Thermal Limits	183
	6.3.1 Overhead lines and cables	183
	6.3.2 Transformers	184
6.4	Other Embedded Generation Issues	184
	6.4.1 Flicker, voltage steps and dips	184
	6.4.2 Harmonics/distortion	185
	6.4.3 Phase voltage imbalance	186
	6.4.4 Power quality	186
	6.4.5 Network reinforcement	187
	6.4.6 Network losses	187
	6.4.7 Fault level increase	187
6.5	Islanding	188
	6.5.1 Introduction	188
	6.5.2 Loss-of-mains protection for rotating machines	189
	6.5.3 Loss-of-mains protection for inverters	190
6.6	Fault Ride-through	190
6.7	Generator and Converter Characteristics	192
	References	193
7	Power System Economics and the Electricity Market	195
7.1	Introduction	195
7.2	The Costs of Electricity Generation	195
	7.2.1 Capital and running costs of renewable and conventional generation plant	195
	7.2.2 Total generation costs	197
7.3	Economic Optimization in Power Systems	198
	7.3.1 Variety of generators in a power system	198
	7.3.2 Optimum economic dispatch	200
	7.3.3 Equal incremental cost dispatch	201
	7.3.4 OED with several units and generation limits	203
	7.3.5 Costs on a level playing field	204
7.4	External Costs	205
	7.4.1 Introduction	205
	7.4.2 Types of external cost	205
	7.4.3 The Kyoto Agreements	206
	7.4.4 Costing pollution	207
	7.4.5 Pricing pollution	208
7.5	Effects of Embedded Generation	209
	7.5.1 Value of energy at various points of the network	209
	7.5.2 A cash-flow analysis	210
	7.5.3 Value of embedded generation – regional and local issues	212
	7.5.4 Capacity credit	213
	7.5.5 Summary	215
7.6	Support Mechanisms for Renewable Energy	215
	7.6.1 Introduction	215
,	7.6.2 Feed-in law	216
	7.6.3 Quota system	217
	7.6.4 Carbon tax	217
7.7	Electricity Trading	218
	7.7.1 Introduction	218
	7.7.2 The UK electricity supply industry (ESI)	218

	7.7.3 Competitive wholesale markets in other countries	223
	7.7.4 The value of renewable energy in a competitive wholesale market	226
	References	229
8	The Future – Towards a Sustainable Electricity Supply System	231
8.1	Introduction	231
8.2	The Future of Wind Power	231
0.2	8.2.1 Large wind turbines	232
	8.2.2 Offshore wind farm development	232
	8.2.3 Building integrated wind turbines	233
8.3	The Future of Solar Power	238
0.5	8.3.1 PV technology development	240
	8.3.2 Solar thermal electric systems	240
8.4	The Future of Biofuels	241
8.5		242
8.6	The Future of Hydro and Marine Power Distributed Generation and the Shape of Future Networks	243
0.0		
	8.6.1 Distribution network evolution	244
	8.6.2 Active networks	245
	8.6.3 Problems associated with distributed generation	246
07	8.6.4 Options to resolve technical difficulties	246
8.7	Conclusions	249
	References	250
	endix: Basic Electric Power Engineering Concepts	253
A.1	Introduction	253
A.2	Generators and Consumers of Energy	253
	Why AC?	255
A.4	AC Waveforms	255
A.5	Response of Circuit Components to AC	256
	A.5.1 Resistance	257
	A.5.2 Inductance	258
	A.5.3 Capacitance	259
A.6	Phasors	260
A.7	Phasor Addition	261
A.8	Rectangular Notation	263
A.9	Reactance and Impedance	265
	A.9.1 Resistance	265
	A.9.2 Inductance	265
	A.9.3 Capacitance	266
	A.9.4 Impedance	266
A.10	Power in AC Circuits	267
	Reactive Power	269
	Complex Power	269
A.13	Conservation of Active and Reactive Power	271
A.14	Effects of Reactive Power Flow – Power Factor Correction	272
A.15	Three-phase AC	273
A.16	The Thévenin Equivalent Circuit	275
	Reference	276

<u>x</u>

Index