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Abstract. We investigate a stochastic signal described by a renewal process for a system
with N states. Each state has an associated joint distribution for the signal’s intensity and
its holding time. We calculate multi-point distributions, correlation functions, and the power-
spectrum of the signal. Focusing on fat tailed power-law distributed sojourn times in the states
of the system, we investigate 1/f noise in this widely applicable model. When the mean waiting
time is infinite, the averaged sample spectrum depends both on the age of the process, i.e. the
time elapsing from start of the process and the start of observation, and on the total time of
observation. Fluctuations of the periodogram estimator of the power-spectrum are investigated
for aged systems and are found to be determined by the distribution of the number of renewals
in the observation time window. These reduce to the Mittag-Leffler distribution when the start
of observation is also the start of the process. When the average waiting time is finite we find
a time independent Wienerian spectrum computed from the stationary correlation function of
the signal.
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1. Introduction

Renewal theory is the branch of probability theory that generalizes Poisson processes for arbitrary hold-
ing times [16]. A far less general class of processes, called fractal renewal processes [27], was extensively
studied by mathematicians [17,28], and the statistical physical community [18,21,42,49]. An early appli-
cation is the work of Berger and Mandelbrot on communication networks [9]. Here fat tailed probability
density functions of the sojourn times are described by ¥ (t) ~ t~(1+®) When 0 < a < 1 the average
waiting/holding/sojourn time is infinite. This leads to anomalous diffusion [36], aging [4,38], 1/f noise
[44] and weak ergodicity breaking [8,12,30], and hence these type of processes have attracted large at-
tention. A few examples are renewal processes describing blinking quantum dots [23,47], diffusion of
tracer particles in disordered systems [13] like the cell environment [5,35], chaotic systems [2,25], diffu-
sion of cold atoms in optical lattices [3], line shapes in complex systems [45], brain activity and music
[10] experiments on Kardar Parisi Zhang interfaces [48], and social networks [37]. Mathematically the
limit theorems of continuous time random walks and subordination have attracted considerable attention
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[32-34]. Indeed maybe the best well known example of a fractal renewal process is the continuous time
random walk model where the particle’s position z(t) is described by random jump events followed by
power law distributed trapping times in which the particle is immobile, leading to sub-diffusion [36]. In
mathematical modeling a state function is changing its value on dots on the time axis, when the process
is renewed. The state function can model the position of a particle in a medium with deep traps or the
intensity of light of a blinking quantum dot, which switches between a dark and bright state. The number
of states can vary significantly among different models. Further the value of the state function, can be
random itself. For example the intensity of the bright state of a blinking dot fluctuates or a trapped
particle can jiggle around its averaged position before making large jumps which defines a renewal event
[22]. While certain aspects of this general problem where treated previously, here we provide a detailed
investigation of renewal theory for a system with internal states (see below). Our goal is to expose the
general mathematical aspects of this process, but we also investigate in detail one application which is the
power spectrum of a fractal time renewal processes. Here the internal fluctuations of the state function
clearly contribute to the noise level, which can be detected by power-spectrum analysis.

More specifically, as shown both theoretically and experimentally the 1/f power spectrum of a blinking
quantum dot ages [31,44]. Namely the power spectrum estimated with the periodogram method depends
on the measurement time. A non-Wienerian spectral theory was recently introduced to describe a general
class of such non-stationary processes [15,26]. The power spectrum of blinking quantum dots was the
topic of our recent publication [40] were we focused on two aspects of the problem. The first was the
solution of the well known low frequency cut-off paradox [29,43], namely the non integrability of 1/f?
power spectrum when g > 1 which paradoxically indicated non-normalized power spectrum and infinite
energy of the process. The second aspect of our work was to characterize the fluctuations of the spectrum
and its aging. One of the goals of this paper is to provide an extensive analysis of the power spectrum for
a general renewal setting. Thus we go beyond the two state models we considered previously (the latter
is reasonable for quantum dots but not for other systems). The diverging sojourn times in on and off
states, implies that the sample spectrum is random, and we here quantify this effect in detail. We also
consider aged processes, namely the case where the start of observation does not coincide with the start
of the process, showing how in scale free dynamics the power spectrum crucially depends on the age.

The navigation map of this paper is as follows. We first introduce the model and definitions followed by
the investigation of the multi-point distribution function of the process (Sec. II and III). Aged systems,
correlation functions for both aged and non-aged processes follow (Sec. IV-VI). Stationary behavior,
when the average sojourn time is finite, is discussed in Sec. VII. The remaining sections (VII-X) deal
with the Wienerian a > 1 and non-Wienerian o < 1 power spectrums, both for the aged and non-aged
processes, quantifying the fluctuations of the spectrum in detail. Sec. X is a summary.

2. The Model and Notations
2.1. The Model

In this section we describe the stochastic model used in this paper. We look at a stochastic signal: at
time ¢ the signal has the intensity X (¢). Our process starts at the time 7' = 0. For convenience we define
X(t)=0fort<0.

The process itself consists of two parts which are interweaved. One part describes directly the observed
intensity, the other part describes the internal state of the system which cannot be observed directly.
First, we will describe the internal state space. In this paper we will only consider the case of finitely
many internal states. The number of states is denoted by N. The dynamics on the internal states is
described by a Markov chain. Formally, it is given by a (left) stochastic matrix M of dimension N x N.
For convenience, we adopt the Bra-Ket notation: the bras (---| denote row vectors and the kets |---)
denote column vectors. The term (i| denotes the row vector having a 1 at the ith position and 0 elsewhere.
Correspondingly, |7) is the column vector with 1 at the jth position and 0 elsewhere. Then, the transition
probability from state i to state j is given by (i|M|j). We assume that M is ergodic, i.e., we have a
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F1GURE 1. Exemplary illustration of a process

unique equilibrium distribution (eqy;| with (eqy;|M = {(eqy|. The corresponding right eigenvector |X)
consists of 1s at every position |X) = Zil |i) and we have M|X) = |X). We still need to fix the initial
conditions. For this, we provide the probability distribution of the states at the start of the process which
we denote (init|. The probability for the first epoch to be in state ¢ is (init|é).

The internal state determines the current behavior of the process. Each internal state m has an
associated distribution for intensity and waiting time which is denoted by ¢,,(x,t). The process is divided
into epochs: in each epoch j the system is in one internal state m; (1 < m; < N). An intensity x; and a
waiting time 7; is drawn according to the probability density ¢, (z,t). They are drawn independently
from the intensity and waiting times in the other epochs. If we are at the beginning of the jth epoch at
a time T, the process X (¢) takes the value y; for a time interval starting at 7 of length 7;. In other
words X (t) = x; for T; <t < Tj+71;. At time T}, = T + 7, starts the next epoch j+ 1. For this epoch
the internal state m; is advanced to a new state m;y1 according to the Markov chain M. This means,
the state m;i is drawn according to the probability distribution (m;|M. The process is illustrated in
Figure 1.

We have defined the process such that the first epoch starts at 77 = 0. The initial condition is the
distribution of the initial states (init| for the first epoch. The ensemble average with respect to this
distribution is denoted by (-)(init|- Sometimes the initial distribution is clear from context (or does not
play any role, as for some asymptotic properties), we will then drop the index. We additionally introduce
the stochastic process N (t) which denotes the internal state the process is in at time ¢.

In the following, we introduce some notation which is useful for the formal treatment of this process.
The Laplace transform in time of the distributions ¢;(z,t) is

Gz, \) = /Ooo dt exp(=At) ¢ (2, 1). (2.1)

The formula is valid for A € C with X\ > 0. The connection to the Fourier transform can be obtained
via

/ T exp(iwt)dm (2, 1) = Gy (a2, —iw) (2.2)

— 00
where we set ¢, (x,t) = 0 for ¢t < 0 as we have no negative waiting times. We group these distributions
in diagonal matrices

®(x,t) = diag(py(x, 1), ..., on (2, 1), D(x,\) = diag(d1(z, ), ..., dn (2, ). (2.3)
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We assume that all moments in z exists (n =0,1,2,...)

/ dt/ dzz"¢;(x,t) < oo (2.4)
0 —o0
and we define
oo
U, (t) = / da 2" (x,t) (2.5)

B (\) = [ T drand(n, \) /0 " dt exp(— A (1), (2.6)

Because of Eq. (2.4), the entries of ¥, (0) are finite. The elements of Wy (t) are the marginal distributions
for the waiting times. Averaging over the internal states with the equilibrium distribution leads to the
definitions

Oz, 1) = (eqy|D(x, )| 2) (2.7)
¥, (1) = (eay | (t)|X)
U (N) = {eay| & (V)| 2). (2.9)

2.2. Asymptotic Behavior

The behavior of the long waiting times is described by the small A behavior of @0(/\). We assume that
we can expand (¥y(0) =I)
!po()\) =I-\"Ky+ 0()\()’) (2.10)

with 0 < a < 1 and o(A%) being the Landau symbol. Kj is a diagonal matrix with non-negative entries.
The case @ = 1 appears when all waiting times have a finite mean. In the case of 0 < o < 1 at least
one of the waiting times has infinite mean and the probability density for large waiting times behaves
asymptotically as 1/t1+%. It is not necessary that all diagonal elements of K are larger than zero, i.e.,
that all waiting time distribution individually would result in the same «. We only need

T = (eqy|Ko|X) > 0. (2.11)
Therefore the averaged waiting time @0()\) has the expansion

Yo(A) = (eay|P(V)] ) =1 — (FA)* + o(A). (2.12)
Some time, we additionally assume, that we also have an expansion for the moments
T () = ¥, (0) — \*K,, 4+ 0(\?) (2.13)

where — in contrast to the n = 0 case — we also allow K,, = 0. This assumption is not unreasonable, we
will later show that the asymptotic moments of X (¢) are (see Eq. (C.5))

P = lim (X7(1)) it

<e M| En E>
— <63M||K0 ‘|2> . (2.14)

Physically, this expansion is reasonable as it simply requires that the moments (X" (¢)) stay finite for
large t.
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—1
A helpful way to interpret some results, is the use of the distribution ¢ t(a:) which describe the long-time
behavior of ¢(xz,t). We condition the distribution of  on ¢t > T and then let T — oc:

3"(@) = tim —Ir LoD (215)
T—oo [Xdt [7 dxd(w,t)
Its moments are 0o
Uy = / dra"3" (z) (2.16)
and its variance o
of =0y — (). (217)

To illustrate our findings, we will employ three different example models:

1. The single state model: it is a simple model without internal states. Formally, we will have N = 1
internal state and the Markov matrix is M = (1) Therefore, we can drop the matrix notation
completely. The probability distribution for the intensity /waiting time is denoted by ¢*"8¢(x, ) with
the self-explanatory notations ¢ "°(t) and ¢7°(\). We assume the following expansion of the
Laplace transform of the waiting time

Jemele(\) = 1 — 7%, 1A% + 0(A%). (2.18)

single

Remark: any process with a decoupling Markov chain, i.e., the next internal state is drawn from
the equilibrium distribution independently of the current state (formally M = |X)(eqy|) with ini-
tial distribution being the equilibrium one (init| = (eqy|, is equivalent to this process by letting

¢single (.’K, t) = 5(1'7 t)'
2. The alternating model: it has two states named + and — between which it switches alternatingly. The
Markov matrix for this model is
a 01
M = (1 0) (2.19)

which has the equilibrium distribution
(el = (3 3). 220)
We assume that the intensity of the process is Iy (resp. I_) in the + state (resp. — state), i.e.,
X({t)y=1I,orI_. (2.21)

The waiting time distribution is the same for both states and is denoted ¥**(¢). Taking the first state
to be the + state gives the distribution matrix

5 (o 1) = (5(x - I_E)»L/}alt(t) . I?)wa“(t)> . (2.22)

We assume that the Laplace transforms of the waiting time distribution has the following small A
behavior X
P (N) =1 — 79N> 4 0(A\Y) (2.23)

with 0 < a < 1. As a concrete example: they could be a one-sided Lévy stable distribution (1&3”()\) =
exp(—7*A*)). Important is that they have the same long time behavior, i.e., lead to the same o.
The Laplace transform of @2!*(z,t) is then

st vy (0 = L)t () 0
P (2, \) = ( +0 5 I)W“(M) . (2.24)

195



M. Niemann, E. Barkai, H. Kantz Renewal theory for a system with internal states

The moment matrices are then

@th()\) — (I&&alt@) 0 >

0 Iyt
I 0 o (TIY 0 o
- (0+ 1n> - A (T 0 wzn) + 0(A%). (2.25)
Therefore, the expansion matrices are
(T 0
The long time distribution is
—lt 1
3"(@) = 5 0~ 1) +6(z — 1) (2.27)
with variance )
I, —1I
a§=< *2 ) . (2.28)

X -1
One recurring term is {I — U\ M alt} which is calculated here

[I—@o(A)Ma‘t}_l - < 1 —1&"‘“@))

-1

SV
1 1 gy
BRI <wﬂ“<A> 1 ) (2.29)

3. The burst model: it is very similar to the alternating model, with the difference that while the — state
still has an expansion with 0 < o < 1, the + state has an expansion with & (o < & < 1), i.e.,

"Zjiumt()Q —1_ C+>\& —i—O()\d)
PP (N) = 1 — c_A® + o(A). (2.30)
We also allow & = 1 with the expansion to next order (0 < 3 < 1)
1Eiurst(/\) -1 C+)\ 4 Cf))\l‘l‘,é =+ O(}\1+B)
PP (N) =1 — XY + o(\Y). (2.31)

We explicitly allow the case B = 1 which corresponds to an existing second moment of the waiting
time

1 oo
? = 3 /O dt 2Pt (), (2.32)

We will use this model mainly to carve out differences to the alternating model, as here only the value
I dominates the long waiting times. We have here

rburst _ 6(56_1 )ﬂ;burSt(A) 0
Fousst (3, \) = < 0 5(:51_)1&‘3““@)) (2.33)

and

R n 7 burst ()\) 0
Wlburst 2) = + %Y+ .
o= (P )

(I(')? 191> + A (8 cojn) +o(X%). (2.34)
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We have here expansion matrices with only one entry differing from zero

0 0
K, = (O c_Iﬁ> . (2.35)
The long time distribution is
(@) =8(z — ) (2.36)
with variance
of = 0. (2.37)

3. Probability Distributions

3.1. Main Results

Assume that at time ¢ = 0 we are at the beginning of a new epoch where the initial state is drawn from the
probability distribution (init|. The value of the process at time ¢ is given by X (¢) while its internal state
is denoted by N(t). The most basic quantity are the joint probability distributions of having X (t;) = x;
and N(t;) = m; for all j € £ where L is a set of indices:

(init| Pz ({ax}, {me}; {te})) <H S(X (tr) xk)§N(tk)mk> ) (3.1)

kel (init|

see also [6,7,39]. The index L gives the indices over which the probability distribution is calculated.
Therefore, if one wants to calculate the probability distribution for the times ¢4,...,t, one takes £ =

{1,...,n}
<1nlt|P{1 ,n}({xk} {mk} {tk} <H5 tk xk)(sN(tk)mk> . (32)

(init|
We will additionally use for the n-time joint probability distribution with the times ¢1, ..., ¢, the notation
P,:

(nit| P ({z1, @t fma, o omn s (B ) = (it Pr oy ({znd, {fmads {6e}))- (3-3)

As (init| Pz) is linear in (init| we use here the vector notation. For ease of notation we define that

|Pe({@e}, {mu}; {tx})) =0 if any t; < 0. (3.4)

We can determine |Pg, ({xr}, {m}; {tx})) by looking at the first epoch (using £; for the set of “initial”
indices): assuming that we are in state [ = N(0), the length of the epoch 7 and its values x are distributed
according to ¢;(x,t). We have to distinguish two types of indices now: the k for which ¢, > 7 and the k
for which ¢, < 7 (see Figure 2). The indices appearing later are denoted by the set

Ef:{k6£iitk2’r}. (35)

Of course we have to sum over all possible subsets L¢ of £; denoted > cerior,- At the end of the epoch,
the process can be thought of starting new with an initial distribution (l\M The values and states for
the indices k € £; \ L (the difference set) are x and | while the values and states for the indices k € Ls

197



M. Niemann, E. Barkai, H. Kantz Renewal theory for a system with internal states

are distributed according to a process starting at 7 with initial distribution (I|M:

(U Pz ({n} {mads {te})
Z / dT/ dx ( H Oim,; 0(x — w5)0(T — 15 )) d1(x, 7)1 ’M|PLf {zn}, {ma}; {te — 7}))

Le:LiDLy JEL\Le
B / ar / dx ( T G, 000 — 2,007 — m) B(x, )M | Pe, ({me}, fmaks i — 7).
Le:LiDLe JEL\ Ly

(3.6)

Here we have used implicitly the definition of | Pz, ({zk}, {mw}; {tx})) to be |X) when Ls is the empty set

Le={}:
PoL B D) = [2). 37
We can write (using [Pz, (---)) = >, )Pz, (---)))

| Pr,({ar}, {ma}; {t}))
:Z|l> Z / dT/ dx( H Otm, 0(x — x;)0(T — t; )) O(x, T)M| Pz, ({zi}, {mu}; {te — 7}))
]

Le:LiDLs jEl: \L‘,f
- (H/ dt>2|l z|/ dT/ dx [ ] o=z =) | [ T 6¢=—1)
Le:LiDLe \reL JELI\Ls JELs

x &(x, )M ( IT st —%)) | P (e}, {ma s {tx — £3.3))
JELI\L¢
(3.8)

Therefore, the probability can be written for each L¢ as a convolution in the variables {¢}.
The next step is to transfer these results to the Laplace space such we can take advantage of the
convolution property of the Laplace transform.

|PL {LL’k} {mk} {)\k} <H / dty, e_)‘ktk> |P£ {xk} {mk} {tk})> (39)

keL;

The abbreviation A7 = Zjej A; for any set of indices J will be useful (e.g., Ag1 2y = A1 + A2 and
Ag2.3,53 = A2 + A3 + A5). The Laplace transform of the last line of Eq. (3.8) (written in {#}) is

<H/ dtw—“”‘) IT ot | [Pec(an}, {madi {ta})) = [P ({2}, fmads {A61)). (3.10)
kel

jeLi\Lf

The Laplace transform of the second part of the convolution in Eq. (3.8) is expressed by the function

Qcoce({zn}, {mu ks {0 })
dty, et (1 dr d Otm; 0(x — x5)0(T — t5)
(keﬁ / ’ )Z‘ |/ / Xge}:_[\& l

x [ 6(r —t;)®(x, 7)M. (3.11)

JELs
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A

X(#) .
|Pe,({znds {mi}s {te})) 1 Pee({znd, {me}; {ts — 71}))

t1 s to T1 ty t3 t
L =1{1,2,3,4,5) | Cr = {3,4)
renewal

FIGURE 2. Graphical situation for the renewal ansatz: we have the same situation after
the first epoch of length 71, this time point is marked with a dashed line and the word “re-
newal”. At time ¢t = 0, all observed times are larger (namely t1, ¢, t3, t4, t5), therefore our
initial set of indices is £; = {1,2,3,4,5} and we are determining | Pz, ({x }, {mr}; {tr}))-
At the end of the first epoch, only the times t¢3,t, are larger than the renewal time,
therefore our set of indices is £¢ = {3,4}. We have to describe what happens in this first
epoch while for the rest of the process, we can use the renewal time as a shifted zero
point and use | Pz, ({zk}, {mr}; {tr — 71 })).

Noting here

o _ e—>\j7’
( H / dty, e_Aktk> H 9(’7‘ — tj) H 6(7_ - tj) = eXp(_Al:fT) H 1)\7
keL; 0 ’

jEL;\,Cf JELs jELi\ﬁf

e Y (e agn)

Hje.ci\ﬂf )‘j T LiDT DL
(3.12)

where |7 \ £¢| denotes the number of elements in the set J \ £;. Therefore (—1)I7 il is 1if 7\ Lt has
an even number of elements and it is —1 for an odd number. Additionally, ) ;. £io7oc, denotes a sum
over all subsets J of £; which contain L¢. Use the situation in Fig. 3 as example with £; = {1,2,3,4}
and Ly = {2,3} we sum over J ={2,3}, J ={1,2,3}, J ={2,3,4} and J = {1,2,3,4}:

1
(1) exp(=Ag7)

Mo A JiLiDT DLy

- Y ) exp(— )

e A J:{2,3}272{1,2,3,4}

=T (exp(—Aga,3y7) — exp(—Aq1 2,8 7) — exp(—Ag23.437) + exp(—=A12,3437)) - (3.13)
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Using the formula Eq. (3.12) in Eq. (3.11) gives
Qeize({za), {mk}‘{/\k})
S / ax [T dwmdx—z0) 3 (—OMEG(x, A )M, (3.14)

erﬁ \Lt Ak keL\Ls J:LiDT DLy

Putting these results into Eq. (3.8) gives in Laplace space

P ({any dmiks D) = D0 Qe (ks {mnds (D) Pee ({an}, {macs (A1) (3.15)

LeLiDLs

This is not yet a real recursion formula, as we have | Pz, ({1}, {mx}; {\r})) on both sides. For £; = £;
we have

Qe ({zad, {muds A }) = oAz, )M (3.16)

such that we can reformulate Eq. (3.15) to contain a sum over the true subsets L¢ of L;, i.e., L is a
subset of Ly and L; # L¢ (notation: L£; 2 L¢):

| Pr,({n}, {mu}s {0 )) =00 (A ) M| P, ({ai}, {ma s {n})
+ Y Qeee{ad, {mik {0 })|P

Le:LiDLy

ce({ond {mit {0 }) (3.17)

and therefore

e (). ik () = [T o) Y Qe (. fomiks Q| B (L) ks D).
Le:Li DLy
(3.18)
A graphical explanation of the terms of Eq. (3.18) is given in Figure 3. This formula is the main result
of this section.

3.2. Examples

Using Eq. (3.18) gives for the one-time probability density

~1.§(x,0) — d(x,\)
3 Im). (3.19)

| Py (,m; \)) = [I - ﬁo(A)M}
And for the two-time probability density

| P2({z1, 2}, {m1, ma}; {1, A2}))
-1 é(l‘h )\2) — @(xl, )\1 —+ )\2)

= [I*@()()\1+/\2)M:| |m1><m1|M|P1(x2,m2;>\2)>

A1
R 1 (29, M) — D22, A1 + A R
+ [I—Wo()\l +)\2)M:| (1172 1) /\2(1:2 ! 2)‘m2><m2{M|P1(x1,m1;)\1)>
. ~1@(21,0) — D(x1, A1) — D1, Ao) + Bz, A1 + A

(3.20)

For the single state model, we get (observing, that all vectors are one-dimensional and need not to be
written out)
1 é)single(g% 0) _ Qgsingle(x’ /\)
1 — A(s)ingle(A)
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X(t) A ~ -1 A 1A
[1-b(az )M Qe ({mnd, fmi W) 1Pe (i, fmaki D))
any number of epochs . . . . -
- : t ty It ts ¢
Li={1,2,3,4} i L = (2,3}
renewal renewal

and

Py({z1, 22} {1, A2}) =

FIGURE 3. Graphical explanation of Eq. (3.18): This is one term in the determination of
\Pr, ({1}, {me}; {0 })) with £; = {1,2,3,4}, i.c., we are interested in a four-time joint
probability distribution at the times t1,ts,t5,t4. The term [I — ¥y(Az,)M]~! accounts
for any number of epochs which are completely before any of the times t1,ts, t3,t4. Then
the first epoch containing one or more of the times t1,ts,t3,t4 arrives: in our example,
it contains the time t; and ¢4 and it is confined by the two dashed lines. The set L
describes the times after the end of this epoch — here £y = {2,3}. The contribution of
this epoch is given by Qr.z. ({x}, {mx}; {\c}). At the end of this epoch we can use the
renewal property to describe the rest of the process with the two-time joint probability
distribution | P, ({z}, {ms}; {\x})) containing only the time ¢, and t3. The complete
|Pr,({x}, {mr}; {\r})) is obtained by summing over all true subsets £ of £; (denoted
Le C L

1 d)blngle(xl /\2) (Z)single(xl )\1_1_)\2)
1— smglo(Al + )\2)
1 (bbmgle(xQ )\1) ¢bmg1e(x2’)\1 +)\2)

4+ —
)\2 1 ﬂlngle()\l +>\2)

Pi(2; \a)

Pi(z1; )

(5((E1 o xz) qgsingle(xl’o) _ (bbmgle(xl’ )\1) (nging;le(‘,b1 )\2) + qgsingle(xh A+ )\2)

/\1)\2 1 - mngle()\ +A2)

For the alternating model, we get for the one-time probability distribution (using Eq. (2.29))

ey =t (1 ) L (6= L)1 -9 ) 0 .
i M) = (W“() 1 >)\( 0 Sz — I_)(1 — §It(\ )))‘ )

1 —qpalt())2
_ 1 ( §(x—1Iy) Oz — I)l/salt()\)) |m)
AL gare(n) \O(z — L™ (\) - oz — 1)

Lo@—1In) (1 ™))
AHW()(W(A) 1 )' )

(3.22)

(3.23)

Here, m takes the values m = 4. The elements of the matrix can be interpreted. When we start in a +
state, the Laplace transform of ¢ of the probability for being in state + and the density of X (t) = z at
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time ¢ is

(+]Pr(z,+:0)) = oz —Iy) (3.24)

1
A1 gl ()

while we get for being in the — state
(+|Pi(z, = N) = - ——2—d(x — I_). (3.25)

The marginal probability of finding the system at x, provided it started in state + is thus

5 5 T — palt z—1I_
(+]Pr(z,+; A)) + (+|Pr(z, =3 A)) = %5( I+)1T/;;au((>\,\))6( L) (3.26)

The two time probability becomes
(init| P ({z1, 22}, {m1, ma}; { M1, A2}))
o 7alt )\ _ 7alt A T alt N
0wy — Iy ) ™ (A2) — {1’2})<init| <,([}a1t(1 (0 (/1{1,2})) [ ) (| M| Py (2, s M)

; A1 1- Q/A)alt(/l{m})g A1,23) 1
— 1 alt A — Jalt A 7alt
n 5(.1'2 m2)¢ ( 1)A ’(/} ( {1,2}) init‘ (Aalt 1 w (/1{1’2})> ’m2>
Az 1 — 21t (A 2y)? DM (Af12y) 1

X <m2’Malt‘p1(l‘1, mi; )\1)>
+ 5($1 - Im1)6(z2 - Img) 1- qﬁalt(Al) - ialt()@) + 1ﬁalt(‘/l{lﬂ})
A1 Ao 1— @alt(A{l,Z})Q

. 1 palt (A
X <mlt| (Jjalt(/l{l,Q}) v (1{1’2})> ‘m1>

5m1m2

(3.27)

The probability for starting in state + and — with same probability and then having m; = + and mo = —
at times t1, £, in Laplace space is ((—|M®* = (+| and (+|M>'* = (—|)

/:XD d331 [m dJUQ <eqM|]52({x1,x2}, {m1 = —|—,m2 = —};{)\1,)\2})>

:id)alt(h)i V(A 0y) /OO dzs <+’Ma1t|f31(x2’m2 =~ )
A 1=y (Ag ) —o0

iipalto\l)i e (Ap ) /oo dxy <—|Malt|151(m1 m1 = +;\1))
222 1= (Agy 0y) —o0 ’ ’

1 1 1 (M () = (A1 2y) N (M) — M (g1 0)
A A 1_¢alt(/1{1’2}>2 1_’_1&&1‘5()\2) 1_;,_,&31‘5()\1) .

(3.28)
Here, having m; = + implies X (¢1) = I+ and ms = — implies X (t2) = I_.

4. The Aged Process

4.1. Forward Recurrence Time

Sometimes the observed process does not start at a renewal but a time ¢, after a renewal [4,38]. This
could happen if the measurement starts a time t, after a the process starts (independent, if meanwhile
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renewals did happen or not). Formally this is done by starting the process at time —t¢,. We can use the
stochastic process X (t) by a shift of time

Xoeed(4) = X (t 4 t,). (4.1)

It will prove useful to additionally keep track of the distribution of X (¢,) and N (t,) at the beginning of
the measurement whose distribution are denoted by the variables y and n. Formally

<init|Pngd({=’Ek}a {mk}7y7n; {tk}7ta)> = <5( ( 5N(ta)n H 6 tk + t - 'Tk)(SN(tk"rta)'nLk>

kel (init|

(4.2)
with the Laplace transform in the {t;} (with Laplace duals {\;}) and ¢, (with Laplace dual s,)

|Pzg6d({fﬂk},{mk},y,n;{)\k},sa)>Z/Ooodtaesa (H/ dty e )\kfk) P2 (), (i} s () 1),

kel
(4.3)
In a first step we determine the forward recurrence time [20]. We consider a process which starts in
a state ¢ and evolves a time t,. We want to determine the joint probability that the process is in state
j with the probability density that the process takes the value x and the time to the next renewal (the
forward renewal time) is t;. We denote this with help of a matrix ¢ (z, ts;,):

(1| ™ (2t ta) [5)- (4.4)

For any initial distribution (init| (at time —t,) we have the probability to be in state i at the beginning
(init]7), so that the above joint probability for the initial distribution (init| is

Z<init’i><i‘¢f‘”(3¢,tf;ta)’j> = (init|®™ (z, tr; ta) [5)- (4.5)

The determination of & (x,#;t,) can be done with a renewal ansatz: if 7 denotes the time of the first
recurrence, we can split the probability in the two cases 7 < ¢, and 7 > ¢,. The case 7 < t, we have a
renewal at time 7, after this the process starts again with probability (i|M|k) in state k& — in this case
the probability distribution is described by (k|®™ (x,t¢;t, — 7)[5). In the case T > t, the distribution is
described by the residual time ¢y = 7 — t, while 7 must be equal to ¢ and x is described by the current
state. Put in formula

<Z|Q5 (x,ts; ta |j /dTZ |WO M|k><k|@fthf, |]> / d7<i|d5(:n,7)5(tf (1 —ta) |]>
ta

(4.6)
Since i and j are arbitrary and ), |k)(k| = I, we get

ta [e%s)
@fw(x,tf; ta) :/ dr wo(T)M@fW(m,tf;ta —7)+ / dr &(z, 7)6 (tr — (7 — ta))
0 t

ta
- / dr W (7) MB™ (2, s o — 7) + Bl b1 + o). (@7)
0
Taking the double Laplace transform

SV (2, Ny 50) = / dt; / dt, exp(—Aets — Sata) O™ (2,15 ts) (4.8)
0 0
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and applying the transform on Eq. (4.7) gives

@fw(x, Af; Sa) = LTA/O(SBL)Mng"V(ac7 At; Sa) —|—/ dtf/ dt, exp(—Asts — Sata)P(x, ts +ta)
0

0
R ~ oo e*)\f{ _ efsaf -
:LDO(sa)MQZifW(w,)\f;sa)+/ dt &(x,1)
0 Sa — Af
7 & fw 1
= o (52) ME™ (1, Ars 52) + —— ( (2, Ae) — B(x, sa)). (4.9)
a — /A
Solving this for @fw(m7 Af; Sa) gives
. | ~ -1/,
B (2 M) = - [T=To(s)M] (Bl he) = Bl 50) ) (4.10)

The x moments are then
¢£W(Af;8a) = /dx x"QﬁfW(x,)\f;sa)

- i » [I - %(sa)M} B (@n(Af) - wn(sa)) . (4.11)

We will provide examples below.

4.2. Probability Distributions

We have to look again at the epoch containing ¢,. In this time the waiting time till the first renewal is
described by the forward waiting time. Starting from this renewal, the rest of the process is described by
the probability distribution of an process without ageing. Completely analogous to Eq. (3.8) we obtain

| P22 (e}, {mach, s {ta ) ta)
Z / dT/ dX(S X — y) H 5nmj5(X - Zﬂj)e(T — tj)

Le:LiDLe JELN\Ls
x &V (y, T)‘n><n‘M|ng({xk}, {my}; {tr. — 7'})> (4.12)

Transforming the time variables to Laplace space (the {t;}s and t,) and following exactly the calcu-
lations done in Sec. 3, we get a step operator

QS ({n}, {ma}, yoms {e ) sa)

1 o fw
H)‘/ dxd(x —y) H Gy, 6 ( k) Z (—1)|J\£f|@f (X,AJ§Sa)|n><"|M-
keL\Ls Nk keLi\Ls J:LiDT DLs
(4.13)
and the relation
| PR (g}, {mad, yoms N} sa)) = QS ({nt, {mu by yoms A} 5a) | Pre (Lo}, fmuc ks {0 D)
Lfﬁ£i2£
(4.14)
4.3. Examples
Using Eq. (4.14) gives for the one-time probability density
. . . -1¢ —
25, 52)) =8 (s sl (o [T )aa] - PEO B
éfw : Sa _éfw } Sa
+ (2,05 5a) (2,28 )5(37 — )0 |m). (4.15)

A
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The aged one-time probability density is related to the two-time probability density of the non-aged
process. We have

|Po({w1, 22}, {ma, ma}s {1, A2})) = [ PP @y, mu, o, ma; Ay, A X))+ PP (22, ma, @1, ma; Aoy A +22))
(4.16)
as expected from

|Po({@1, 22}, {m1,ma}; {t1,t2})) = ’Pfged(l‘h my, 2, ma; bty —ta,t2)) + |Pfged(x2, ma, 1, M3ty —t1,t1))

(4.17)
where we defined | P (21, my, 39, ma;t, 1)) = 0 for t < 0 (see also Appendix A for this kind of argu-
ment). The two-time aged probability density is

| P35 ({a1, w2}, {m1, ma}, y,n; {1, A2}, 50))
=™ (y, s sa)|[n)(n| M| Py({w1, 22}, {m1,ma}; {A1, Aa}))
n ng‘”(ml, A2; Sa) — ng‘”(xl, A1+ A2; 8a)

(21 — Y)Snmy [ma ) (ma [ M| Py (2, ma; A2))

A1
Qﬁf""x,/\;sa fslc)fwos,)\ + Ao; Sa -
+ ( 22 ) )\2 ( 271 2 )(5(562 - y)(sy”nz|TTL2><T)’L2|M}P1(I1,TTL1;)\1)>
N PV (21,05 50) — P (21, A3 sa) — PV (21, Aa; sa) + P (21, A1 + Aoj sa)
Ao
X 0(x1 — 22)0(21 — Y)OmymaOnm, ’m1>. (4.18)

For the single state model, the forward density is

1 gg)single(l,’ )\f) _ Qgsingle(l,’ Sa)

gifw Ar: — T 4.19
(1‘, f5 Sa) Sa — /\f 1— Smgle(sa) ( )
Integrating out the x-dependence gives
%) R 7single ) — 7single 1
/ dz &M (z, Ay 50) = 2 (Ar) =9 ™ (5a) — (4.20)
. Sa— Mt 1— Jp€(s,)
which is Eq. (6.2) in [20]. The one-time distribution is
N 1 1 single ) — Isingle N Isingle 0) — single by
Pldged(x’y; )\’ 5a> _ 7¢ (yv )A ' (? (yv S ) (b (J}, )A ' ¢i (.13, )
Sa— A 1— 95" (sa) 1— "8 (N)
1 1 ggsingle .13,0 _ (Z)single z,s 1 ggsingle .13,)\ _ qgsingle z,s
+ *(5(.’15 - y) o ( )"single ( 3‘) - ( )Asingle ( 3’) :
A Sa 1 — 1y "% (sa) Sa — A 1— 95" (sa)
(4.21)
For the alternating model, the forward density is
R 1 7alt Ar) — Talt o o Talt
stw(x’/\f;sa) _ 1/) ( f)A rd} (Sa) < 5(1' {;2 5(1’ I—W (Sa)) . (422)
Sa — Af 1 —qalt(s,)?2 Oz — I4)Y™"(sa) Oz —12)
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The aged distribution becomes (employing additionally the results Eq. (3.23))

<init|]3fg6d(sc, m,y,n; A, sa)>

8 Sy L) ) s 11 e, Y1\
- )\(Sa _ )\) 1 —&alt(sa)Q 1 +¢a1t()\)< t| <,(/)alt(8a) ) | >< | ( 1 walt(/\)> | >
6z — Im)é(y —1I,) 1 ini . 1 J)alt(fsa) 2Mnlm
) i) () ) Il

0 = Ln)S(y = L) M) = M (sa) (T )Yy
A(sa — A) 1 — ol (s,)2 ( t| (d]alt(sa) ) | ) ‘ )

(
0@ = L)y = L) M) =M (sa) L (1 )Yy (<Y

6(x = Im)d(y — In) Omn . 1 &alt(sa)>
* Asa 1+ 0ol (s,) {intt| (zﬁa‘t(sa) m)

(4.23)

The Laplace transform of starting in state + being after time ¢, in state — and at time t, + ¢ in state +
is then given by

00 L) e . B 1 ,&alt(sa) Q;alt()\) _ @alt(sa)
[t [ Pt o) = G 1rgey Y

5. The Correlation Functions

5.1. Derivation

We will now obtain the correlation functions (X (t1)--- X (t,)) (init|- We will use these later to obtain the
spectrum. In the spirit of the joint probability distributions, we are looking at an arbitrary set of time
indices £; and define a correlation vector for an arbitrary initial distribution of internal states (init|

(init|Cr, ({tx})) = (][ X(15)) i (5.1)
JEL:

Similar to the probability case, we define the empty correlation function to be

|Co({})) = |2) (5.2)

which is consistent with the definition of an empty product.
The connection to the last section can be done by

<init‘05i({tk})> = H X(tj)>(init|

JEL:

_Z H (/ dz; xa) (init| Pe, ({wr}, {ma}s {tn})) (5.3)

mj jEL;

such that
Ce () =S I1 ( / de; x) 1Pe, (e} fds {t). (5.4)
mj jeEL;

Similar to the probability functions, it is advantageous to transform the time parameters to Laplace
space

e () (/ dt; e ) Ce (i) (5.5)

JEL;
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which gives directly
Cetnuh) =TT ([ gy ) [Peton, s (). (5.6
mj jEL;
We can apply this connection to Eq. (3.18) to get a recursion formula for the correlation functions

e () ZH(/ dz]xj)mf {ed ek )

mj jEL;

= [I - @O(Aﬁi)M] -

< STI( ) Qe God im0 |Pe, k. fmds ().

Le:L; D,Cf mj; jELy
(5.7)

The operators Qroco({xk}, {mr}: {\x}) depend only on the x;, and my, with indices k € £; \ L¢ while the
|Pe, ({zk}, {mi }; {\r})) depends only on the the 3 and my with indices k € L¢. We can therefore define
by using Eq. (3.14)

Reedn) =3 T [ doye Qe and. fomds )

mj je[l\ﬁf
S0 X T [t oo

mj jELi\Le

era \Ls Ak
> (—1)"7\“'43(X,/1J)

T:Li2T 2Ls

1 *° A
_ 7)\/ dXXI,Ci\Lf\ Z (_1)‘J\£f‘¢(X7Aj)M
erﬁi\zf k J—oco J:LiDT DL

X

1 B
= [T (*1)‘J\£f‘W|Li\Lf|(AJ)M- (5.8)
KELNLe P 7.2, 5701,
Using this in Eq. (5.7) gives

Cetud) =SS TT [ oy e s e)

mj jEL;
= [T dy(Ag,) } S Ree ()G ({))- (5.9)
Le:LiDLy

Equation (5.9) is the main result of this section.

5.2. Examples

As example, we obtain the Laplace transforms of the one- and two-point correlations by applying equation
(5.9)

G (V) = % [I - ﬁo(A)M} B (@1(0) - @1@)) |2). (5.10)

and

|C’2(A1,A2)> — [I_WAO(/\l +)\2)M} —1 ( 1

A1

(P2(0) — o (A1) — o (Xa) + P (A1 + A2))|X)

+ )\i(j’l(/b) — (A + X)) M[Cr(N2)) + )\%@1()\1) — (A + A2))M‘él(/\1)>>

L (5.11)
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For the single state model, these expressions become

. 1 wsmgle( ) 7single (A)
Cl ()\) single1
A =g

(5.12)

and

1 1E;ingle(o) o ,lgzingle()\l) . A;ingle( ) + 1E;ingle()\l + )\2)
/\1)\2 1— smgle()\ + AQ)

1 Aiingle(A2) _ 51ngle()\1 + )\2) Aiingle(o) _ Aiingle()\Z)
)\1)\2 1_ <1ngle(A + )\2) 1— ”Smgle()\g)

7single o smgle 7single __jsingle
LU () )| (B o)
A1A2 1— 5" (A1 + A2) 1— 95" (M)

Co(A1, \2) =

+

For the alternating model, we get

11 L ™) (L (1= (N) 0

11 ()(I++1'¢“%M>

TR L)\t () + 1

I++I_ I, —1_1—1La“(A)<1>
|Z) + B> 11w \-1) (5.14)

When we start with the equilibrium distribution, we have (eqy;|C1(\)) = (I + I_)/(2)) which is the
Laplace transform of the constant function (eqy;|Cy(t)) = (I+ 4+ I-)/2. Hence the first term in Eq. (5.14)
describes the equilibrium, while the second one describes the relaxation towards equilibrium (if we start
in a non equilibrated state).

The expression for the two time correlation becomes

1Ca (M, A2))

_ 1 1 <A 1 1/33“(/1{1,2})) (Ier(
A2 1 — 1[)‘1“(/1{1’2})2 P (Ag2y) 1 2 (

il&alt()‘Q) — ’(/AJalt(A{l,Z}) ( A 1 ’l[)alt(/l{LQ})
A TRl (Ag )2\ (Apgy) 1

1— qZ]alt()\l) — @alt()\g) + @alt(A{l,Q}))>
1— 1 (Ay) — 2 (Ag) + D (Agy 5y))
0

~~—
S
P
o
"
o)
it
>
L&}
N—
~

iﬁ;alt()\l) - Q/Afalt(/l{l,z}) < 1 1&*‘“(/1{1,2})) (O I+> A
+ AQ 17 ’1)/;alt(/1{1,2})2 &alt(/l{lﬂ}) 1 I_ 0 Cl()\l)>
71-2% +12 |2 — (I — 1) 1 Pt () — Z/Afalt(/l{l,zﬁ n P (Ng) — lf;alt(/l{m}) )
2212 2002 1Rl o)) 1412l (Xy) 142t (\o)

+ -1 1 | — it - Pt () — @alt(/l{m}) B Pt (Ng) — @alt(/l{m})
2\ 1+ alt(Agy o)) (1,2} 1+ 9alt(\) 1+ 9alt(\y)

(1)

(5.15)
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6. Correlation Functions of an Aged Process

Similar to Section 4 we are also interested in the correlation functions of a process which has aged a time ¢,
before observation. In this case we are interested in the correlation functions (X (t1+ta) - - - X (tn+4ta)) (init| -
Similar to the last section, we define

.. aged
<1nlt|CZge ({tk};ta)> = <H X(t; + ta)>

jeL
= (init|Cr({tx + ta}))- (6.1)
We later use the limit ¢, — oo to find the stationary correlation functions. While the aged correlations are
clearly related the correlations without aging by a time transform, the form derived here is better suited
for the later calculations. Similar to the multi-point correlation, often the aged multi-point correlation is

treated more easily with its Laplace transform. Here, also the aging time ¢, is Laplace transformed with
the Laplace partner s,

2 (Mg} 5)) = / At oxp (—5ata)

(init|

(/ dt; exp (—\it;) )ycaged (hhit)).  (6.2)

JjEL
As in Section 5 we can get the correlation from the probability densities via
Gt =3 [ ar STT ([ e ) 1P o, oy ). 09
mj; jeEL
4) this gives a recursion formula for

(41
CEA M sa)) = D REL (I} 5)[Cr ({)- (6.4)
Le:LiDLy

In combination with Eq.

with the step operator

- 1
R e, (ki sa) =

Miecoc M (=D £ (A5 50) M. (6.5)
i f Jﬁlgjgﬁf

The Egs. (6.4) and (6.5) are the main result of this section. All terms of the right hand side are know by
the recursion relation Eq. (5.9).
So, the one point aged correlation is given by

~age 7 fw A 1/a W 7 fw
€15 N s0)) = B0 (s ) MG ) + 5 (B (0:52) = B (s 5a) ) M Z). (6.6)
Further simplification leads to

L d(A) — ¥(s,)

G5\ s,)) = [I - %(sa)M} 1)

Sa — A
by (Wl(o) i) Wl(?;%“”) M|5)
——5 16w 1(sa)) (6.1

In this case, we could have gotten this results more directly by

|3 (N 50)) :/0 dt/0 dta exp (=Xt — sata) [C1(t + ta))

1 > —AT —SaT
:Sa — /. dr (e AT _ g a )|Cl(7')>
1

Sa — A

W) -

209



M. Niemann, E. Barkai, H. Kantz Renewal theory for a system with internal states

We also get the two point aged correlation

Ao . - WAf""/\;sa — Wi () + Ao; Sa A
O350, s ) = (s + X5 s) MG g, )+ PR = E Aai)y15 )
UV (15 80) — WY (AL 4 Ag; sa R
+ (As; 5a) )\; (u + 2 )M Ci(M))
7w (). _wfw . _ ofw . 7 fw .
+LZ/2 (O,Sa) Q/2 (/\lasa) WQ ()\2a5a)+wg ()\1+)\273a)M|2>. (6.9)

A1z

7. Stationary Behavior in Systems with Finite Mean Waiting Time

7.1. Stationary Forward Recurrence Time Distributions

We have already defined the diagonal matrices K,, describing the expansion of ¥, ()) (see Eq. (2.13)). In
the case of a finite mean waiting time, we have

To(0) — Wo(N) = KoA 4 o(\) (7.1)

with 7 = (eqy|Ko|X). We will also assume that

@, (0) — ¥, (A) = Ko\ +0(N) (7.2)

so K, = —W! (0).
Under these circumstances, we can look at the stationary behavior for long times. Formally this is
described by the aged correlations for ¢, — oco:

lim |C25Y({tr}ta)) (7.3)

ta—00

which is calculated in Laplace space with the final value theorem via

. ~Naged .
slalgo sa|CL ({ e} sa)>. (7.4)

Central element is the asymptotic forward recurrence time described by the matrix dgfw(x, A; Sa) (see
Eq. (4.4)). Taking the limit for the stationary state in Laplace space gives the definition

G (i \p) = Tim, s, B (1, Ars 5,)
sa—0

— lim sa% [I — ﬁo(sa)M] o (é(%/\f) — qﬁ(m,sa))

S,—0 Sa —
1

A -1 N o
- <1im 5 [I - %(sa)M} ) = (@(gg,()) - szi(a:,Af)> . (7.5)
Sa—0
We have to determine the behavior of [I — @O(Sa)M}_ around s, — 0. For s, = 0 the matrix I —

Wy (0)M =1 — M (as ¥ (0) = I) has a single eigenvalue 0 with right eigenvector | ) and left eigenvector
(eqn]

(I - @O(O)M) 12y =0 (7.6)
and  (oqy| (I - @0(0)M) =0, (7.7)
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which follows from probability conservation (M|X) = |X)) and the ergodicity of the Markov chain
((eap|M = (eqp]). The dominant behavior of {I — Wy (sa) M } for small s is determined by this eigen-
vector and eigenvalue. We will employ here the physical techniques of stationary perturbation theory,
more mathematical rigorous approaches are described in [24]. We consider the perturbation

T—Uy(sa)M =1 — M + 5, KoM + 0(sa). (7.8)
The eigenvalue changes in first order (using Eq. (2.12))

(eay|T— M + s, KoM |X) + 0(54) = sa{eqy|Ko|X) + o(sa)
= 82T + 0(8a). (7.9)

As the changes in the right and left eigenvalue are of order O(s,) and the projection on the eigenspace
(to s, = 0) is given by

| ) (eaul, (7.10)
we have
- %(sa)Mr - ‘2>s<jfﬁ‘o+(:)(sa>
| 2){ed| N <1>
=—.- *teol (7.11)
and
lim s, [I _ @o(sa)M} . %:(h‘d. (7.12)
This gives .
Brvasym(y A ) = |2) =5 (eau] (q%(x,()) — Bz, Af)) . (7.13)

As expected, it is independent of the initial distribution as for every distribution of initial conditions
(init|
~ 1 ~ ”
(init[ 6% (2, A) = ——(cay] (43(3:, 0) — &(z, Af)) . (7.14)
TAf
The x moments are (Eq. (4.11))

T (s sa) = /dx 2" DN (2, Ap; sa)

- & . [T~ o (s0)M] B (0 (\e) — i (sa) (7.15)
which becomes in the asymptotic case
phvasym () = ]2><GQM’¢n(O);)\f¢n(/\f)
with special value V3™ () = |E><eqM|%. (7.16)
For n = 0 we have with 7 = (eqy|Ko|X)
Py (0)| 2) = | 2) (7.17)

which is expected by conservation of probability. Therefore the asymptotic correlation can be inferred
from the aged correlations by substituting W-2m()\) for ¥V (\;s,) in Eq. (6.4) which then becomes
independent of the initial distribution.
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For the single state process and n = 0 we get

1 J" 0

Py ) = 2 (7.18)
which is well known (e.g., [20]).
7.2. Asymptotic Correlation
Especially interesting is the stationary correlation function C°°"(t)
cen(t) =, ggnm<X(ta)X(ta +1)) (init] (7.19)
and its Laplace transform
Ceor(\) = /0 h dt e MO (1), (7.20)

From Eq. (4.2) we can determine the above correlation with
(X (ta) X (ta + 1)) (init| = Z Z / dx/ dy 917y<init’Pfged(ac7 m,y,n;t,ta)), (7.21)
m n —00 — 00

its double Laplace transform is

/ dta/ dt exp(—sata—A) (X (ta) X (tat1)) (init| :ZZ/ dx/ dymy<init|f31aged(x,m,y,n;)\,sa)>
0 0 m n —o0 —o00

(7.22)
and the limit ¢, — oo can be done in Laplace space by the final value theorem

Ceor(n) = hm 8322/ dx/ dy xy<1n1t|P1 (z,m,y,n; A, 52)). (7.23)
The expression for | P (2, m,y,n; A, s,)) has been determined in Eq. (4.15). We get from this
ZZ/ dx/ dyxy<init|]51aged(x7m,y,n; A, $a))

:%@mﬂ@{wu; sa)M [I - @O(A)M} B (lf/l(o) - @1@)) |2) + %(init] (@W(o; Sa) — WEV () sa)) |2)

(7.24)
and (using Eq. (7.16))
E=r ) = i, 5, (i@mt@{w a) M [T~ (0 M | -1 (1(0) — (1)) | 2)
+ %(init| (lf/ﬁW(O; $a) — U8 (X; sa ) |Z>>
:§<init’¢1fw,asym(/\; Sa)M |: — @0(/\)]\4} - (¢1 (O) — @1(/\)) |E>
i (0150 < 0 ) ) [ )
:‘%\2<6ny (@ (0) — @1@)) M {1 - ﬁo(A)M} B (@(0) - SZ(A)) |1Z)
_1\2 (eqn|P(0) — KoA — ¥ (V)] X). (7.25)
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Writing it completely in terms of the ¥, N

~cor _ 1 1 7 7 7 Ly 7
Cr(A) =— pm@qm (Wl(o) - ‘Apl(A)) M [I - %(/\)M} (%(O) - Wl@\)) |E>
1 1

+ pm(eqm%m) + 7 0)A — Ty(N)] ). (7.26)

7.3. Power Spectral Density

The power spectral density S(w) of this process can be determined by using the Wiener-Khinchin theorem

S(w) = / h dt et Ot (¢) (7.27)

— 00

which can be written in terms of the C*()):
S(w) = / dt et Ceor (1)
= C° (iw) 4 C° (—iw). (7.28)

Hence, with Eq. (7.25) we have a formula for the power spectrum of a stationary process.
In general, if the correlation for large ¢ behaves as

Cr(t) ~ g (7.29)
with 0 < v < 1, its Laplace transform behaves for small A as (Tauberian theorems)
C"(\) ~ I'(1 —~)DX"~! (7.30)
which results in the low frequency behavior
S(w) =I'(1—7)D ((iw) ™" + (—iw)" ') + o(w? ™)
= 2sin(yn/2) (1 —~)D +o(w?™1). (7.31)

wl=7
For our model, we get (using Eq. (7.25)) for w # 0

S(w) = C" (iw) 4 C°°F (—iw)
= jw (<eqM| (62(0) — s (1)) M [L— ()M (41(0) — i) ) | 2)
0

+ (eay] (@1(0) - @1(—@)) M [I - gﬁo(—iw)M} B (@1(0) - @1(_2'@) |2)

— {eqy| 282 (0) — o (iw) — ¢2(—¢w)|2>).
(7.32)

The condition w # 0 is needed to ensure that I — @O(iw)M is invertible.

In this case we can also look at the low-frequency behavior. We will assume that the second moment
of the average waiting time distribution (eqy;|%o(¢)|X) is infinite. More specifically, we will assume that
we have an expansion

U, (A) = 0, (0) — AK,, + A'TPL, + o(AFF) (7.33)
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with 0 < 5 < 1. In principal it is possible to have a different 8 for the different n moments, but we will
only consider here this simpler case.

The calculation are very similar to the one performed above, but also very technical. Therefore they
are presented in App. B. The result is Eq. (B.5)

_ (eam|L2|X)  (ean|L1]X)(ean|K1|X) <€qM|K1]E>2 (ean|Lo|X) 2sin (8F) s
S(w) = _
. (eau| Lo| 2) 2<eqM’L0‘E><GQM‘K0|E> ! (eqy|Ko|2)? | (eau|Ko|E)  w!'=F +o(w ™)

(7.34)
We have a 1/f noise. This expression can be simplified by using the second moment of the long time
distribution centered to the mean value of the process (Eq. (C.19), using the definitions Eqgs. (2.14), (2.16)
and (2.17))

Varcenter :/ dz (.I‘ _ M?Sym)Qah (z)
—lt asym 2 2
= (B =) +of (7.35)

which gives
center <eqM|LO|E> 2sin (B%)

S(w) = Var (cau] Ko|Z)  wl?

+o(w?™h). (7.36)

8. The Expected Value of the Spectrum

8.1. Determination of the Spectrum

In the last Sec. 7 we have determined the spectral density by means of the Wiener-Khinchin theorem.
This works only for stationary processes (in the weak sense). But as soon the mean waiting time is
infinite, the processes considered here, do not fulfill this requirement. Additionally, when working with
data (experimental or simulated), one usually does not have the correlation function, but has to estimate
the power spectrum from the data. Many methods have been established to accomplish this task [41].
A central element is the so called periodogram on which properties many other methods of spectral
estimation rely.
For the stochastic process X (t) we define its Fourier transform up to time 7'

Fr(w) :/0 dt exp(iwt) X (t). (8.1)

The spectrum determined from the interval [0, 7] is given by

1

Sr(w) = TFT(—w)FT(w) (8.2)

which is the definition of the periodogram. In the case of stationary processes the expected value of the
periodogram converges towards to spectral density

S(w) = lim (S7(w))(init|- (8.3)
T—o0
A problem of the periodogram is that it is not a consistent estimator of the spectrum, i.e., its variance
will not decrease when the observation time goes to infinity. This is one of the reasons why many methods
try to introduce an averaging to reduce the variance. Nevertheless, many properties of other estimators
can be deduced from the understanding of the periodogram.
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We also focus for the most time on the non-stationary case. We assume that we have the following
expansion of the waiting times for small Laplace parameters A

Wy(A) = ¥p(0) — A" Ko + o(A%)
=T-—\“Ky+o0o(AY) (8.4)
with 0 < a < 1. Here a@ = 1 is the stationary case. The value « has been introduced in Section 2 and
7% = (equ|Ko|X) (Eq. (2.12)).
We are interested in this section in the behavior of (Sy(w)) for large T. We will find, that the limit

lim7_, o0 (ST(w)) = 0 for a < 1. Instead, the value of (St (w)) decays with T~ (as shown later) which
motivates the following definition

So(w) = lm T'*(S7(w))(init)- (8.5)

T—o0
The formalism using the multi-point correlations can be used by a little trick of introducing several times
T{Sr(w)) (init) = (Fry (—w) Fr, (W) (init : (8.6)
Ty =T,=T

We have to determine (Fr, (—w)Fr,(w))init| for large T and Tp where the ratio of T and T3 stays
constant. This is easily done by introducing a scaling factor ¢

CH(Fp, e (—w) Fr, /¢ (W)) (init] (8.7)

and letting ¢ — 0. The scaling (% corresponds to the large T behavior T(St(w)) ~ T~%. Taking the
Laplace transform with the Laplace pairs Ay <> 17, Ao <> 1o

L [¢*(Fr, /¢ (~w) Fr, /¢ (w)) (init )

oo [e’e} Tl/( T2/C )
o [Can [ ame ot [ an [ an et ()X (1)
0 0 0 0

=S / dT1€7(Q1+w)T1/ dT267(0‘27”)%<X(T1)X(T2)><init|
A1A2 Jo 0
« A
_ < (init|Ca(CA1 + iw, CAg — iw)). (8.8)
A1 A

Using (5.10) and (5.11) we get

102(0\1 + iw, (Ag — iw))

= [1-do(cOn +xann]

1 7 7, . ~ . N
h <(Q\1 +iw)(C A2 — iw) (2(0) — W2 (i +iw) — Wo(Cho — iw) + P (C(A1 + X2)))|Z)

1. o A |
+ m(%(@\g —iw) — ¥ (C(A + /\2)))M‘C1(Q\2 _ zw)>

Lol
C)\g—iw

(1 (CA1 + iw) — T (C(A1 + A2)))M|Cy (A + iw)>>. (8.9)

Analogous to Eq. (7.11) we get

| 2){ean|
(e | Ko| )¢ (A1 + Az)
2 (e
_ M +o(¢). (8.10)
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Using this result, we get in leading order in ¢
|Ca(CA1 + iw, Chg — iw)) ~

|x>m <;<eqM\2¢2(0) — Uy (iw) — y(—iw)| )

+ %<QQM|(@1(*W) - @1(0))M|él(*iw)> + _LM<GQM|(¢1(W) - @1(0))M|C'1(zw)>>

:|2>mé <<eqM12¢2(0) — Uy (iw) — Yo (—iw)|E)

(01 (0) — (i) M [X— (i) M]  (d1(0) — y (i))] 5)

- <GQM

-1

— (eqp| (#1(0) — ¥ (—iw)) M [I — @0(—110)1\4 (1(0) — @1(_iw>)\2>>
1
:|Z>mo(w) (8.11)

where the last line defines the function o(w) which collects the all w-dependent terms. We are interested
in
1 1

%ILI})L [C(Fr, ¢ (—w) Fry ¢ (W) imit) | = mma(

w) (8.12)

where we have to invert the Laplace transform for 77 = Ty, = T. The technical details are laid out in
Appendix A. We use Eq. (A.10)

! L | @=n=T1)= _0®) e (8.13)

Ll
Mz (A1 + Ag)

we get for large T' with Eq. (8.6)

o(w)

<ST(w)> ~ Tailm.

(8.14)

Here, one sees directly, that the observed spectrum decays in the @ < 1 case with the measurement time
T as T L

In our extended definition of the expected spectrum Eq. (8.5) we have then

& _ o(w)
Sa(w) “T+a)

1 1 . R A
=P T o) e Ko 5 &2 <<eqM]2zlf2(0) — Uy (i) — Wy (—iw)| X

— (eana| (1 (0) — (1)) [1— o (ic)] (d4(0) — (i) | )

-1

— (e (1 (0) — W (—iw)) M [1 - @0(_@)1\4 (81 (0) — @1(_iw))|2>> . (8.15)

In the stationary case o = 1 this gives exactly the result obtained in Eq. (7.32) with help of the Wiener-
Khinchin theorem.
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8.2. Low-Frequency Behavior: 1/f Noise

We are interested in the behavior for small w. Here, we additionally assume that also the first and second
moment have an expansion similar to the waiting time

1 (A) = ¥ (0) — A*K 7 4 o(AY) (8.16)
y(N) = W (0) — A*Ky 4 o(A%). (8.17)

Essentially this means, that the first and second moment conditioned on the waiting time have the same
order of magnitude for all waiting times. Here, we allow K; = 0 (e.g., when the ensemble mean of the
process is zero), but need Ko # 0. The case that the expansion have different exponents can be treated
similarly.

We get again similarly to Eq. (7.11)

i) = | 2) (ed| N
[I 0y (£ )M} *<eqM|K0|2>(im)a+ (IWI“)' (8.18)

With this result, we get in first order (the branch cut is at the negative real axis)

Sa(t) TT(+ Oé)<i(lM|KO|E> é <<eqM|(iw)aK2 + (-iw) K| X)
. \a [ D) ean| . 1,
- <GQM‘(ZW) K1M<6C1M|Ko|2>(iw)°‘(zw) K1|E>
| 2){edu

— {eqy|(—iw)* K1 M

1 ({eaulB] ) (eau] Kal D)"Y (i) + (—iw)e
= — 3 5 . (8.19)
T+ ) \ el Kol2)  (eau|molz?) @
Calculating
(iw)* + (—iw)* = (exp(ian/2) 4+ exp(—ian/2)) |w|*
= 2cos(am/2)|w|” (8.20)
gives the expected spectrum for small w
2
_ Ko | X K| X
S () = 2eos(om/2) (lean|Ko|Z)  (eau| 2| Z) ) 1 (8.21)
F(l+a) \(eau|Ko|Z)  (eqy|Ko|E)? ) W~

The factor with the K; can be understood by looking at the long-time distribution Elt(x) (Eq. (2.15))
Its variance o7, is calculated in Appendix C in terms of the (eqy|K,|X) (Eq. (C.12)). Using this result
allows to rewrite the small frequency behavior of the spectrum as

- 2cos(am/2)ol 1
Sl = T ) WP

(8.22)

Therefore, the expansion Eq. (8.22) is valid as long as 012t > 0. This is the case if for long waiting times,
the possible x values do not concentrate on a single value.

In the other cases, one has to go back to Eq. (8.15) and use more terms in the expansion. A typical
case for this appears when the signal consists of long waiting times with x = 0 and burst of finite average
length between these waiting times.
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8.3. Examples

We illustrate these results with our models. The single state model has

1 . .
92 smgle 7single /. _ jsingle/ .
R ey (280 — d i) 0 i)

GO i @ i)
1— /(/;Single (ZOJ) 1— ’J]Single(_iw) :

szinglc (w) . w2

(8.23)

We want to specialize the distribution ¢*"8'¢(x,¢) to be equal to the alternating process, but not with
alternating between the + states but by randomly selecting them. This is done by choosing

(6(x — Ip) 4+ 6(z — 1)) ™ (¢). (8.24)

; 1
single 1) = =
(e, t) =

_ —1
Especially, the state averaged distribution ¢(z,t) and the long time distribution qbt(x) are the same.
With

o In .
ginee(n) = ==t (), (5.25)
we get in this case
Gsingle _ (I+ 71—)2 9 _ Talt (; _ galty - 9
SE) =t g apee (27 0N @) 9 (). (8.26)

The low frequency behavior comes from expansion z/?alt()\) ~ 1 —7*\* and reads

(I —I-)?cos(ar/2) 1

Gsingle () o~ : 8.27
S (w) 2IF(1+a)  wre (527
This result could also have been obtain by the long time distribution in this case which is
It 1
¢ (z)= 5(5(x—1’+)+5(m—l,)) (8.28)

with variance

I —1_\°
aﬁ:(*Q ) (8.29)

For the alternating model, we get

St () = 1+maw2( — " (iw) — M (—iw)) (eay] (0 12> |1Z)
jalt 2 Jalt (;
Sl (24) (1) ()

(i
(A= (iw)? 0L\ ( 1 M(—iw)) (I 0
o el (25) (i T 0) (5 2)120)
L (1-gTMi) 1 (i)
7211(1 + a)Tw? (1 +1ﬁalt(iW) + 1 +1ﬁalt(_iw)> : (8.30)

This is clearly distinct from the spectrum obtained for random switching. But the low frequency behavior

is again

(I, —I_)%?cos(an/2) 1
2I'(1+ «) w2’
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which is clear as the alternating models also has the same long time distribution

5'(x) = % (6(x—I)+6(x—1_)). (8.32)

We also want to discuss here the burst model, as its long time distribution is Elt(x) = d(x — I_) with

variance 0'12t = 0 which generates a different low frequency behavior. The expected value of the spectrum
is

(I, — 1) 1 1
2 I(1+ a)(cay|Ko| D) w?

} <(1 — DS () ) (1 — hPUst () ) L= Pt (—iw)) (1 — &E““(iw))> (8.33)

ngurst (w) _

1— A_ki)_urst (iw)q[}tlurst (’LLU) 1— ,&Rurst(_iw)qjjliurst(_iw)

which still is an exact result without any reference to the exact forms of 1/33‘”“ (A) and PPUst(N) (ie.,
setting z/A)]j_urSt()\) = Purst()\) = 2l ()\) gives the result S2'%(w)). Now, we remember our assumptions
Eq. (2.30)
PP ON) = 1 — e A% + 0(AY)
PP (N) =1 — e\ + o(\). (8.34)
with 0 < < @ < 1. And Eq. (2.31) fora=1and 0 < <1
,&iurst(A) -1 C+>\ + Cf))\1+5 4 O(/\lJrB)
PRI () = 1 — e A® + o(A%). (8.35)
The low frequency behavior of the spectrum is then for & < 1 (note: 7 = (eqy|Ko|X) = c_/2)

(I = 1) 1 (eoey (iw)* T +o(w™) | ey (—iw)* T 4 o(w*H%)

Qburst w) =
S w) I'l+a)e_ w? < c—(iw)™ + o(w®) c—(—iw)® 4+ o(w®) )

2cos(an/2) ey 1 -
2 a—2
T(ta) o wa +o(w* 7). (8.36)

The 1/ f noise is determined by the larger exponent &. However, the decay of the spectrum is still given
by a: (Sp(w)) o~ To=18burst (),
For a =1 we get

=y —1-)

Sburst(w) _ (I-i- B I—)2 i 1- wiurst(iw) 1- wiurSt(_iw)
« I-v 1 +OZ c_ 2 S burst / - 1_,([)burst(,iw) S burs . 1_,(/3burst(_,t'w)
e L2 ) oy O ) e

(Iy —1)* 1 <c+iw — cf) (iw) P + o) —cpiw — cf)(—iw)HB + o(wHB))

I'(l+a)e_ w? 1+ S (iw)l= + o(w!~®) 1+ S (—iw)l= + o(w!™®)
Iy —1.)? 1 & - . .
:I(“(Jrl—i—a)zoﬂ <2Z+ cos(am/2)w? ™ + 203_2) sin(B7/2)w' P + o(w?) + o(wHﬁ))
2 2)ct 1 5
(I+fI_)2MCf—+O(w7“) fora>1-p

rl+a) % w>
= 5o @)
2sin(Bw/2) ¢ 1 5_ ~
(Iy = 1.)7 F(l(i C{é));wl—ﬁ +o(w’™h) fora<1-4.

(8.37)

We have two contributions for the 1/f noise and we see the dominant one, depending on the values of
the parameters a and f.
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9. Correlations of the Spectrum

It has been established that for o < 1 the spectrum is not reproducible even after smoothing [40]. The
correlations of the spectrum help to understand the randomness in its determination.
In this section we want to determine the stochastic long time behavior of the vector of observed spectra

(St(w1),...,S7(wr)) (9.1

where the w; > 0 are pairwise disjoint frequencies. This will be done by the method of moments [11], i.e.,
we are calculating the moments (¢; = 0,1,2,...)

(St (w1)® -+ Sr(wr) ) (init| (9.2)

and reconstruct the probability distribution from these moments.
In a first step, it is easier to allow same frequencies

(S7(@1) - -+ S7(@p)) (init) = (ST(W1)™ -+ ST(Wr) ") (init| (9.3)

such that w; appears ¢; times in the wy,...,w,. We have then p = q; +--- + ¢;.
Similar to the last Section 8 we use the trick of introducing different times

TP(S7(@1) -+ S7(@p)) (init] = (Fr, (~@01) Fr,(@1) - -+ Fry,_, (—=@p) Py, (@) (imit| - (94)

Ty==Thp=T

We introduce further the notation

W] =Wp,Ws = —Wi,... ,(Z)prl = Gp@gp = —Wp (95)

and similar to the definition of Ay .
7= & (9.6)
JjeT
We have then

TP(ST(w1) - -+ ST(Wp)) (init) = (Fry (—@01)Fry (—=@2) -+ Py, (=@2p—1) Py, (—02p)) (init| .
Ty==Top,=T

(9.7)
The long time behavior is captured by the limit
lim ¢P*(Fp, je(—=@1) -+ Fry, ¢ (—@2p)) (imit| (9.8)

=0 Ty==Tp,=T

The scaling (P stems from the scaling Sy (w;) ~ T ! for large T. The Laplace transform of this
expression (with the Laplace pairs \; +> T;) is

L [Cpa<FT1/C(_(‘:}1) e FT2p/<(_‘:J2p)>(init|]

:gpa/ dTl---/ ATy, e~ M T ATy
0 0

TI/C T2p/< - ~
x / ity / gy @O D) (X (1) - X (f2)) ot
0 0

yges N
= )\1?.)\2p<init’0{1 _____ 2p}({§)\k —I-Z(Z)k})> (9.9)

Bf}fore we proceed to evaluate the last line of Eq. (9.9), we will have a more detailed look at the term
1Cq1,... 2py ({CAR + 008 }))-
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9.1. Direct Calculation of the Correlation

The correlations can be calculated by the recursion Eq. (5.9)

o)) = [T-tdo(dc)M] Y Rewe(O))|Cer((0)) (9.10)

Le:LiDLs

where the operators R, ¢, ({\r}) are defined in Eq. (5.8).

For £; = ) the recursion ends [Co({})) = |X). All other terms can be iterated again, i.e., we get for
the n-point correlation (£, = £;)

Gt = X [ t0e)M] T Revs(OwD[Ces(Medrers)
Lo:L1DLo

= [1-d0(4c)M] " Rewo((n)] )

Y [ide)M] T Re e (b [T o(Ae)M] T Ree (DG, (D)

Lo,L3
L12L20Cs

"Rl 2)

Y It Rene, (D) [T Fo(a2)M] Reso(0e))]2)
L

2
L12L220

+ Z [I—ﬁg(Aﬁl)M]_l R[,pCz({)‘k})"'R[,3[/4({/\k})|éﬁ4({>\k})>'

Lo,L3,L4
Ly 2£22£32£4

= [I - WAO(ALJM}

(9.11)

The last sum > £, 24,2, IS taken over all sets Lo, L3 and £4 which form a nested sequence of true
L1DL2DL32Ls
subsets: £; = L1 D Lo 2 L3 2 L4. As long as the last set is not empty, one can continue to apply the

recursion relation Eq. (5.9). Iterating this until it is no further possible to apply Eq. (5.9) leaves us with
a sum over all possible nested sequences of true subsets of £; £; = £1 2 L2 2 -+ 2 Ly 2 () of length s

G =Y Y [Ide)M] Reea (D) [T do(de)M] o Reg(()] ).
s Loy....Ls

L1=L;
L12L32- 2L 20
(9.12)
The first sum, is the sum over the different length of the nested sequences of subsets.

Let us construct the two-time correlation |CA'{1’2}({/\;€})> to illustrate this construction. We are looking
for nested sequences of subsets of {1,2}. We have one sequences of length s =1

{1,2} 20 = L;={1,2} (9.13)
and two of length s = 2

{12} 2{1} 20 = Li={12}, L, ={1}
(1,2} 2{2} 20 = £, =1{1,2},L, = {2}. (9.14)
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X(t) A

. -1 !

[1- (A ao)M] L Rpaeed)  {19)

— ta t t
X(t) 4 . -1 ! . -1 !

[1*‘1’(1\{1,2})]\4 Ry () 1= (M) M P Ryo({Ak}) %)

— b2 i1 t
X(t) 4 A -1 s : - -1 o0a :

[1—‘1’(1\{1,2})]\4} PRy ((Ae)) |1 = W(Agy) M P Riojo({Ae)) 5|E>

- f ol i ts i t

FIGURE 4. Explanation of the terms in Eq. (9.15), based on Figure 3: The first term
describes the situation that ¢; and ty are in the same epoch (which can be any epoch
after the start of the process). The contribution of any number of epochs before ¢; or to

is described by [I— %, (Ag1,2y)M]~1. The contribution of the epoch containing ; and ¢ is

given by ]%{1,2}(3({)%}) After this epoch, no epoch contributes any more which is given
by |X) — a summation over all possible internal states. The second term corresponds
to the situation that ¢; is in a later epoch than ¢5. The contribution of any number of
epochs before ¢ or ts is described again by [I— @O(A{M})M]’l. The contribution of the

epoch containing only to by ]%{172}{1}({)%}). After this the same terms reappear only for
the time t;. The third term is just the second term with the indices 1 and 2 exchanged.
These pictures can be generalized to an n-point correlation described by Eq. (9.12).

Therefore, we have three contributions to ‘é{l,g}({Ak})> corresponding exactly to these sequences

i (D) = [T 0(Ap2)M] Rprapo ()] 2)
Ry (D) [T oA M] T Rsa(fah)]|2)

Ry () [T do(Ae)M] Reg(Dwh)]2) (9.15)
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which gives again Eq. (5.11) when plugging in the expressions for the R, ., ({\r}). The different terms
are explained graphically in Figure 4.

9.2. Correlation Functions for the Spectrum

Using this result with the correlation function needed for the spectrum Eq. (9.8) and (9.9)

lim €7 (init|C',.. 2y ({CAe + i1 })

=lim ¢y > (init| [I—%(CAmwfzcl)M} R, (O + i)

—0
C S l:g,....,;cs
L1={1,...,2p}
L4DL2D2L.00

{1 —Wy(C AL, + z’fzﬁz)M} o [1 —Uo(CAz, + z’fzﬁs)M} B Rep({Ch + i@ })| 2). (9.16)

The only terms that can become singular as ¢ — 0 are the terms
. - -1
[1 — By (CAL, + mﬁj)M} . (9.17)

Using Eq. (8.10) and the fact that that we do not have a singularity for ng #0

~ ~ 1 ~
I- %(mﬁj)M} +o(1) for 2, #0

5 i as ¢ — 0. 9.18
Mg—a +0o(¢™9) for 2,. =0 1
TN !

J

N - —1
- W(CAg, + mﬁj)M] -

This motivates a regrouping of Eq. (9.16) in singular terms and non-singular terms for ¢ — 0. We
introduce a new operator Rz, g, ({ A }; {&r}) which is

Reee({Awhs {@n})
-y > Ree(ind) [T-d0(dz)M

s>2

Reyes ()

Lo,...,Lg
Li=L12L22+DLs=Ls
Q[:]. #0 for j=2,...,s—1

< [T (e, M) Re e (WD) + Rewe () for 22, = 0

and

=0 for 2, #0.
(9.19)

With this new definition, we can rewrite Eq. (9.12) (with the arguments from (9.16))
[Ce (¢ +i@n}))
= Z Z |:I - ]ﬁO(CA[J + Z‘Oﬁl)M:|

Ls
DL D0

" Reyes (O + i ): ()

La,...,
Li=L1DL2D

[I — Wy(CAL, + if?cQ)M} E {I —Wo(CAz, + if?cs)M} 1 Re o({C + idx }; {@e )] 2). (9.20)
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This looks very similar to Eq. (9.12) but all terms with 2, # 0 have been put into the Rﬁiﬁi«{»l ({¢A +
iy }; {0k }). Therefore,

Cotfcntim)) =Y X [I-de(cAe)M] T Reoe, (O + i) (@)

La,....L
Li=L1DL2D-- DL D0

[T—00(CAc)M] - [T=to(cAc,)M]

" Reo({O +idey; G )] ). (9.21)
On the other hand, no term in R, z,({¢A\r + i@ }; {0 }) is singular, i.c.,
Ly Ry ({C + i} {an}) = Re, o (lidn ) {@n}). (9-22)
9.3. Long-Time Limit
With these definition, we can start calculating the last line of Eq. (9.9)
N, apy (O + 1))

—lim ¢y 3 [I . ﬁo(gAﬁl)M}

¢—0
Lo..., L
{17"')217}:[:1;L"?;"'QLSQQ)

Ry (O + i) (1)

1= 90(CAeIM| - Ry (O + i) {@))] 2)

o (r—s)a | 2){(eau] ~ e gy 2 ) ean]
—}I_I%Z:C ng FoAz Ry o, ({i0n }; {0k }) ra e,
‘ (Lo 2p} =L D L322 L£,20
~ IV e .
Re, ey ({10} {@n}) - - WRLS(D({i@k}; {@rh)] %) (9.23)
L

Since all frequencies @; # 0, we know that the conditions f)gj =0 and f)gj .1 = 0 can only be fulfilled
simultaneously when £; has at least two elements more than £;, ;. Therefore the maximal value of s
is p. In Eq. (9.23) the scaling variable ¢ appears only in ¢ (P=s)a  Any contribution surviving the limit
¢ — 0 must have s = p. Therefore

lm PO, opy ({O + i)

1 ~ . -
=) > =g (o] Reye, (i} {3 )] 2)
£2)~~7£p Ll
{1,...,21)}:[:12[/22”-;[’1)2@

1 1 ~ . -

7—-01/1% e 7—.(1/1% <eqM’Rﬁp@({zwk}§ {wk})|2> (924)
2 P

We have a sum over a nested sequence {1,...,2p} = £y 2 -+ 2 L, 2 L,4+1 = 0 of p true subsets of
{1,...,2p}. Each £; has at least two elements more than £;1. There are p such conditions in a set with

2p elements, therefore each L; contains ezactly two elements more than £;1; which we call f1(4) and
F=),te, L =L U{FTG). f~ ()} As Q2p, =02, =0, they must fulfill 0+ ;) +wy-(;) = 0. The
ordering of these two indices is given by the condition @+ ;) > 0 (and correspondingly &s-(;y < 0). By
definition Eq. (9.5), we have a g(j) = 1/2(f*(j) + 1) such that Gy(j) = ©f+(j) = —@s-(j). For j running
from 1 to p the frequencies wy(;) take exactly the values of Wy, ... ,w, with their exact multiplicity.
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Expanding jo[;j+l({i®k}; {@r}) according to Eq. (9.19) in this case consists of the three nested
sequences
) L 2Lin
11) Ej 2 L;’:—l g_ £j+1 where [:;—_,'_1 = £j+1 U {er(_])}
iii) £j 2 E;—&-l - £j+1 where £;+1 = £j+1 U {f_(j)} (9.25)

We have §2g, = $2¢,,, =0, ;4 =8¢, +0pr(j) =Wg(p and 2o =0r,,, +05-(j) = ~Wy()-

Using the definition of ]N%[;].LHI ({i@}; {@r}) we calculate in this case using Egs. (5.8) and (8.15)

<eQM |RLij+1 ({iwr}; {@r}) ‘ E>
:<eqM ’Rﬁjﬁjﬂ ({ion}) | E>

+ (eay| R, o+ (i) [T = B (1620 )M | s e 2y (0] 2)

+ (eay| R, (o)) [T= B2, W] Ry o (io))|Z)

jr1fit
1 P s s

= (ean[205(0) — W (iTy(;)) — Pa(—itg()| &)
90

L teqy (1.(0) ﬁl(iwg(j))M[Ifgf/o(mg(j))M}_l (#0) = 81 (175 ) | 2)

g(J)
1 P s A s s
_ wTw<eqM‘ (#1(0) = (=g ) ) M [T By (—ig)M|  (81(0) = b (—itg(y) ) |2)
9(j
:F(l + a)%o‘ga(wg(j)). (926)
Using these results in Egs. (9.9) and (9.24) gives (using [7_ Sa(@g)) = I1-, So(@;))
i L[ (Fr, e (~31) + Frs (~@20)) ]
cPe A .
= %1_{% m<lnlt|0{1 “.,QP}({C)\A; + ’ka})>.
P 1 1
=I'(l+«) = —. (9.27)
1;[ LQZ:,C Avee )\Qp Aﬁl o A‘CP
{1,..,2p}=L12L2 2D Ly D0
Qry=0r,= _QLP_O
Here, we have to explicitly state the condition 052 = Q[;Q =...= fZLP = 0 as this is not enforced by the

Rﬁjﬁjﬂ ({iwg }; {&r}) any more.
The next step is to invert the Laplace transform

1 1
Lt 9.28
l)‘l"‘/\ZPA%J”A%J (9.28)
at the point Ty = --- = Ty, = T. This calculation is done in Appendix A. Eq. (A.10) reads
1 1 Tre
Lt TN= =Ty =T)= —— 9.29
N gy 4G, A (Th op=T) I'(1+ pa) (9:29)
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and therefore

N N 1+ o) &5 A
i po — — s =P 77 .
Jimm P (Fryc(—n) -+ Fryc(~@m))amit) = T 7 +m)jljlsa(wj) LE:ﬁ 1. (9.30)
- 259 kp
{17"'12p}:£’1;L22"'£’P2@
Q£2:f2£2:---:f)£p:0

Switching back to the frequencies w; (p = ¢1 + -+ + ¢-) which are pairwise different (Eq. (9.3)), we get
for long times

a ... ar (1 P
lim AoT@) e Sr(w)t) D1+ a) 3> 1. (9.31)
T—00 (ST(w1)>‘H ce <ST(wT>qT F(]. +pa) for
{1,..., 2P}:£172’£2PQ'“2£172®
Opy=Qtry e, =0

In a last step we have to determine the combinatorial expression

> 1 (9.32)

c2a"'$£’p
{1,...,2p}=L1DL2 DL, 20
Qpy=Qp,==0s,=0

which counts the number of nested sequences of subsets {L,....2p} = L1 2 L3 D -+ 2 L, D 0 with the
condition 2, = 27, =--- =2, =0.
We have already argued, that
L= Ly U{T0): f~()} (9.33)

where f*(j) and f~(j) take value in 1,...,2p with &+ ;) + @ ;) = 0. By demanding &+ (jy > 0 (resp.
@r+(j) < 0) the functions are unique. Therefore, we have to count how many functions f*(j) and f~(j)
exist with W+ ;) > 0 and @y- ;) = —wy+(;). For fT(4) we can take any permutation such that Wr+(j) 18
positive. Therefore, we have p! different functions. Once f7(j) is fixed we can only permute the values
of f7(j) if @y (;) does not change. For a fixed fT(j) we have therefore ¢i!-- - ¢,! possibilities for f~(j).
This gives

Z 1=plg! gl (9.34)

£27'~~;£p
{1,.‘.,217}:512[:2;-“2[/}72@
Qpy=0p,==0,,=0

Using this in Eq. (9.31) gives (p=q¢1 + -+ + ¢)

- (Sp(w)® - Sp(w)®)  p!T(1+ a)?

700 (Sr(wi))a -~ (Sp(w)ar (1 + pa) alg! (9.35)

or alternatively written for large T'

o PLA+ )P H 45150 (w;). (9.36)

Jj=1

i p(1—a) @ ... qr
A, TS w) ™ - Sr(wn)™) = Trame s

9.4. Distribution of the Spectral Observables
We can now show our main result for the correlation of the spectral density by using the method of

moments [11]. We want to show the convergence in distribution for large T

lim T'=%(Sp(wy), ..., Sr(w,)) = Yo (E1Sa(w1), ..., ErSy(w,)) (9.37)

T—o0
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where Y,, F1, ..., E, are independent random variables. The random variable Y, is of Mittag-Leffler
n! a)™ . .
type which can be defined by its moments (Y) = ;Ei%tm)) The random variable E; are exponentially

distributed with moments (E") = n!. Calculating a moment using the right side of Eq. (9.37) gives

lim (717 Sp(w)®)" - (T Sr(w)®) ™) = lim TPE=(Sp(wy)® - Sr(w,)or)
T—o0 T—o0

=02) TT ) St
P+ HqJ'S w;)b. (9.38)

1+pa e

As these are the same moments as determined in Eq. (9.36), we can conclude the convergence in distri-
bution described by Eq. (9.37).

10. The Spectrum of an Aged Process

Sometimes, it is also interesting to consider the determination of a process which has aged a time ¢,
before the measurement starts. We will develop the argument closely to argument in Section 9 — we will
also rely heavily on the derivations done there.

First we define the aged Fourier transform of the time series

T
Faeed(wit,) = / dt exp(iwt) X (t + t,) (10.1)
0

and the corresponding periodogram estimator for the spectrum

Sagd(w;t,) = %F;ng(w;ta)F;@d(—w;ta). (10.2)
We are interested in the behavior of
(S35 wrsta) ™ -+ ST (Wi ta) ™) (i (10.3)
for large T' and ¢, where the w; > 0 are pairwise disjoint. Following Eq. (9.3) we define the wy,...,w,
withp=q +---+¢qr
<S%ged(w1,t ) "S;ged(wp’ ta)) (init| = <S;ged(w1;ta)ql "’S;ged(wr;ta)q"><init\- (10.4)

We also continue to use the definitions Eq. (9.5) for @; and Eq. (9.6) for 2. Following Eq. (9.7) we
introduce several time points

T2 (S5 @13 ) S @) ) = (PR i)+ P (<o) e (10.5)

Ty=-=Tp,=T

10.1. Constant Aged Time

In a first step, we are interested in the limit of the measurement time 7" going to infinity while the aged
time t, stays constant. For this we take the limit

d, -~ d, -
%IL% ¢ ;g/QC( Wiita) - F;Qg:/g(_‘”%; ta)) (init|

. (10.6)
Ty=- =T, =T
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with the Laplace transform (see Eq. (9.9), we additionally take the Laplace transform of ¢, with Laplace
partner s,)

L[ e (—ns ta) - P (~Gapi ta)) s

(o) oo (o)
=¢Pe / dt, e et / Ty -- / ATy, e A Ter
0 0 0

T1/¢ T2p /¢ L N
X / dty-- / Ao, e @ T @200 (X (41 4 1,) - X (tap + ta)) finit]
0 0

— Cpa .| Aaged ..
*m@mtlcu ..... apy (1% + i@ }5 8a)).

(10.7)
The correlation on the right hand side can be reduced to known quantities by Eq. (6.4)
|G ooy (L + i@} 50)) = > BY gy (O + i@k} 50)[C ({Che + @i })) - (10.8)
£f:{1,...72p}2£f
with the definitions Eq. (6.5)

1

R, (A} 5a) ()N (A sa) M (10.9)

iecoee M 5..57 50,

and Eq. (4.11)

B ) = s [T do(sM] (808) ~ Fa(sa) (10.10)

Sa —

Therefore the term Rf{vlv oprey {CAR + i@y }; sa) Is not singular

}i_{% E?lv,...gp}cf({o‘k + Wk }; 5a) = Rf{vi...,zp}gf({i@kh Sa) (10.11)

and

lim POy (O +indisa)) = D0 R apye (i) sa) lim €7 Coey ({CA + ik ).
Le:A{1,...,2p} DLy
(10.12)
We have to determine the limit lim¢_, ¢P*|Cr, ({CAx + i@ })). For Ly = {1,...,2p} we have calculated
in Section 9 (Egs. (9.24) and (9.26))

%%<pa|c{l,...,2p}({<)‘k + i@x}))

p
o 1
j=1 ,CQ,...,,CP Ly »Cp
(Lo 2p}=L1 2L 22,20
ry= iy ez, =0

This leaves us with the cases £r C {1,...,2p}. In this case we get from Eq. (9.20) (with the knowledge
that 2, =--- = (2, =0)
Ceion+imh) =" > [1—do(Che, +if2e,)M|  Reye, (O +in ki {0)

L

Lo,....LCo
Le=L12L522L.20

[T do(ca)M] o [T do(cac,) ]

" RO + i) (@) 5.
(10.14)
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. 1
The only terms which can become singular for ¢ — 0 are the |I—Wy(¢CAz)M terms which will

contribute with (T¢. In section 9 we have shown that £; must have at least two elements more than
L;11. But L¢ can have at most 2p — 1 elements and we have at most p — 1 singular terms, i.e.,

P Cr ({C + i })) = O(¢™)  for L¢ € {1,...,2p}. (10.15)
Therefore only the term with £y = {1,...,2p} survives in Eq. (10.12):

. ~aged .  Afw . . ~ -
}E)% Cpa|c?1g,e..,,2p}({0\k +i0k};5a)) =R oy ap ({10} 5a) %E}% ¢P|Cra,... 2py ({CAk + i1 }))

1 -1 ~
== [I—WO(SE)M} (@5 (0) *WO(Sa))|Z>
o 1
x P+ ay [T Sa@) > TR
j=1 Lo,....Lp 1 P
{1,...,.2p}=L12L22- 2L, D0
Qey=Qr,==0r,=0
1 o 1
=) —r@+ap [] 5.@)) > TR
a j=1 Lo,..., Ly L1 Ly
{112} =L1 2L 2 2£, 20
Diy= ey (i, =0
(10.16)

The inverse Laplace transform of 1/s, is just the constant function with value 1. The other terms are
exactly the ones obtained in Eq. (9.27) without aging. Therefore, in this limit any aging before the
measurement t, does not play a role. This can also be understood heuristically: the aging affects only
the first epoch. Since we are observing infinitely many epochs when the measurement time goes to infinity,
the first one can be neglected.

10.2. Aged Time of Order of Observation Time

In a second step, we are therefore considering the case that the aged time is of the same order of magnitude
as the measurement time. This is done by scaling the aged time ¢, in the same way as the measurement
time

. d ~ d ~
lim ¢P(Fpf)e (=@15ta/Q) -+ Fryle (= Gapita/ ) i : (10.17)
Ty=-=Tpp=T
The Laplace transform is
aged ~ aged ~
Li¢P <FT;g/C (_WU ta/C) T FTfp/C(_WQ;D; ta/<)>(init|}
=P / dt, et / d7y- - / ATy, e~ M1 ATy
0 0 0
T1/¢ T2p/C s B
% / dtq-- / dts, e—z(w1t1+~~+w2pt2p)<X(t1 +ta/C) - X(tgp + ta/C)>(init|
0 0
Cpa+1 .| Aaged .~
:7)\1 v <1n1t’C{1’m’2p}({()\k +idg }; Csa)>.
(10.18)

229



M. Niemann, E. Barkai, H. Kantz Renewal theory for a system with internal states

We have analogously to Eq. (10.12)

. ~aged . . . . A .
lim PO oy {CA+iw ), 52)) = Jimg > CRYY oy ({CwFi@1}, C5a)CP | Crp ({CAR+idn}))-
l:f:{l ..... 2p}2£f
(10.19)
The terms with £¢ C {1,...,2p} are O((%) according to Eq. (10.15). We calculate from Eq. (4.11)

lim (TP (CA 7 + 0273 (sa)

¢—0
= lim ¢° [1-& (Cs )MT1 ¢ (w (CAy +i25) — B (Cs ))
¢—0 0 N <537C/1‘77i0~7 " 7 7 A
I L -
_|Z)(eau| _if{j lim ¢ (‘I’n(CAJ +if2g) - Wn(Csa)) for 27 #0
TS ; J Wy 07 =
o m (WH(CAJ) wn(gsa)) for 27 =0
—0. (10.20)
Therefore with Eq. (6.5) R
lim, CHORY opye, ({CA + ik}, Csa) = 0 (10.21)

and only the term with £¢ = {1,...,2p} remains in Eq. (10.19)
lim Cpa—i-l ‘C«aged ({C)\k + ia)k}, 3a)>

) {1,....2p}
= lim CRYY . opyn,omy ({O + i@k}, (5a)¢P [ Cra 2y (A + i1 1))
1 . -1, .
S ST [I—;z/ M} (w A — )
PRSP L 0(Csa) 0(CA,..2p1) — Po(C8a)
L 1
X |E>F(1+Q)Pl So(@;) > VRS
7j=1 Lo,...,.Lp 1 P
{1,..,2p}=L12L2 DL, 20
Qry=Qpy = =r, =0
_ SOl _ « 1
=2+ o) [ Sa@;)) e T _ (10.22)
jI;[l £2;£p Sa(sa_Aﬁl)A£1-~'ALp
{17"'72p}:£12£22“'2£1’2®
Ory=0,= =z, =0

where we used

lim [I — LIC/O(Csa)M}_l (WAO(CA{L...,Q;D}) - L’C/O(Csa)) ‘E>

50
=|Z) Fasa gl.i_I}})Cia<GQM|¢0(<A{1,...,2p}) — Tp((sa)|Z)
=[5 %alsg lim ¢~ ((eant|o(0) — do(¢sa)| Z) = (eanBo(0) — Fo(CAqr, . 2)|Z))
= \2>f:sg (f%;” - ?“/1?17,,,,2,)}) : (10.23)

Now we go back to the Laplace transform
|ar [t T i DS O - S 0/

= [AT [ dtae T i (B - usta6) - B (~agita /) (10.24)
0 0 (=0 Ty==Ty,=T
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We have calculated the Laplace transform of the right side for the different 71, ..., 75,

L] Bim ¢7 (B (—ns ta/C) -+ (=23 ta/ )it | Ot Aap 50)

¢—0
— CL<1n1t|0ag6d ({C +idg }; Csa)>
PYREED Y :2p}
p
_ 1 sq — A% 1
a)? | | Sa(@;) = L —. (10.25)
]1;[1 ! C;; Ao g 89 (sa — Ag,) A2 - A2
{1,..,2p}=L12L2 2 DL, 20
952 Qpy==0r,=0

This case for evaluating a multidimensional Laplace transform at a point is treated in Appendix A. We
can apply Eq. (A.2) here:

/OodT/oodt ~sTsatap [ s — A2, ! Ik Ty, = T ta)
a€ ae == = 1,0y
i ; N Ay 59 (50— Agy) A2, A2 1 >
1 sq — s
=——3 10.26
spatl go(g, —s) ( )
We use the combinatorial result Eq. (9.34) to get in Eq. (10.24)
|ar [t Tt oS O S 40/
- 1 sy — s
— P o a
=I'(1+a) Hsa(w]) > P PR
j=1 La,....Lp
{ ..... 2p} ﬁlDL‘,gD D£p+1 @
Qry=Qr,==0c,=0
(14 a)Ppl(s
- Spa—i—lsa H q] . (1027)
The inverse Laplace transform of % is given in [46] (Eq. (8) there)
i pl(se — s%) pl ta \"" .
L —a 2 2 | —re 1+2) B(1+t./T) 11 - a, 10.28
[spaﬂsg(sas) I'a)I'(1 4+ pa— «) + T ((1+2a/7) tra—aa) )

with the incomplete beta function B(z;a,b). We define therefore a random variable Z, ¢ by its moments

1+ a)rp!
I'a)I'(1+4 pa—«

Py = pa . o — a, o
(Zh o) = )(1 +£)PB ( 1+p , ) . (10.29)

1+¢

Its properties are discussed in [1][46]. Then we have in distribution

T thIEoo Tlia(sqaﬂgm(wﬁ ta)a ) S;gEd(wh ta)) = Za7ta/T(E1ga(wl)a R Erga(wr))- (10'30)
ta/:Ta:C()nst

As discussed in [40] it is not surprising that the pre-factor has the same statistics as the number of epochs.
One should remarks however, that the expected value for the power spectrum is

li Tl_a aged . -y o
lim TSI ) = (Yo, )5 ()
to/T=const

= ((L+ta/T)" — (ta/T)%) ga(w) (10.31)
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11. Summary

In this article we have introduced a general renewal process with internal states. The internal states de-
termine the observed signal and the waiting times while the dynamics on the internal states is Markovian.
This general setting allows to treat several models previously used in a unified framework. We have used
here the single state model, the switching model and the burst model as examples and we have restricted
ourself to a finite internal state space. A CTRW with power law waiting times and a finite number of
states [14] would be an example for an N-state model with N > 2. In [51] particles jumping between traps
with power law distributed sojourn times have been detected experimentally, where our theory should
apply, see also [50]. In dynamical systems theory, maps of Pomeau-Manneville type generate power law
distributed sojourn types due to dynamical intermittency. One might consider such systems in a setting
where the number of marginally unstable fixed points, which can be designed by a piecewise definition of
the map, as the number of internal states and thereby easily go beyond N = 2. But there seems to be no
conceptual barrier in expanding the dynamics M on the internal state space to an ergodic Markov chain
on infinitely many states as long as one is able to perform a perturbation expansion of the stationary state
(Egs. (7.11), (8.10)). So it would be intersting to study, e.g., a fractional time Fokker Planck equation
using a subordination scheme [19].

We have derived the technical tools for working with this type of process. Starting from a generalized
renewal ansatz, we have introduced a recursion formula for the general multi-time joint probability
distributions (Eq. (3.18)) and the correlation functions (Eq. (5.9)). Additionally, we have considered
aged processes. These are processes where the observation of the process starts at a later time than the
process. An important quantity in this respect is the generalization of the forward recurrence time for
this type of processes (Eq. (4.10)). We have also extended our tools to treat aged processes: the joint
probability distributions are described by Eq. (4.14) and the correlation functions by Eq. (6.4).

A special case are the stationary processes which is the observation of processes already running for
an infinite amount of time. This stationary description is valid as soon as the mean waiting time is finite.
For these processes, we have calculated the power spectrum by using the Wiener-Khinchin theorem
(Eq. (7.32)) from the stationary correlation function. For the case that the second moment is infinite, we
find 1/f'# noise.

We have used our tools to derive the statistical properties of observing the power spectrum in the
general case and thereby giving a complete derivation of the results motivated in [40]. We have focused
here in the periodogram estimator as the behavior of many other spectral estimators can be derived from
this one. When the mean waiting time is infinite, i.e., the waiting time distribution has a long time tail
~ 1/t with 0 < a < 1, the spectral observable decays with measurement time as 7%~!. We also find
a 1/f2~“ noise in case the long time variance let > 0. This is true for many processes encountered in
practice; we get a different behavior when the long time waiting times are completely dominated by a
single value of the signal. An example of an exception is the burst process where we have a different 1/ f7
noise (Egs. (8.36), (8.37)).

The fluctuations of the periodogram estimator of the spectrum for several frequencies is described by
Eq. (9.37). Each frequency has an independent fluctuation in the form of an exponential distribution.
However there is a common random pre-factor Y, of Mittag-Leffler type. Many smoothing techniques for
estimating the spectrum (e.g., binning) smooth the exponential distributions but they cannot account
for the Mittag-Leffler pre-factor, i.e., the 1/f form of the spectrum is established but the exact values
will remain random. For a more thorough discussion of the implications for the measurement process
and numerical simulations we refer to [40].

In the last section, we have looked at the fluctuations for aged processes. If the aged time is small
compared to the observation time, we do not see a difference to a process without aging in the limit of long
observation times. However, if the aged time is of the order of the observation time, the Mittag-Leffler
pre-factor Y,, is replaced by a more general random variable Z, ;. 7 (Eq. (10.30)) which appears also as
the number of renewals of an aged process [1][46].
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A. Inversion of a Laplace transform

In this appendix we are deriving a method of calculating a specific type of multidimensional inverse
Laplace transforms when one evaluates them at the same point in time space. To formulate the result

we take a n-dimensional function f(¢q,...,¢,) and its Laplace transform
FOL M) = LTy, T Ads e An)
/ dtq-- / dt,, exp (—()\1T1 + - —‘y—)\nTn)) f(Tl,...,Tn). (Al)

For any nested sequence of n subsets {1,...,n} =£L1 C Ly C --- C L, €0 (i.e., each £; \ L;11 contains
exactly one element). In this case we have a law similar to the convolution property

e 1 A 1.
/ dte stL? |:f(AﬁnvA»Cn1v""A£27AE1):| (Th=...=T, =t)=—f(s,...,5). (A.2)
As it is symmetric with respect to the indices, it is enough to consider the case £1 = {1,...,n}, Lo =
{1,...,n—=1}, ..., L1 ={1,2}, L, ={1}:
s 1,
/ dte tL |:)\1 f(A{l}7A{1 2},...,/1{1,.“’”})] (T1 = ... :Tn :t) = ;f(s,...,s). (A3)

In first step, we determine the inverse Laplace transform of f(/l{l},/l{l,g}, oo Aqi,ny). We start
with

LIf(Ty —To,To —Ts, ..., Ty — T, T)0(Ty — Ts) -+ 0(Tr—y — T)] (A1, -5 An)

(o) o0 o0
=/ dTn/ dTn,r--/ ATy exp (—(MTi + -+ AT) F(Ts — T, Ts — Ty, ... Ty — T, T)
0 Tn

T

(A4)

where 0(t) is the Heaviside step function. Doing the substitutions t; = 177 — Ta, to = T3 — Ts, ..
tno1=Tn_1— Ty, t, =T, gives

L [f(Tl - T2>T2 - T3, cee 7Tn71 - Tn7Tn)9(T1 - TQ) e G(Tnfl - Tn)] ()\h R )\n)
e / dt,, / dt,—q1--- / dty exp (—(A{l}tl + A{Lg}tz + -+ A{l,...7n}tn)) f(tl, to, ... tn—1, tn)
0 0 0
= f(Apy, Aoy Apny)-

9

(A.5)

Therefore the inverse Laplace transform of f(/l{l}, Apoy, - Ap ) is (T =T, To = T3, ..., Ty —
Tn7 Tn)e(Tl - TQ) e G(Tn—l - Tn)
As a next step, we combine this with the integration property of the Laplace transform

o0
1 ~
/ dte=t L1 [f(A{l},A{1,2}7...7/1{1,.,.,”}) (Ty = =T, =1)
0 AL Ay
t
:/ dte*sf/ dTl/ dTy- - /dTnf(Tl—T27T2—T3,...,Tn,1—Tn,Tn)H(Tl—Tz)m&(Tn,l—Tn)
Thn—1
/ dte /dT1 dTy- - / AT, f(Ty ~ o, Ty~ Ty, Tuoy — To, T,)
0

oo T1 Tnfl
dTl/ dTy- - / AT, e T f(Ty =Ty, Ty — Ty, ..., Ty — Ty, T},)

5/

1 o0 o0 o0

7/ dTn/ dT, - / ATy e T f(Ty — Ty, Ty — Ts, ..., Ty — Ty, T},).
S

T

233



M. Niemann, E. Barkai, H. Kantz Renewal theory for a system with internal states

Doing again the substitution t;1 =Ty — 15, to =T5 —Ts, ..., tp_1 =Tn_1 — Ty, t, =T, gives
/ dte ' L [ f(A{l}aA{l 2}7~~~7A{17...,n}):| (Th=-=T,=1)
1
- / / / dty e sttt f(g) 4
S
= (o) (A7)
. .
Which is Eq. (A.2) as we wanted to show.
We can use this result to evaluate
1 1
Lt - - — (Ty = =Ty, =1). (A.8)
lAl et Agp A{l,...,zp}A{l,...,Qp—z} T A{l,z} !
Applying Eq. (A.2) gives
> 1 1 1
dte Lt — — — (T = =Ty =t)= ——— (A.9)
/0 [)\1 o Agp A{l,...,2p}A{l,4..,2p—2} T A{1,2} g sttpa
which can be solved by a simple one-dimension Laplace inversion
1 1 P
Lt — — - (Ty= =Ty =1t)= ——. (A.10)
[Al o Agp A{l,...,Qp}A{l,...,2p—2} e A{1,2} ! I'(1+ pa)

B. Low-frequency behavior in the case of a finite mean time

. —1
As in Sec. 7 above we will determine [I — Wy(iw)M by consider the perturbation Eq. (7.33) with

0<p<l:

I— (iw)M =1 — M + iwKoM — (iw) P LoM + o(w'*?). (B.1)

We can still work with first order perturbation theory, as the first term of second order will be of the
order O(1). Therefore,

A -1 ‘Z eqM‘ +O(w
- %(W)M} iw(eqy | Ko Z) — (iw 1+5<eqM]L0|E> + o(w'*F)
__ [Z){eay| s Leau|Lo|¥) -1
= @'w<eqM’KO‘E> 1+ ('Lw)ﬁ <eqM|KO’E> +o0 (Wﬂ ) . (B.2)

234



Renewal theory for a system with internal states

M. Niemann, E. Barkai, H. Kantz

Plugging this expansion in Eq. (7.32) gives (w > 0)

_ 1 1
) = o Cean] Kol )
’E><eqM’ > (1 4 (iw)ﬁm> (in1 - (iw)lJrﬁLl) |2>

<<GQM| (iwK: — (iw) "7 Ly) Miw<GQM|K0|E
(e eqy | Lol Y
o ot = i 1) M R (e ) - v

+ <eqM|(iw)l+BL2 + (iw)1+ﬁL2|Z>) + o(w?™1)
(eqy | K1 — (iw)ﬁL1’E> ’ Y <eqM‘L0|E>
( O ol )

<eqM|K0’2>
<eqM|L0’2>>

w

2
i (fealBy = (i) L)\ () (—iw)?
w (ea| Ko| &) (eani| Ko| &)
i) 14+8 )18
 (iw) +2( iw) (eqp|La| XY +o(w®)
w <eqM’KO‘Z‘>
_ () — (iw)” <<eqM|K1’E>2<eqM\L0|E> _ g {ean| Ka|¥) (ean | L] ) <equL2|E>> +o(w ).
i (eau | Ko| £)” (eay| Ko=)’ (eay|Ko| Z)
(B.3)
The w dependence can be transformed via (the branch cut is at the negative real axis)
(iw)? — (—iw)? 1 iF —(—i)?
iw S wi-p i
1 exp (zﬂ%) — exp (—iﬁg)
C wi-p i
2sin (ﬁﬂ)
And we have
sy — [ Seanl Ko £) (eau|Lo|X)  ean| K |Z) (ean|La]2) | (eau|Le|2) ) 2sin (53) = 5,
S(w) = 3 —2 2 5~ tow’)
(eqy | Ko| ) (eqy | Ko| ) (equ|Ko|X) ) w
_ [ CeauZe|Z) — (eaw|La]|£)(eau |K1]£) | (eau|Ka|[£)] (eau|Lo|£) 2sin(BF) 5,
= - + 5 5~ Tow )
(eau|Lo|X) (ean|Lo| X) (ean| Ko X) ~ (eqy|Ko|2)” | (ean|KolZ)
(B.5)
C. Interpretation of the expansion terms
We already claimed in Section 2 that the asymptotic moments
B = T (X7 (1) e (C.1)
can be expressed via the K; which are defined by the expansion
¢71,(>\) = in(o) —\K,, + 0()\&) (02)
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with 0 < o < 1. We use Eq. (3.19) to get the Laplace transform

oo N o0 .
/ dt exp(—=At)(X™ (1)) init| = Z / dx x"<init|P1 (z,m; /\)>
0 m=1" —©

= (init] [T Bo)M]  (8,(0) ~ (V) |5). (C.3)

In Eq. (8.10) we have already determined that for small A

7 -1 _ |E><eqM| —«
[I - %(A)M} = e e (A (C.4)

such that with the final value theorem for the Laplace transform

™ = lim \ / dt exp(=At)(X"(t)) init|
A—0 0

— lim (init| [I - gfxo(A)M}_l (%(0) — kf/n(A)) 1)

_ (eay| Kn|Z)

 (eay|Ko|Z)" )

This result is valid both for the ergodic case (o = 1) and the non-ergodic case (o < 1).

In the non-ergodic case, these moments can be directly expressed by the properties of the process.
They correspond to the moments of the long-Time distribution alt(x) defined in Eq. (2.15). It describes
the long-time behavior of ¢(x,t) = (eqy|®(z,t)|X) (see Eq. (2.7))

S, Jo At é(z,t)
O = O T, e ) C6)
with moments
= [ ')
_ i I W el t) (C.7)

T—o0 fT dtf_oo dx ¢(x,t)

Similar to [20] (Egs. (1.6), (1.8)) we have the correspondence of the large time behavior (for 0 < o < 1)

T
/ dt/ do 2™ ¢(z,t) F(l )<eqM|K n|X) (C.8)
to the small A behavior

{equ [P (V)| ) = (eay |7, (0)] £) — (eay| K, | Z)A*. (C.9)

The long time moments are then

7~ tim T=*(eqy|Kn|X)/T(1 - a)
" Tooo T=(eqy | Ko|X)/T(1 - )
_ (eay|Ka|X)
— m. (C.10)
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Especially, in the 0 < a < 1 case, the moments of the long time distribution and the asymptotic moments

of the process X (t) coincide
It

M?Lsym — En (Cll)
The variance o of alt (x) is given by
—1 —1
012t = z/J2t - (z/}f)Q
(cau|Ka|£) — (ean|K:|Z)”

= — . C.12
(cani Kol Z) (e o 5)? €42

This last expression scales the small frequency behavior of the spectrum (Eq. (8.22)). B
In the ergodic case (a = 1) the values of (eqy|K,|X) can be expressed with help of ¢(z,t). For this
we note

(ean|Kn| ) = —(ean |#,(0)|Z)
:/0 dtt<eqM’y7n(t)’E>
:/oodtt@n(t). (C.13)
0

Therefore, in this case

! Jo~ dttd(t)
This is the average of the nth moment weighted by its corresponding waiting time. This is explained by
the fact, that the process stays with this value for the waiting time which has to be taken into account
for a time average. For o < 1 this expression is not defined as the denominator is infinite.

However, also in the ergodic case the long time moments can be used to explain the next terms in the
expansion (Eq. (7.33))

(C.14)

@, (\) = ¥, (0) — AK,, + M HPL, + o(A1HF) (C.15)
with 0 < 8 < 1. Again similar to [20] (Egs. (1.6), (1.8)), the long time behavior
T edy |Ln| &) 15
dt/ drz"¢(x,t) ~ <7T B C.16
fooaf aearden = SRc (€40
corresponds to the small A behavior of
Bn(\) = 1, (0) = (equ | Kn| )N + (eqy| Ln| Z)ALFE. (C.17)
We obtain in this case
_ T-°-1 L,|X2)/
1/1: — lim (eam|Ln|Z)/|IT(=P)]
T—oo T=A=1eqy |Lo|Z)/|1(~5)|
L,|¥
_ (eau|La|Z) >, (C.18)
(ean|Lo| )

With this, we calculate the second moment of the long time distribution with respect to the mean
value of the process

center / dz asym) alt (.T)
= Uy — B ()
_ (eam|Le|Z)  (eau|Ly|Z)(eqn|Ki|Z) (eau| K1| )’
(ean|Lo|Z)  (ean|Lo| Z){ean|Ko|Z)  (eqy|Ko|2)*
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This expression appears in the low-frequency behavior of the spectrum for this case.
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