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Renewal theory is ordinarily reduced to the theory of certain types of

integral equations. Since the basis for the integral equations is a simple proba-
bility process, however, it is to be expected that a treatment in terms of the
theory of probability, which uses the modern developments of this theory,
will shed new light on the subject. The purpose of this paper is to present such
a treatment.

Renewal theory, in the simplest case, deals with the following situation.
A population of individuals is at hand; when any individual dies he is im-
mediately replaced by a newly born individual. The problem is to investigate
the development of the population, particularly the age distribution. Since
the individuals are supposed to live and die independently of each other it is
sufficient for most purposes to consider a population consisting at any time of
only a single individual. At birth, the future lifetime of the individual is a
chance variable with distribution function P(x) (the probability of death be-
fore age x). At any age x, the lifetime remaining then has distribution function

F(x+y)- F(x)
Fx(y) =-■ •

1 - F(x)

We shall always assume that the individual has a chance for survival, that is
that P(0+) <1. The course of the population can be described as follows: at
/ = 0 the individual is of age xo, where xo is a chance variable with distribution
function Hx)> the individual lives a further time Xi, dying at age xo+Xi; his
successor lives to age Xi, the next to age x¡, and so on. The chance variables
Xi, Xi, ■ • ■  are mutually independent:

Xi has distribution function F^x) ;
Xj has distribution function P(x), if j>l.

Every problem of renewal theory must thus be expressible in terms of such a
sequence of chance variables, and all the standard theorems relating to sta-
tionary sequences of independent chance variables must have significance for
renewal theory.

Let »(/) be the number of sums

Xi, Xi + x2,

which are less than /, that is, the number of deaths which occur before time /.
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For each t, n(t) is a chance variable. Let x(/) be the age of the population at
time /:

x(t) = t - [xi-\-+ x„(i)] (if n(t) â 1)

= xo + t (n(t) = 0).

For each /, x(/) is a chance variable, and renewal theory becomes the study
of this x(t) process. The theoretical problems of renewal theory center about
the asymptotic properties of x(t) for large /. In particular it is important to
ascertain under what conditions the x(t) process is asymptotically stationary
(/—->co) and asymptotically independent of the initial distribution «J?. The
latter properties are usually formulated as follows. Define Ux(t) as the ex-
pected number of deaths before time /, under the hypothesis that the initial
age Xo is x,

Ux(t) = £{xo = x;n(t)\.

Then the above properties are interpreted to mean that U¿ (t), the probabil-
ity density of a death at time t (if Xo =0), converges to a limit when /—* oo.

Taking up the problem from a more general point of view, Feller showed
[2, p. 253](l) that \imt^xUo(t)/t exists in all cases. Täcklind [4; 5] has ob-
tained accurate asymptotic expressions for Uo(t) under various restrictions
on the moments of order one and higher of the lifetime distribution P(x). In
the present paper it will be shown that Feller's result follows from the law of
large numbers for mutually independent chance variables with a common
distribution function, and that the theory of Markoff processes can be used
to extend Täcklind's results using hypotheses of an entirely different type.

In the following, <I>(x) will always be the distribution function of the
initial age x0, F(x) will be the distribution function of lifetime, that is, the
distribution function of x2, x3, • • • , and U(i) =E{n(i)} will be the expected
number of deaths before time t. In particular if the initial distribution is con-
centrated at x, we write Ux(t) for U(t). It will be seen in Theorem 1 that U(t)
is always finite-valued. Finally we shall always write A as the mean lifetime,

/i  CO

xdF(x);
0

A will usually, but not always, be supposed finite.

Theorem 1. Let xx, x2, • ■ ■ be mutually independent chance variables. It is
supposed that Xi, x3, ■ ■ •   have a common distribution function and that

,     . xi ^ 0,        Xi ^ 0,

0 < £[x2|  = A ^ oo.

i1) Numbers in brackets refer to the bibliography at the end of the paper.
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Let n(t) be the number of sums xi, x2, • ■ ■  which are less than t. Then

«(/)        1
(1.2) lim-^ = -(2).

i-»«o     / A

Moreover £{»(/)}< oo and

£{«(/)}       1
(1.3) lim     '   W ' = — •

I-, 00 / A

In other words, in the notation of renewal theory, if P(0+) <1, U(t) is always
finite and

U(t)       1
(1.4) lim—— = — •

<-»oo       / A

This theorem was first proved by Feller [2, p. 253] using Laplace trans-
form methods. It is treated here only to show its close relationship to the
strong law of large numbers.

Suppose first that A = oo, and that the theorem has already been proved
for finite A. Define xjw(/) to be x,- for x,-¿N and 0 otherwise. Then if nm(t) is
defined as the number of sums of truncated variables less than /, n(t) ¿n(N)(t).
Hence, since the theorem is supposed true for the truncated variables,

»(/) »<">(/) 1
(1.5) limsup—— á hm—-—=     ,   (jy). >

(—» w t t~* » I h> [ %2       J

with probability 1, and

n « r E^  <r    E{n™(t)\ 1(1.6) lrm sup- è lim
.-.« / i-.- / E{x¡N)]

When N—t™ the denominator £{x2} in (1.5) and (1.6) becomes infinite, giv-
ing the desired result. In the following, therefore, it will be sufficient to sup-
pose that A is finite.

According to the strong law of large numbers, and using the fact that
lim„_00Xi/(» — 1) =0 with probability 1,

x2 + ■ ■ ■ + x„ xi + • • • + xn        ,.      xi + • • • + xn
(1.7) lim-  = lim-  = hm-= A

n->oo n — 1 n->« n —  1 n-ti »

with probability 1. Hence if 0<e<A,

(1.8) (A - t)n g Xi + ■ • • + xn ^ (A + e)n

for sufficiently large n, with probability 1. In particular if « = »(/) the left
side of (1.8) implies

(2) Here and in the following we interpret 1/A as 0 if A= oo.
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t
nit)£

A - «

and if n = n(t) + l, the right side implies

n(t) + 1 è
A + í

Hence for large t

1           1       n(t) 1
(1.9) -^^-SA + €       t t A - «

with probability 1. This implies (1.2), and (1.3) will follow when term by
term integration is justified.

Before going further with the general case we note the results for the fol-
lowing particular case.

P{xi = 0} = 1,
(1.10) P{x,= lj =p>0, j> 1,

P{xy = 0} = I-p.

In this case if t is an integer, n(t+l) —n(t) is the number of times the sums
take on the value /, so that for all /, if [/] is the largest integer less than /,

£{»(/)}       1 ^     , ,        [t] + l
(1.H) _LA¿£« -22E[n(j+l)-n(j)\ - ^-—,t t   y<t tp
which implies (1.3) for this special case. Moreover

(,12)        Mffll.Ml¿zt+(2±LJ.
Now returning to the general case, since P{x2 = 0} <1, there is a positive

number X such that P{xJ=^\] >0. Replacing Xy by Xy/X if necessary, which
does not alter the significance of the theorem, we can suppose that P{xySï 1}
= p>0. Now define xy by

xi = 0,

(1.13) Xy = 0     if     Xy < 1,
i = 2,X¡ =1      if     Xy ̂    1.

Then if ñ(t) is the number of times the sums x\, X1+X2, • • •  are less than t, it
is clear that n(t)^ñ(t), We have, using (1.12),
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The boundedness of these second moments at /= co implies that (1.2) can be
integrated term by term, giving (1.3).

This theorem is a first step in the investigation of the asymptotic station-
arity of the x(/) process; there is an average long run frequency of births
and deaths, independent of the initial conditions, with no restrictive hypoth-
eses whatever (except that P(0+) <1 so that there is a chance for temporary
survival).

The explicit evaluation of U(t) is furnished by the following corollary. We
use the convolution notation

FiKG=  fXF(x-y)dG(y),
Jo

for distribution functions and

/ * g = I  /(* - y)g(y)dy
J o

for density functions. In general we shall use small letters for derivatives, so
that/=P', and so on.

Corollary 1.1. If P(0+) <1, the function U(t) is always finite-valued and
is expressed in terms of the initial age distribution function Hx) and ^e lifetime
distribution function F(x) by means of the equation

(1.15) U(t) = $i+ $i-&£+ $!-&£-&£+ ■ • •
where

¿$(X).
C" rxF(\ + t) -F(\)

(1.16) *i(/)=        Fx(0¿*(X)=l 1     '
J o Jo 1 — I (A)

In particular

Ux=Fx + FxiKF + FxiçFiKF+--- ,

Uo =F + F-kF + F-kF^F^-.
In these equations the infinite series converge for all values of the arguments.

If Uo(t) is absolutely continuous, F(t) is also absolutely continuous, and
conversely if F(t) is absolutely continuous, Ux(t) is absolutely continuous in tfor
all x and (1.15) and (1.17) can be differentiated term by term,

u(t) = 4>i + *!*/+ </>i •/•/+• • • ,

(1.18)Ux(t)=/,+/,•/+/,•/•/+■••, Mi) = r^^^oo,
J o     1 — r(\)

«»(/) =/ + /•/ + /•/•/ +

To prove the corollary, we note first that the wth term of (1.15) is the
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distribution function of the sum Xi+ • • • +x„. Hence
00

£7(0 = E{n(t)] = £P{w(i) ê «»}
r—l

= 22E{xi+ ■■■ + xn<t]
y—l

= <i>i+ $i-fr £+$!•& £-&£+•• • ,
where all the series converge, since U(t) exists. This proves (1.15), and thereby
the particular case (1.17). The fact that the series converge is also easily
deduced by elementary methods.

If Uo(t) is absolutely continuous, that is, if its increase on any set of
Lebesgue measure zero is zero, (1.17) shows that the same is true of F(t),
whose increase on any set is at most that of Uo(t). Conversely if F(t) is ab-
solutely continuous, its convolution with any other distribution function is
also absolutely continuous, and according to Fubini's series theorem Uo(t) is
absolutely continuous, the series can be differentiated term by term,and the
equations (1.18) hold. The equations hold almost everywhere, or everywhere if
the left sides are defined as the sums on the right. This completes the proof.

The following further corollary will be useful below.

Corollary 1.2. There is a number K depending on c but neither on t nor on
the initial distribution <£, such that

(1.20) E{[n(t+ c) - n(t)]2} g K (c > 0).

It has already been proved that E{n(t)2} < oo, and this implies the finite-
ness of the left side of (1.20). Moreover if c>0,

E[[n(t+c)- n(t)]2] =E{E{x(t) = x; [n(t + c) - n(t)]2}}

= £{£{xo = x;n(c)2])
(1-21) ,    ,

^£{£{xo = 0; [n(c) + l]2]\

= £{x„ = 0; [«(c) + l]2},

and K can be taken as this last conditional expectation.

Theorem 2. Let {x(t) ] be the variables of any renewal process with 0 <A< &>.
Then

x(t)
(2.1) lim-^ = 0

<-»»    t

with probability 1, and if in addition the initial age has a finite expectation,
E \x(0)} < oo, it follows that
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E\x(t)\(2.2) lim     '       ' = 0.
t->*       t

In fact for large /, if i,=Xi+ • • • +x„ x(/) =/ — i„<« so that

(2 3) ^- = 1 - S-^- -^ ■
t »(/)'    /

Now according to the strong law of large nui ibers, as applied to the chance
variables Xi, x3, • • • which are independent and have a common distribution
function,

,„   A. A ,.       Xi+   ■ ■ ■  + Xn Xi+---+X„ in(t)
(2.4)        A = lim- = Inn- = lim ■-

n »oo n — 1 »-.oo n — 1 i-»oo n(t)

with probability 1. Combining this with (1.2) and (2.3) gives the desired re-
sult. Since

x(t) ^ / + xo

where xo is the initial age,

x(t) Xo
—— á 1 + — á 1 + xo (<èl).

t t

Hence if £{x(0)} < °o, x(t)/t is dominated by an integrable function inde-
pendent of /, and (2.1) can be integrated to the limit to get (2.2).

The fundamental x(t) process is a Markoff process, since if x(/o) is known
the conditional probabilities for x(/) when t>to are certainly unaffected by
knowledge of x(i) for i</o. The transition probabilities are stationary, that
is P{x(s); x(/)<X} depends only on X and t — s, and are easily written ex-
plicitly:

P{x(0) = x; x(t) =■ X} = 0 (/ + x < X)
1 - F(x + t)

,     , =-~- (/ < X < / + x)
(3.1) l-P(x)

1 - F(x + t)       " '~x

1 - P(x)
+ f      [l-F(t-s)]dUx(s) (\<t).

J 0

The first two evaluations are obvious. The first term in the third evaluation
represents the probability of survival in the complete time interval (0, /). The
second term is the probability of attaining age X or greater after one or more
deaths. The integral is clearly formally correct, with í interpreted as the time
of the last death before /. It can be justified by pursuing the probability ap-
proach further to make the intuitive argument rigorous, or as follows. From
(1.17) with xi = x
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/.
[1 -F(t~ s)]dUx(s)

o

(3.2)
= £f      [l-F(t-s)]dP{xi+ ••• + x, <s}

oo       /» t—X

= Zl      >{*M-ie«-í}áP{*H-+ x,<s}
00

= Z)P{xi-l-+ x, <<-X, xiH-+ xF+iê /},
>-i

and this last expression is the probability that x(t) ^X after passing through
one or more zeroes. More generally, if the distribution of x(0) is given by <I>,
the x(t) probabilities are evaluated by substituting (3.1) in

/i  00

P{x(0) = x;x(t) è \}dHx.
o

The x(t) process will now be investigated in more detail, from a purely
qualitative point of view. Suppose that this process is asymptotically station-
ary, so that the distribution function of x(t), the age at time t, converges to a
limiting distribution function when ¿—> oo. Then it is to be expected that if this
distribution is chosen as the initial age distribution the resulting process will
actually be stationary, that is, the distribution of age will be independent of t.
The investigation of all possible stationary processes corresponding to the
given transition probabilities is therefore in order. The following theorem,
which is well known in various forms and degrees of generality, answers this
question completely.

Theorem 4. A renewal process with F(0+) <l is stationary if and only if
the average lifetime is finite,

XdFQi) < oo

and if the initial distribution $(x) for x(0) is absolutely continuous, with density
<ï>' given by

1 - F(x)
(4.2) $'(x)=--iZ.

A

If A < oo, (4.2) defines a function <ï>' which is non-negative and has in-
tegral 1. Suppose that x(0) has density of distribution given by (4.2) and that
U(t)=E\n(t)} as usual. Then (1.16) yields <ï>i = «ï>, and (1.15) yields U\t)
= t/A. Finally P{x(t) ^X} can be evaluated using (3.1) and (3.3); putting in
U(t) =t/A yields

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



430 J. L. DOOB [May

(4.3) P{x(f) à X} - 1 - *(X) = P{x(0) ê X}.

This shows that the x(/) process with the initial distribution density (4.2) is
stationary. Conversely suppose that the initial distribution <$ is chosen to
make the x(/) process stationary. Then ¡7(i+/) — U(s) is the expected number
of zeros in the interval [i., /) which is the same as the number expected in
the interval [0, /),

(4.4) U(s + t) = U(s) + U(t).

Since U(t) is obviously monotone, the only solution to (4.5) is U(t)=ct for
some constant c^O; c = 0 is impossible, since it implies that »(/) is never
positive. The constant c must be 1/A by Theorem 1; hence A< ». If />X,
we have, using (3.3),

1 - <ï>(X) = P{x(0) è X}

/">    1  - F(X + t) 1     C '_X r,     ' <**(*) + ~ I       [l-F(t-s)]ds
o        l-P(x) A Jo

r " l -F(x + t) l  r ' .= I i    ' <**(*) + T       [1 - n*))ds.
Jo 1 — F(x) A Jx

When t—* <» the first integrand converges boundedly to 0, so that

(4.6) 1- *(X) =- f°°[l-P(í)]¿í
A Jx

as was to be proved.
The theoretical basis of the present paper is now complete. The renewal

process is a Markoff process with known transition probabilities, stationary if
the initial distribution is chosen suitably. Before proceeding to study the
process, however, the connection with integral equations will be given. It is
clear from Corollary 1.1 that U(t) satisfies the equation

(5.1) U(t) = Mt) + f   U(t - s)dF(s).
J o

In particular

(5.2) £7,(0 = Fx(t) + f   Ux(t - s)dF(s)
J o

and (x = 0)

(5.3) Uo(t) = F(t) + f   Uo(t - s)dF(s).
J o

Here H given by (1.16) is the distribution function of xi, the time to the first
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death. If F(t) is absolutely continuous, we have seen that Ux(t) is also, and
(5.2) and (5.3) become

(5.2') ux(t) = {    X!\ + f 'u^ - $y^ds'
1 — £(x)      J o

(5.3') wo« = f(t) + f   Uo(t - s)f(s)ds.
of   0

There is a similar density version of (5.1). These equations hold for almost
all t, or for all t, if the left sides of (5.2') and (5.3') are properly defined. If A
is finite and if the distribution of x(0) is absolutely continuous, with density
1-P(X)A, U(t) reduces to t/A, and u(t) = l/A. Conversely if U(t) = const. • t,
the constant must be 1/A by Theorem 1. If this is substituted in (5.1), «Êi
can be evaluated; the latter function, just as in the stationary case, is abso-
lutely continuous, with derivative [l —P(X)]/A. But $1 and F determine the
x(t) process completely; hence the process must be stationary and <ï> = <i>i.
This argument shows that U(t) is proportional to t only if the process is sta-
tionary.

From the present point of view, the fact that U(t) is always finite is an
existence theorem for the solution of an integral equation. We state the exist-
ence theorem only for (5.3) and (5.3'), to give the principle involved.

Theorem 6.. Let F(s) be any distribution function with £(s)=0 for s<0,
and £(0 + )<l. Then there is a monotone nondecreasing function Uo(t) which
satisfies (5.3). Moreover if Üo(t) is any function defined and measurable for
t^O, and bounded in every finite interval, which satisfies (5.3), Üo(t) = Uo(t).

Let f(t) be any non-negative Lebesgue measurable function, defined for t ^ 0,
and integrable. Then there is a non-negative Lebesgue measurable function Uo(t),
integrable over every finite interval, which satisfies (5.3'). Moreover if üo(t) is
any function defined and Lebesgue measurable for t^O, and integrable over
every finite interval which satisfies (5.3'), üo(i) = u0(t).

The existence proofs have already been given. The uniqueness proofs are
carried through as follows. If Í70 satisfies the stated conditions, then clearly

Üo(t) =F+ÜoisF =F + FÍSF+ ÛoiçFiçF
(6.1)

= F+2F+ ... +nF+ÜoÍKnF

for every n, where „£ is the wth iterated convolution of F. The series of con-
volutions is convergent to Uo. Hence

(6.2) Üo = Uo+ limÜo^knF.
n—»w

Now since the series of convolutions converges, nF—»0.
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(6.3) (Üo * nF)(t) =  f   Üo(t - s)d„F(s) g L.U.B. | f7„(í) | „£(/) -+ 0,

and thus (6.2) becomes Üo = Uo-
If uo(t) satisfies the stated conditions, Uo(t) defined by

(6.4) Uo(t) =  f  Uo(s)ds
J o

satisfies the conditions of the first part of the theorem. Hence Üo(t) = Uo(t)
so that Mo(/) =uo(t) for almost all /. The right side of (5.3') is thus the same
for wo as for u0. Since both satisfy the equation, the two functions must be
identical.

It was shown above that the x(0) distribution can be chosen to make the
renewal process stationary, so that P{x(t+h) <X} is independent of h; from
this it follows more generally that

P{x(t¡ + h) < \},j - 1, - • • , »} (/i <■••</„, h + h ^ 0)

is independent of h. The definition of the process can then be extended to all
negative values of /, by setting

P{x(si) < \itj = 1, • • • , n] = P{x(si+ h) < \i,j = 1, • • • , »}

whenever ii< • • • <in, choosing h so large that íx+A^0. This stationary
process will be called the stationary renewal process below. It is determined
completely by the lifetime distribution function P(X), which must be supposed
to have a finite first moment. It is easily shown that (for the stationary re-
newal process) given any i, the lifetime of the individual living at / = i has
distribution function

(7.1) - f   xdF(x);
A J0

more abstractly stated, if £i is the first zero of x(/) to the left of í and £2 the
first to the right, then ¿2—¿i has distribution function (7.1). One way to
define the stationary renewal process is the following. Let • • • , x-2, x_i, x,
Xi, • • • be mutually independent chance variables, with the common dis-
tribution function P(X) except that x has the distribution function (7.1). Let
intervals of lengths • ■ • , x_2, x_i, x, xi, • • • be placed end to end on a line,
and choose the origin of coordinates in the interval of length x (choosing it at
random, equidistributed, in this interval). Then x(t) is the distance from /
to the nearest end point preceding /.

A fundamental problem of renewal theory is, as already remarked, the
determination of conditions under which a renewal process with an arbitrary
initial age distribution is asymptotically (/—>°°)  identical with the corre-
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sponding stationary renewal process. This problem amounts to that of the
determination of conditions under which the transition probability functions
of the stationary renewal process, P{x(0) =x; x(t)CA }, become the absolute
probabilities P{x(t)CA } for large t. In order to solve this problem, the sta-
tionary renewal process will be examined in considerable detail. Let T, be
the transformation of the space of sample functions taking x(t) into x(t+s).
Then 7, is a transformation which preserves probabilities. If a is any chance
variable connected with the stationary renewal process, it becomes, under
T„ a new chance variable T,a. For example the chance variable x(0) becomes
P«x(0) =x(s). The condition that the age distribution in a renewal process is
independent of the initial age distribution (asymptotically for large /) is,
roughly speaking, that if a is a chance variable, a and T,a are asymptotically
independent for large s.

In the preceding paper in this volume [l ] it was shown how the analysis
of the properties of 7, served to solve precisely the problem considered here.
Following the notation of that paper we denote by X the class of real num-
bers, by Qi* the field of Borel sets of real numbers, and by <$ measure the
measure of Borel sets determined by the distribution with density (1 — P(X))/A.
We shall use p to denote the maximum life,

p = L.U.B. x.
F(*)<1

The sets of «£ measure 0 in the interval (0, p) are then simply the sets of
Lebesgue measure 0 in that interval.

In [l] the parameter s was restricted to be integral. The renewal process
parameter is continuous-valued, and the proper adaptations will be made be-
low. Knowledge of the general theory of continuous parameter processes will
be assumed. In particular measure theorems like Fubini's theorem will be
applied with no explanatory commentary.

In [l ] it was made clear that the concepts of metric transitivity and angle
variables play a fundamental role in studies of this type. It can be shown
that under fairly general conditions continuous parameter Markoff processes
do not have angle variables, but it will be unnecessary to apply such theorems,
since a complete analysis can be made in the renewal theory case. This is done
in the following theorem.

Theorem 8. The stationary renewal process is metrically transitive. It has
angle variables if and only if F(x) increases only in jumps, and if the jumps
are all at integral multiples of some number £(3).

Suppose that A is an invariant x set, that is, A is a Borel set with the prop-
erty that the two sets of sample functions

(') According to a letter from Kakutani, he also has proved this theorem, before the war,
in a somewhat different form.
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{x(0)EA},        {x(t)EA}

differ by at most a set of probability 0. We show that the process is metrically
transitive by showing that then A has «i» measure 0 or 1. By hypothesis if
a(x) is defined as 1 on A and 0 otherwise, a[x(/)] is an invariant function
which takes on only the values 0 and 1. Hence, according to Fubini's theorem,
neglecting a set of sample functions of total probability 0, for each sample
function x(t), a[x(/)] = l for almost all / or a[x(/)]=0 for almost all /. In
other words x(t)EA for almost all / or x(t)EX—A for almost all /. Now the
sample functions oscillate between 0 and numbers which come arbitrarily
close to the maximum lifetime p. Hence A must contain almost all points of
the interval (0, p) or almost none. In the first case A will have <ï> measure 1,
in the second case <£ measure 0. The process is therefore metrically transitive.

Suppose that there is an angle variable, that is, that there is a number
X^O and a function a[x(0)] satisfying

(8.1) P{a[x(t)] = eiiXa[x(0)]} = 1,        P{a[x(t)] = O] < 1,

for each /. There are then values of a (which can be taken arbitrarily small)
such that

(8.2) a(a + t) = eiaa(a)

for almost all values of / in the interval (0, p). If u is any point with the prop-
erty that F(u+e)— F(u — e) >0 for all e>0, x(t) must sometimes jump from
values near u to 0. Hence eiix must have period p, u = 2kir/X, for some integer
k; that is, the points of increase p must be integral multiples of 27r/X. Con-
versely suppose that F increases only in jumps at integral multiples of some
number £; we can write £ = 2ir/\. Then

a[x(t)] = eft*<«

satisfies (8.1). This completes the proof of the theorem.

Theorem 9. For any renewal process, if P(0+) < 1 and if

(9.1) f  \2dF(\) < »o
J o

then
1   C' lr*

(9.2) lim— I    x(s)ds =-I    \2dF(\)
•-.»   / J o 2A J o

with probability 1.

This theorem states that there is always an average age, under the stated
conditions. If the distribution of x(0) is chosen to make the process stationary,
(9.2) becomes simply a statement of the strong law of large numbers for sta-
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tionary processes. In the stationary case (9.2) is true with x(s) replaced by
T,a, where a is any chance variable with a finite expectation, and the limit
on the right is replaced by £ {a}. In the general case, the theorem is proved
as follows. Using the notation n(t) as before, and with s„=Xi+ • ■ • +x„,

1   /o t                1   /* *i                       1   r Xi+I>
— J    x(s)ds = •— I     (x0 + s)ds H-j (s — xi)ds + • • •

t    of 0 t    of 0 t    of   x,

l  r '
(9.3) +~|       [*-*.(o]<fr

t   of «n(l)

=-r- —   ¿^ *H-» «(') = L
t 2t   Jo-i 2t

When i—»oo, the first term goes to 0, and if we apply the strong law of large
numbers and Theorem 1, the second term goes to the right side of (9.2). The
third term is dominated by xn(f)+1/2t. Since n(t)/t—>1/A with probability 1,
(9.2) will be proved if it is shown that x„/w—»0. This is a trivial consequence
of the strong law of large numbers applied to x2., x%, • ■ • , and is also easily
verified directly.

The asymptotic properties of the conditional probabilities of the form
P{x(0) =x; x(t)CA ] (where A is any Borel set) and of the conditional ex-
pectations Ux(t) will now be investigated by applying the general theory of
Markoff processes to the renewal process. The problem is to find conditions
under which

(10.1) lim P{x(0) = x; x(t) C A} = — f [l - F(\)]dX,
«-»« A J A

and under which a corresponding limit relation for Ux(t) will be true. The
natural one from the point of view of the theory of Markoff processes is

(10.2) lim [Ux(t + h) - 17.(0] = — •
<->os A

It is clear that these limit relations do not hold if F(x) has the special form
described in Theorem 8. Even if (10.1) and (10.2) are true, however, they
cannot be true uniformly in x without strong restrictions on F(t). It is easily
seen that uniformity implies that F(t) has finite moments of all orders and
even a finite generating function. Hence the conditions of Doeblin and of
Kryloff and Bogolioùboff on the transition probabilities of Markoff processes
(which imply uniformity) (4) are rather restrictive in renewal theory. The
fact that if F(x) has a finite first moment the renewal process can be made
stationary means that the weaker hypotheses of [l ] are usable. In the lan-

(4) Cf. the last section of [l ] for a general discussion of these conditions.
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guage of [l], the stationary renewal process is metrically transitive, has no
angle variables (excluding the degenerate case described in Theorem 8), has
regular transition probabilities, and in addition has the important property
that for any x, y there is a possible transition from x to y. This fact makes it
possible to replace "almost everywhere" results by "everywhere" results.

The following theorem.shows that (10.1) is always true if ordinary limits
are replaced by Cesàro limits. The same reasoning would hold for (10.2), but
(10.2) taken Cesàro reduces to (1.4) which has already been proved. More
generally however, the argument would prove that P{x(0) =x; Pta}—»pfa}
(Cesàro) for a large class of chance variables a.

Theorem 11. Z/0<A< <», and if A is any Borel set,

i r ' i r(11.1)     lim— I    P{x(0) = x;x(s)EA}ds = — \   [l - F(\)]dX,

for all values of x in the range of life (x<p).

This theorem is easily proved directly, but the proof will be omitted be-
cause the theorem is a special case of Theorem 1 of [l]. (The change from a
discrete to a continuous parameter requires no change in the principle of the
proof.)

Since the stationary renewal process is metrically transitive, and has no
angle variables if F(x) is not of the special type described in Theorem 8, there
is necessarily a type of weak convergence of the transition probability
P{x(0)=x; x(t)EA] toward the desired limit (l/A)fA[l-F(x)]dx. In fact
if A < oo and if P(x) is not of the type described in Theorem 8, it is easily
proved if we use a theorem of von Neumann and Koopman [3, pp. 36-37]
that if ^(x) is a probability density in the interval (0, p), then

(12.1)       lim       f P{x(0) = x; x(t) E A\p(x)dx = — f [l - F(x)]dx.
.->»,.£' J A J A

Here Z is a certain sum of intervals of relative measure 1(6) which is inde-
pendent of yp, A. In other words, initial absolutely continuous distributions
become the stationary distribution in the long run, at least if / is restricted to
a set of relative measure 1. A similar statement can be made covering the con-
vergence of Ux(t+h) — Ux(t) to h/A as /—> oo . It is more interesting however to
find conditions under which there is ordinary convergence. Such conditions
are given in the following theorem.

Theorem 12. Suppose that 0 <A < oo and that for some v^l the vth iterated
convolution of F with itself is not a singular function. Then for every x <p

(') A Lebesgue measurable set is said to have relative measure 1 if the measure of its
intersection with the interval (—/, t) divided by 2/ approaches 1, when <—»<».
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(12.2) limP{x(0) = x;x(t)CA\ = — f [l - F(x)]dx
t-ooo A  of A

for every Borel set A, and

(12.3) lim [Ux(t+ h) - Ux(t)] = h/A
t—0 09

for every h.

If F has the form described in Theorem 8, it and all its iterated convolu-
tions are singular functions. Hence this case is excluded by the conditions of
the theorem. The stationary renewal process under consideration is metri-
cally transitive and has no angle variables.

According to Theorem 4 of [l ] (the change from a discrete to a continuous
parameter requires no change in the principle of the proof) if a is a chance
variable, restricted as described below,

(12.4) lim £{x(0) = x; Tta\ = E{a]
t-ooa

if only the singular component of the monotone function P {x(0) = x ; x(t) <X}
with respect to the <!> measure with density [l —£(X)]/A, or what amounts
to the same thing, with respect to Lebesgue measure measure mA, goes to
zero when t—*<». The condition is, analytically,

(12.5) lim max P{x(0) = x; x(t) G N} = 0

(where N is a Borel set). Now the transition probability distribution P[x(0)
= x; x(t)CA} is, according to (3.1), a distribution in which the point x=t
has positive probability [l — £(x+i)]/[l — F(x) ], which goes to 0 when t—*oo,
and otherwise, neglecting this point, a set A has conditional probability

(12.6) -  f [1 - F(\)]diUx(t - X), X < t.
Ja

The singular part of this measure is

(12.7) max   f [l - F(t - \)]d*Ux(\) =  f   [l - F(t - \)]dÜx(\),
mN —oJ]y of q

where ÜxQi) is the singular component of UXÇK). Let F(x) be the singular com-
ponent of P(x). Since a convolution in which one term is absolutely continu-
ous is itself absolutely continuous, (1.17) implies

(12.8) Üx(\) ^FX + FX^P+FX^F^F + ... .

If the vth iterated convolution is not singular, the series (12.7) is dominated
uniformly in X by the series
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l + -.- + l + a+---+a+a2+.--+a2+.-.= v/(l - a),

where there are v l's and v a's, and so on, and 1 —a is the value at oo of the
nonsingular convolution. Hence c?x(°°) < <*>., and the second integral in
(12.7) goes to 0 when /—»oo, since the integrand converges boundedly to 0.
Thus the basic condition of Theorem 4 of [l] is satisfied. Hence (12.4) is
true for certain chance variables a. In particular, according to this theorem,
a can be the characteristic function of an x(0) set,

a = 1, iix(0)EA,
a = 0, x(0) E X -A.

With this evaluation of a, (12.4) becomes (12.2). Finally according to Theo-
rem 4 of [1], we can set a = n(h) — n(0) if

(12.9) L.U.B. £{x(0) = x; | n(t + h) - n(t) \ } < «.
X

This inequality is a consequence of (1.20)(8).
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(*) In a paper to appear in Duke Math J., Blackwell proves that (12.3) is true more gen-
erally whenever F(\) is not of the form described in Theorem 8.
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