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Abstract

We consider quasi-stationary distributions for one-dimensional diffusions via the

renewal dynamical approach. We show that convergence of the iterative renewal

transform to quasi-stationary distributions is equivalent to a condition on the mo-

ment growth rate of the lifetime, which is at the same time a necessary condition

for the existence of Yaglom limits.

1 Introduction

Let X be an irreducible one-dimensional diffusion on the half-line (0,∞) stopped at 0
which hits 0 with probability one: Px[T0 < ∞] = 1 (x > 0). Here T0 denotes the first
hitting time of 0 and Px denotes the underlying probability measure of X starting from
x. A probability measure ν (0,∞) is called a quasi-stationary distribution of X when the
following holds:

Pν [Xt ∈ dx | T0 > t] = ν(dx) (t > 0), (1.1)

and ν is called a Yaglom limit of a probability measure µ on (0,∞) when

µt(dx) := Pµ[Xt ∈ dx | T0 > t] −−−→
t→∞

ν(dx). (1.2)

Here and hereafter all the convergence of probability distributions is in the sense of the
weak convergence. For a probability measure µ on (0,∞), we introduce the renewal
transform of µ by

Φµ(dx) :=
1

EµT0

∫ ∞

0

Pµ[Xt ∈ dx, T0 > t]dt, (1.3)

which is the 0-potential measure of X normalized to be a probability measure under
the initial distribution µ, and can be defined when EµT0 < ∞. The distribution Φµ
can be interpreted as the limit distribution of the conservative stochastic process which
behaves as X until T0 and as soon as it hits 0, it jumps into a random point in (0,∞)
according to the probability µ and starts afresh (see e.g., Ben-Ari and Pinsky [1]). The
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renewal transform has a close relation to quasi-stationary distributions since every quasi-
stationary distribution ν of X is a fixed point of the renewal transform. Indeed, by the
Markov property, it holds

Φν(dx) :=
1

EνT0

∫ ∞

0

Pν [Xt ∈ dx | T0 > t]Pν [T0 > t]dt (1.4)

=
ν(dx)

EνT0

∫ ∞

0

Pν [T0 > t]dt = ν(dx). (1.5)

This fact leads us to study Yaglom limits through the iterative renewal transform.

For some diffusions, it is known that there exist infinitely many quasi-stationary dis-
tributions, and in the case, the set of quasi-stationary distributions is totally ordered by
a usual stochastic order (see Proposition 2.5 for the precise description). The minimum
element is called the minimal quasi-stationary distribution.

Our main objective in the present paper is to investigate the convergence of the iterative
renewal transform to non-minimal quasi-stationary distributions. The reason is that as
we will see in Theorem 1.3, for a probability measures µ and ν the convergence of the
iterative renewal transform

Φnµ −−−→
n→∞

ν (1.6)

is a necessary condition for the convergence (1.2), and there have been many detailed
studies on the convergence (1.2) to the minimal quasi-stationary distribution. Thus, we
focus on the convergence to non-minimal quasi-stationary distributions. In contrast to
the minimal case, there are few studies on the convergence (1.2) to non-minimal quasi-
stationary distributions. We review the previous studies in more detail in Section 1.2.

1.1 Main results

To state our main results, we prepare some notation. For a subset S of R, we denote the
set of probability measures on S by P(S) or PS. Let us fix an irreducible d

dm
d
ds
-diffusion

X on (0,∞) stopped at 0 with Px[T0 <∞] = 1 for every x > 0. Define

PΦ := {µ ∈ P(0,∞) | EµT
n
0 <∞ (n ≥ 1)}, (1.7)

where Pµ :=
∫
Pxµ(dx). We will see in Proposition 3.1 that the renewal transform Φ is

well-defined as the map on PΦ; Φ: PΦ → PΦ. We denote the normalized α-th moment of
T0 by mµ

α and a density function of Φnµ w.r.t. dm by fµ
n :

mµ
α :=

1

α!
EµT

α
0 (α ∈ [1,∞)), fµ

n (x)dm(x) = Φnµ(dx), (1.8)

where α! = Γ(α + 1) for the Gamma function Γ. The existence of the density fn
µ will be

proven in Proposition 3.2. Let λ0 ≥ 0 be the bottom of the L2-spectrum of the generator
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− d
dm

d
ds

with Dirichlet boundary condition at 0 and Neumann boundary condition at ∞ if
the boundary ∞ is regular (see Section 2.1 for the boundary classification).

One of our main results is to give a sufficient condition for the convergence (1.6). Note
that a necessary and sufficient condition for existence of infinitely many quasi-stationary
distributions and the positivity of λ0 will be given in Theorem 2.3.

Theorem 1.1. Let µ ∈ PΦ. Assume that there exist infinitely many quasi-stationary
distributions, and the following holds:

lim
n→∞

mµ
n−1

mµ
n

= λ ∈ (0, λ0]. (1.9)

Then we have

lim
n→∞

fµ
n (x) = λψ−λ(x) (x > 0), (1.10)

Φnµ −−−→
n→∞

νλ, (1.11)

where a function u = ψλ (λ ∈ C) is the unique solution of the following equation:

d

dm

d+

ds
u(x) = λu(x), lim

x→+0
u(x) = 0, lim

x→+0

d+

ds
u(x) = 1 (x ∈ (0,∞)), (1.12)

and the probability measure νλ (λ ∈ (0, λ0]) is a quasi-stationary distribution defined by

νλ(dx) := λψ−λ(x)dm(x). (1.13)

Remark 1.2. The function ψλ always exists since the process X is irreducible and the
boundary 0 is regular or exit.

The other main result is to give a hierarchical structure of necessary conditions for the
convergence (1.2).

Theorem 1.3. Let µ ∈ PΦ. Assume that there exist infinitely many quasi-stationary
distributions. Let us consider the following conditions for λ ∈ (0, λ0]:

(i) µt −−−→
t→∞

νλ.

(ii) limt→∞ Pµ[T0 > t + s]/Pµ[T0 > t] = e−λs (s > 0).

(iii) limn→∞mµ
n−1/m

µ
n = λ.

(iv) Φnµ −−−→
n→∞

νλ.

Then the following implications hold: (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇔ (iv).
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1.2 Previous studies

The renewal dynamical approach was intensively investigated in Ferrari, Kesten, Mart́ınez
and Picco [6] to show the existence of the minimal quasi-stationary distribution for Markov
chains on N. Under mild assumptions, their results ensure for wide range of Markov chains
existence of the minimal quasi-stationary distribution. The present paper is strongly
motivated by their study though we need a different approach since their arguments focus
on the minimal quasi-stationary distribution. We also mention Takeda [20] as a general
study on existence of the minimal quasi-stationary distribution for symmetric Markov
process with the tightness property.

Yaglom limits of one-dimensional diffusions have long been studied. Mandl [16] gave
a first remarkable result on this subject under the assumption of existence of a natu-
ral boundary. He gave a sufficient condition for the convergence to the minimal quasi-
stationary distribution. His result has been extended and strengthened by many authors
e.g., Collet, Mart́ınez and San Mart́ın [4], Hening and Kolb [7], Kolb and Steinsaltz
[12], Mart́ınez and San Mart́ın [17], Littin [14] and Cattiaux, Collet, Lambert, Mart́ınez,
Méléard and San Mart́ın [3]. These results show that under mild assumptions, conver-
gence to the minimal quasi-stationary distribution follows for all compactly supported
initial distributions.

In contrast, there are few studies on Yaglom limits to non-minimal quasi-stationary
distributions. In Mart́ınez, Picco and San Mart́ın [18], they have considered Brownian
motion with negative constant drifts: Xt = Bt − ct (c > 0), where B is a standard
Brownian motion, and they gave a set of initial distributions whose Yaglom limit is a non-
minimal quasi-stationary distribution. In Lladser and San Mart́ın, they studied Ornstein-
Uhlenbeck processes: dXt = dBt − cXtdt (c > 0), and obtained the similar results. In
[21], a general approach for Yaglom limits to non-minimal quasi-stationary distributions
was studied. One of the main results in [21] was to reduce the convergence (1.2) to
the tail behavior of T0 through the first hitting uniqueness. For a set P ⊂ P(0,∞) of
probability measures, we say the first hitting uniqueness holds on P, when the following
map is injective.

P ∋ µ 7−→ Pµ[T0 ∈ dt]. (1.14)

The following theorem gives the reduction under the first hitting uniqueness on

Pexp := {µ ∈ P(0,∞) | Pµ[T0 ∈ dt] = λe−λtdt for some λ > 0}. (1.15)

Theorem 1.4 ([21, Theorem 1.1]). Assume the first hitting uniqueness holds on Pexp and
there exist λ > 0 and ν ∈ P(0,∞) such that Pν [T0 ∈ dt] = λe−λtdt. Then for µ ∈ P(0,∞),
the following are equivalent:

(i) limt→∞ Pµ[T0 > t + s]/Pµ[T0 > t] = e−λs (s > 0).

(ii) Pµt [T0 ∈ ds] −−−→
t→∞

λe−λsds.
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(iii) µt −−−→
t→∞

ν.

Applying this theorem, in [21, Theorem 1.2], for Kummer diffusions with negative
drifts, which are diffusions including the processes treated in [18] and [15], a set of initial
distributions whose Yaglom limit is non-minimal quasi-stationary distributions were given.

Outline of the paper

The remainder of the present paper is organized as follows. In Section 2, we will recall
several known results on one-dimensional diffusions and quasi-stationary distributions. In
Section 3, we will prove Theorem 1.1 and Theorem 1.3.
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2 Preliminaries

In this section, we recall several known results on one-dimensional diffusions and their
quasi-stationary distributions.

2.1 Feller’s canonical form of second-order differential operators

Let (X,Px)x∈I be a one-dimensional diffusion on I = [0, ℓ) or [0, ℓ] (0 < ℓ ≤ ∞), that is,
the process X is a time-homogeneous strong Markov process on I which has a continuous
path up to its lifetime. Throughout the present paper, we always assume an irreducibility
in the following sense:

Px[Ty <∞] > 0 (x ∈ I \ {0}, y ∈ [0, ℓ)), (2.1)

where Ty denotes the first hitting time of y. In addition, we assume X certainly hits 0
and the point 0 is a trap;

Px[T0 <∞] = 1 (x ∈ I \ {0}), Xt = 0 for t ≥ T0. (2.2)
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Let us recall Feller’s canonical form of the generator (see e.g., Itô [8, p.139]). There
exist a Radon measure m on I \{0} with full support and a strictly increasing continuous
function s on (0, ℓ), and the local generator L on (0, ℓ) is represented by

L =
d

dm

d

ds
. (2.3)

The measure m is called the speed measure and s is called the scale function of X . We
say X is a d

dm
d
ds
-diffusion. For a given second-order ordinary differential operator

G = a(x)
d2

dx2
+ b(x)

d

dx
(x ∈ (0, ℓ)) (2.4)

with a(x) > 0 on (0, ℓ), we can give, for example, its speed measure and its scale function
by

dm(x) :=
1

a(x)
exp

(∫ x

c

b(y)

a(y)
dy

)
dx, ds(x) := exp

(
−

∫ x

c

b(y)

a(y)
dy

)
dx (2.5)

for an arbitrary taken c ∈ (0, ℓ).

By using the speed measure m and the scale function s, the boundaries of I are clas-
sified. Let ∆ = 0 or ℓ and take c ∈ (0, ℓ) and set

I(∆) =

∫ c

∆

ds(x)

∫ x

∆

dm(y), J(c) =

∫ c

∆

dm(x)

∫ x

∆

ds(y). (2.6)

The boundary ∆ is classified as follows:

∆ is





regular when I(∆) <∞, J(∆) <∞.

exit when I(∆) = ∞, J(∆) <∞.

entrance when I(∆) <∞, J(∆) = ∞.

natural when I(∆) = ∞, J(∆) = ∞.

(2.7)

From (2.1), the boundary 0 is always regular or exit in our setting.

2.2 Quasi-stationary distributions

We recall a necessary and sufficient condition for existence of infinitely many quasi-
stationary distributions.

Define a function u = ψλ (λ ∈ C) as the unique solution of the following equation:

d

dm

d+

ds
u(x) = λu(x), lim

x→+0
u(x) = 0, lim

x→+0

d+

ds
u(x) = 1 (x ∈ (0, ℓ)), (2.8)

where d+

ds
denotes the right-differential operator by the scale function s. Note that from

the assumption that the boundary 0 is regular or exit, the function ψλ always exists. The
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operator L = − d
dm

d
ds

defines a non-negative definite self-adjoint operator on L2(I, dm) :=
{f : I → R |

∫
I
|f |2dm < ∞}. Here we assume the Dirichlet boundary condition at 0

and the Neumann boundary condition at ℓ if the boundary ℓ is regular. We denote the
infimum of the spectrum of L by λ0 ≥ 0.

When the boundary ℓ is not natural, there exists a unique quasi-stationary distribution.
Note that from the assumption (2.2), the boundary ℓ cannot be exit.

Theorem 2.1 (see e.g., [14, Lemma 2.2, Theorem 4.1]). Assume the boundary ℓ is regular
or entrance. Then λ0 > 0 and the function ψ−λ0

is strictly positive and integrable w.r.t.
dm and, there is a unique quasi-stationary distribution

νλ0
(dx) := λψ−λ0

(x)dm(x) (2.9)

with Pνλ0
[T0 ∈ dt] = λ0e

−λ0tdt.

Recall the following property of the function ψ−λ (λ > 0).

Proposition 2.2 ([5, Lemma 6.7, Lemma 6.18]). Suppose λ0 > 0, the boundary ℓ is
natural and s(ℓ) = ∞. Then for λ > 0 the following are equivalent:

(i) λ ∈ (0, λ0].

(ii) The function ψ−λ is non-negative on [0, ℓ).

(iii) The function ψ−λ is strictly increasing on [0, ℓ).

(iv) The function ψ−λ is strictly positive and integrable on (0, ℓ).

Moreover, if one of these conditions holds, it holds

1 = λ

∫ ℓ

0

ψ−λ(x)dm(x). (2.10)

The following is a necessary and sufficient condition for existence of infinitely many
quasi-stationary distributions.

Theorem 2.3. Suppose the boundary ℓ is natural. Then infinitely many quasi-stationary
distributions exist if and only if

λ0 > 0 and s(ℓ) = ∞. (2.11)

The condition (2.11) is equivalent to

m(c, ℓ) <∞ for some c ∈ (0, ℓ) and lim sup
x→ℓ

s(x)m(x, ℓ) <∞. (2.12)

In this case, the set of quasi-stationary distributions is {νλ}λ∈(0,λ0] for

νλ(dx) := λψ−λ(x)dm(x), (2.13)

and it holds Pνλ [T0 ∈ dt] = λe−λtdt.
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Though Theorem 2.3 can be shown by a combination of known results, we prove for
completeness.

Proof. We may assume without loss of generality that s(0) = 0. The equivalence between
(2.11) and (2.12) follows from [13, Theorem 3 (ii), Appendix I]. The fact that νλ (λ ∈
(0, λ0]) is a quasi-stationary distribution can be shown by the same argument in [5, Lemma
6.18]. Thus, we only show that every quasi-stationary distribution is given by νλ for some
λ ∈ (0, λ0].

Let µ be a quasi-stationary distribution with

Pµ[T0 > t] = e−λt (λ > 0). (2.14)

Recalling that one-dimensional diffusions have a transition density w.r.t. its speed mea-
sure, that is, there exists a jointly-continuous function p(t, x, y) on (0,∞) × (0, ℓ)2 such
that

Px[Xt ∈ dx, T0 > t] = p(t, x, y)dm(y) (2.15)

(see e.g., McKean [9]). Since it holds

e−λtµ(A) = Pµ[Xt ∈ A, T0 > t] =

∫ ℓ

0

1A(y)dm(y)

∫ ℓ

0

p(t, x, y)µ(dx), (2.16)

the probability measure µ is absolutely continuous w.r.t. dm, we denote the density by ρ.
Applying the well-known formula for non-negative measurable function f :

Ex

[∫ T0

0

f(Xt)1{T0 > t}dt

]
=

∫ ℓ

0

(s(x) ∧ s(y))f(y)dm(y) (2.17)

(see e.g., [19, Theorem 49.1] and [10, Lemma 23.10]), we have for a measurable set A ⊂
(0, ℓ)

Φµ(A) = λ

∫ ℓ

0

ρ(x)dm(x)

∫ ℓ

0

(s(x) ∧ s(y))1A(y)dm(y) (2.18)

= λ

∫ ℓ

0

(∫ x

0

ds(y)

∫ ℓ

y

ρ(z)dm(z)

)
1A(x)dm(x). (2.19)

Since it holds Φµ = µ from (1.5), we obtain

ρ(x) = λ

∫ x

0

ds(y)

∫ ℓ

y

ρ(z)dm(z) dm-a.e. (2.20)

Since
∫ ℓ

0
ρ(x)dm(x) = 1, the function u = ρ is the solution of the following equation

u(x) = λs(x)− λ

∫ x

0

ds(y)

∫ y

0

u(z)dm(z), (2.21)

and hence ρ(x) = λψ−λ(x) dm-a.e. From Proposition 2.2, it holds λ ∈ (0, λ0] and therefore
µ = νλ.
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From the proof of Theorem 2.3, we can see the set of quasi-stationary distributions
coincides with the set of fixed points of Φ.

Corollary 2.4. Assume there exists infinitely many quasi-stationary distributions. For
µ ∈ PΦ, Φµ = µ if and only if µ = νλ for some λ ∈ (0, λ0].

The set {νλ}λ∈(0,λ0] is totally ordered by a usual stochastic order, and νλ0
is the minimal

element. This is why we call νλ0
the minimal quasi-stationary distribution.

Proposition 2.5 ([21, Proposition 2.3]). Suppose there exist infinitely many quasi-stationary
distributions {νλ}λ∈(0,λ0]. Then it holds

νλ(x, ℓ) ≤ νλ′(x, ℓ) (x ∈ (0, ℓ), 0 < λ′ ≤ λ ≤ λ0). (2.22)

3 Proof of the main results

For every d
dm̃

d
ds
-diffusion X on (0, ℓ) (0 < ℓ ≤ ∞) satisfying (2.11), the diffusion s(X) is

d
dm

d
dx
-diffusion on (0,∞) for dm(x) = dm̃(s−1(x)). Thus, we may assume without loss of

generality that the diffusion is under the natural scale: s(x) = x. In this section, we only
consider such natural scale diffusions on (0,∞).

At first, we check that Φ preserves PΦ.

Proposition 3.1. Let µ ∈ PΦ. For α ∈ [1,∞), we have

EΦµT
α
0 =

EµT
α+1
0

(α + 1)EµT0
. (3.1)

More generally, we have for 0 ≤ k ≤ m

EΦmµT
α
0 =

(
α+ k

α

)−1

·
EΦm−kµT

α+k
0

EΦm−kµT
k
0

. (3.2)

Proof. Since (3.2) follows from (3.1) by induction, we only prove (3.1). From the Markov
property, it holds

EΦµT
α
0 = α

∫ ∞

0

tα−1
PΦµ[T0 > t]dt (3.3)

=
α

EµT0

∫ ∞

0

tα−1dt

∫ ∞

0

ds

∫ ∞

0

Px[T0 > t]Pµ[Xs ∈ dx] (3.4)

=
α

EµT0

∫ ∞

0

tα−1dt

∫ ∞

0

Pµ[T0 > t+ s]ds (3.5)

=
1

EµT0

∫ ∞

0

sαPµ[T0 > s]ds (3.6)

=
EµT

α+1
0

(α + 1)EµT0
. (3.7)
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For the proof of Theorem 1.1, we need some preparation. For a function g : (0,∞) → R

with

∫ R

0

dy

∫ ∞

y

|g(z)|dm(z) <∞ for every R > 0, (3.8)

define an integral operator K by

Kg(x) :=

∫ x

0

dy

∫ ∞

y

g(z)dm(z) =

∫ ∞

0

(x ∧ y)g(y)dm(y) (x > 0). (3.9)

Let us recall the formula (2.17). Then for a function g with (3.8), it holds

Eµ

∫ T0

0

g(Xt)dt =

∫ ∞

0

µ(dx)

∫ ∞

0

(x ∧ y)g(y)dm(y) =

∫ ∞

0

Kg(x)µ(dx). (3.10)

Applying (3.10), we obtain the density function of Φnµ.

Proposition 3.2. For µ ∈ PΦ and n ≥ 1, there exists a density fµ
n of Φnµ w.r.t. dm;

Φnµ(dx) = fµ
n (x)dm(x). It is given by

fµ
n (x) =

1

mµ
n
Kn−1Gµ(x) dm-a.e., (3.11)

where Gµ(x) :=
∫ x

0
µ(y,∞)dy and we denote Kℓg := K(Kℓ−1g) (ℓ ≥ 1).

Proof. From (3.10), we have for a bounded measurable function g with compact support
on (0,∞),

∫ ∞

0

g(y)Φµ(dx) =
1

EµT0

∫ ∞

0

µ(dx)

∫ ∞

0

(x ∧ y)g(y)dm(y) (3.12)

=
1

EµT0

∫ ∞

0

Gµ(y)g(y)dm(y). (3.13)

Since it holds that

GΦµ(x) =

∫ x

0

Φµ(y,∞)dy (3.14)

=
1

EµT0

∫ x

0

dy

∫ ∞

y

Gµ(z)dm(z) (3.15)

=
1

EµT0
KGµ(x) (3.16)
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it follows from Proposition 3.1 and the (formal) self-adjointness of K under dm that
∫ ∞

0

g(y)Φnµ(dy) (3.17)

=
1

EΦn−1µT0

∫ ∞

0

GΦn−1µ(y)g(y)dm(y) (3.18)

=
1

(EΦn−1µT0)(EΦn−2µT0)

∫ ∞

0

KGΦn−2µ(y)g(y)dm(y) (3.19)

=
1

(EΦn−1µT0)(EΦn−2µT0)

∫ ∞

0

GΦn−2µ(y)Kg(y)dm(y) (3.20)

= · · · (3.21)

=
1

(EΦn−1µT0)(EΦn−2µT0) · · · (EΦµT0)(EµT0)

∫ ∞

0

Kn−1Gµ(y)g(y)dm(y) (3.22)

=
n!

EµT
n
0

∫ ∞

0

Kn−1Gµ(y)g(y)dm(y). (3.23)

The proof is complete.

Now we prove Theorem 1.1.

Proof of Theorem 1.1. For a function g with
∫ R

0

dy

∫ y

0

|g(z)|dm(z) <∞ (3.24)

for every R > 0, define an integral operator I by

Ig(x) :=

∫ x

0

dy

∫ y

0

g(z)dm(z) (x > 0). (3.25)

Let g ∈ L1((0,∞), dm). We have

Kg(x) =

∫ x

0

dy

∫ ∞

y

g(z)dm(z) (3.26)

= x

∫ ∞

0

g(z)dm(z)− Ig(x). (3.27)

Then it follows that

Kn−1Gµ(x) = x

∫ ∞

0

Kn−2Gµ(y)dm(y)− IKn−2Gµ(x) (3.28)

= mµ
n−1x− IKn−2Gµ(x) (3.29)

= mµ
n−1x− I(mµ

n−2x− IKn−3Gµ(x)) (3.30)

= mµ
n−1x−mµ

n−2Ix+ I2Kn−3Gµ(x) (3.31)

= · · · (3.32)

=

n−1∑

k=1

(−1)k−1mµ
n−kI

k−1x+ (−1)n−1In−1Gµ(x). (3.33)

11



Then we have

fµ
n (x) =

n−1∑

k=1

(−1)k−1m
µ
n−k

mµ
n
Ik−1x+ (−1)n−1 1

mµ
n
In−1Gµ(x). (3.34)

From (1.9) we have M := supn≥0
mµ

n−1

mµ
n

< ∞, where we denote mµ
0 = 1. Then it follows

that

n−1∑

k=1

mµ
n−k

mµ
n
Ik−1x ≤

∞∑

n=1

MnIn−1x =MψM (x) <∞. (3.35)

Next we show the second term in the RHS of (3.34) vanishes as n→ ∞. It is not difficult
to check that

InGµ(x) ≤
1

n!
x

(∫ x

0

ydm(y)

)n

, (3.36)

and since mµ
n =

∏
1≤i≤n(m

µ
i /m

µ
i−1) ≥M−n, we obtain for every R > 0

lim
n→∞

sup
x∈[0,R]

1

mµ
n
In−1|Gµ(x)| = 0. (3.37)

Then from (3.34) and the dominated convergence theorem, we have

lim
n→∞

fµ
n (x) = λψ−λ(x). (3.38)

From (3.35) and (3.36), we have

fµ
n (x) ≤MψM (x) +

Mn

(n− 1)!
x

(∫ x

0

ydm(y)

)n−1

≤MψM (x) +MxeM
∫ x
0
ydm(y) (3.39)

and, it is obvious that

∫ R

0

(MψM (x) +MxeM
∫ x
0
ydm(y))dm(x) <∞ (3.40)

for every R > 0. Hence, from the dominated convergence theorem, it follows that

Φnµ −−−→
n→∞

νλ. (3.41)

For the proof of Theorem 1.3, we prepare a continuity result for the transform Φ.

Proposition 3.3. Let µn, µ ∈ P(0,∞) such that EµnT0, EµT0 <∞. Suppose µn −−−→
n→∞

µ.

Then the following are equivalent:

(i) EµnT0 −−−→
n→∞

EµT0.
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(ii) Φµn −−−→
n→∞

Φµ.

Proof. Let f be a continuous function with a compact support on (0,∞). From (2.17) it
holds

(EµnT0)Φµn(f) =

∫ ∞

0

Pµn [f(Xt)1{T0 > t}]dt (3.42)

=

∫ ∞

0

µn(dx)

∫ ∞

0

f(y)(x ∧ y)dm(y). (3.43)

Since the function f is compactly supported, the functionKf(x) :=
∫∞

0
f(y)(x∧y)dm(y) (x >

0) is bounded continuous. The rest of the proof is obvious.

We prove Theorem 1.3.

Proof of Theorem 1.3. The implication (i) ⇒ (ii) is obvious. We first show (ii) ⇒ (iii).
Note that when we set g(t) := Pµ[T0 > log t], the condition (ii) is equivalent to

lim
t→∞

g(st)

g(t)
= s−λ (s > 0), (3.44)

the regular variation of the function g at ∞ of order −λ. Then from Karamata’s theorem
[2, Proposition 1.5.10, Theorem 1.6.1], the condition (ii) is equivalent to the following:

h(t) :=
1

Pµ[T0 > t]

∫ ∞

t

Pµ[T0 > s]ds
t→∞
−−−→

1

λ
. (3.45)

From Fubini’s theorem, it holds for n ≥ 2

mµ
n =

1

(n− 2)!

∫ ∞

0

tn−2
Pµ[T0 > t]h(t)dt. (3.46)

For R > 0 it is not difficult to see
∫ R

0
tn−2Pµ[T0 > t]h(t)dt∫∞

R
tn−2Pµ[T0 > t]h(t)dt

n→∞
−−−→ 0. (3.47)

Thus, from (3.45) it follows

lim
n→∞

mµ
n

mµ
n−1

= lim
n→∞

∫∞

0
tn−2Pµ[T0 > t]h(t)dt∫∞

0
tn−2Pµ[T0 > t]dt

=
1

λ
. (3.48)

Since we have already shown (iii) ⇒ (iv) in Theorem 1.1, we finally show (iv) ⇒ (iii).
Set µn := Φnµ. Since it holds µn −−−→

n→∞
νλ and Φµn = µn+1 −−−→

n→∞
Φνλ = νλ, we have from

Proposition 3.3 and Proposition 3.1

mµ
n+1

mµ
n

= EµnT0 −−−→
n→∞

1

λ
. (3.49)

13



Remark 3.4. The condition (iii) in Theorem 1.3 implies

lim
t→∞

1

t
log Pµ[T0 > t] = −λ. (3.50)

Indeed, under the condition (iii), we see from Proposition 3.1 that limn→∞mΦnµ
j = j!/λj

for j ≥ 1, which implies PΦnµ[T0 ∈ dt] −−−→
n→∞

λe−λtdt and mµ
α/m

µ
α+1 −−−→

α→∞
λ. Then it

follows

1

α
logmµ

α =
1

α

∑

0≤j<⌊α⌋

log(mµ
α−j/m

µ
α−j−1) −−−→

α→∞
− log λ. (3.51)

Then applying a Tauberian theorem of exponential type [11, Theorem 1] to the function

F (α) :=

∫ ∞

0

eα log(t/(α!)1/α)
Pµ[T0 ∈ dt] (= mµ

α), (3.52)

we see (3.50) and (3.51) are equivalent.
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2000. Itô calculus, Reprint of the second (1994) edition.

[20] M. Takeda. Existence and uniqueness of quasi-stationary distributions for symmetric
Markov processes with tightness property. J. Theoret. Probab., 32(4):2006–2019,
2019.

[21] K. Yamato. A unifying approach to non-minimal quasi-stationary distributions for
one-dimensional diffusions. J. Appl. Probab., 59(4), 2022. to appear.

15


	1 Introduction
	1.1 Main results
	1.2 Previous studies

	2 Preliminaries
	2.1 Feller's canonical form of second-order differential operators
	2.2 Quasi-stationary distributions

	3 Proof of the main results

