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ABSTRACT
In an earlier pap=r (Renewal theory in two dimensions: Basic results)
the author developed a unified theory for the study of bivariate renewal
processes. In contrast to this aforementioned work where explicit expression

were obtained; we develop some asymptotic results concerning the joint

(2),.
y )

the distribution of the two dimensional renewal counting process Nx

distribution of the bivariate renmewal counting process (Nx(l), N

and the two dimensional renewal function ENx y' A by-product of the

3
investigation is the study of the distribution and moments of the minimum
of two correlated normal random variables. A comprehensive bibliography

on multidimensional renewal theory is also appended.
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1. INTRODUCTION

In an earlier paper, [8], the foliéwing framework for investigating the
properties of renewal processes in two dimensions was established.

Let {(Xn,Yn)}, n=1,2,..., be a bivariate renewal process, i.e. a
sequence of independent and identically distributed bivariate random variables =
(r.v.'s) with common distribution function (d.f.), say F(x,y) = P{XISx, Ylsy}.
We shall use the following notation for the moments (when they exist):

2
=0

. 2 _ _
EXl = Mo EYl = by, var X; 1> var Y1 = 05, cov (xl’Yl) = 0), = P00, where
p = corr(Xl,Yl). . N
Let S = (s(l), s(z)) = () X.,]Y.).
~n n n L T2l 0
i=]1 “i=1
Define Nil) = max {n : Sél) < x} .
Nﬁz) = max {n : Sﬁz) <y} s
= .e(1) 2 (2)
Nx,y = max {n : Sn < x, Sn <yl.

In [8] the accent was on developing explicit expressions whereas in this
paper we concentrate on finding asymptotic results. In particuiar, by re-
stricting attention to regions of the first quadrant of the plane in proximity
to the line expectation we are able to develop an asymptotic distribution for
the bivariate renewal counting process (Nil), Nﬁz)), (Section 2), and an
asymptotic distribution for the two dimensional renewal counting process
N (Section 3). Furthermore, we present some approximate expressions for

X,y’
the two dimensional renewal function H(x,y) = ENX y which are an improve-
>
ment on existing results, (Section 4).
In an appendix we discuss the distribution and moments of the minimum of

two correlated normal r.v.'s. These results are utilized in discussing both




’ the distribution and moments of Nx in Sections 3 and 4. We conclude with

s

a discussion on further research problems related to this area.

The list of references is expanded to give a comprehensive bibliography

- on multidimensional renewal theory.



2. ASYMPTOTIC DISTRIBUTION OF (Nil), Niz)).

The asymptotic distribution of the marginal r.v.'s Nil) and Nﬁz) has
been discussed by several researchers in the past (e.g., Feller [18] for re-
current events, Tdkdcs [21] for renewal processes) and the following results
are well known.

If 02 < then

1
(2.1) lim P{ Nﬁl) - x/uls o 01-.x/uf } = ¢ (a)
X+
and, similarly, if og < o then
(2.2) lim P{ N}Ez) - y/uy < B0, fy/ }=0(e)
y-roo

X
where @(x) = (1//2m) | exp[-t2/2]dt » is the d.f. of a standard normal (0,1)

Tr.v.

In other words, u*(l) and Ny(z) are both asymptotically normal r.v.'s.

It seems natural, therefore, to conjecture that their joint distribution should

be asymptotically bivariate normal; i.e.

N 0 -y,
imPAS 2 oy, X 2 gl ® (o,8)

X+ Vv 3 B
yoem 9y x/u1 o, Y/u2

X Yy
where @w(x,y) = (1/21 V1-w? f f exp[-{uz—Zwuv + vz}/2(1—w2)] dv du

-0 -

is the joint d.f. of a pair of bivariate normal (0,0;1,1;w) r.v.'s and w is

the asymptotic correlation between Nil) and Nﬁz).




However, we must be carful how we define our limiting operation
"x > and y » " in order that the limiting distribution does
not degenerate to a singular distribution. In effect, we must ensure
that the correlation between Nil) and Nﬁz) does not tend to zero
(unless, of course, Nil) and Nﬁz) are independent) but retains
its asymptotic behaviour.

The approach taken in proving results (2.1) and (2.2) was to use
the Central Limit Theorem. The two dimensional analog is stated below.

Its proof can be found in many standard probability texts.

LEMJYA 2.1: (Bivariate Central Limit Theorem)
1f (Xn, Yn)’ n=1,2,..., are independent and identically

distributed with means (ul, uz) and covariance matrix

o P00,
PO1% . %
then, for fixed x and Yy,
X -u Y -u
lim P{-—= 1 s x, — 2 < Y= % xy) .
e 01//5 AL

where

n
and Yn = (l/n). Yi .

v n X
X = (1/n) T X
i=1

i=1 !

Note that in the above lemma, the correlation between —X'n and Y.n

is also p, the correlation between )(_1 and Yl. We wish to modify the

above lemma so that, as m and n both tend to «~ in some prescribed

manner, _ _
X -y Y -y
Pl-B Loy, B Zoylae x,y).
ol/ﬁi 02//5 P

-4-



Now, since

m n m n
cov lz a;X., by l= 7§ ¥ aibj cov(Xi,Yj) ,

i=1 * ' =177} =1 =1

we observe that
_ m n
cov(Xm,Yn) = igl jgl (1/mn) cov(xi,Yj) = [min(m,n)/m) cov(xl,Yl)

and thus
(2.3) corr(iﬁ,?#) = [min(m,n)//mn]p = min[vn/n, va/m]o .

Consider the following possible limiting operations in the plane. We shall
write (m,n) > ® if m and n both tend to infinity in such a way that

m~n; (i.e. 1lim m(n)/n=1). We shall also write [m,n] + = if m and n

n-reo
both tend to infinity but remain a bounded distance apart; (i.e. for some
finite B, |m-n| < B). . )

We shall make use of the limiting operation (m,n) + « which is not as
restrictive as the limiting operation [m,n] + =, (It is easily seen that
[m,n] + » implies (m,n) > « but the converse does not necessarily hod, e.g.
m=n (1+1/v/n).)

Mode [10] uses a limiting operation analogous to [m,n] + « in discussing
the asymptotic behaviour of a multi-dimensional renewal density.

Note that as (m,n) > » we see from (2.3) that corr(iﬁ,?h) + p. This

result motivates the following lemma.

LEMMA 2.2: If (Xn’Yn)’ n=1, 2,... are independent and identically distribute!

with means (ul,uz) and covariance matrix




then, for fixed x and vy,

Ym-ul Y -
lim P < X, Lyr= @p(x,y) .

(m,n )0 al/ﬁﬁ 02//5

Proof: We use one of the Mann-Wald theorems [19]; viz. that if Un converges

~

in law to U and Vn converges in probability to 0 then Un + Vn

converges in law to U . Without loss of generality we assume m > n.

T T
Let U, = 01//5 02/%5 ’
Y - ¥ -
xm ul Xn H _
!n = - s 0 = (Vm n 0),
o,/vm o,/vn kg
1 2
fon Ty
u Y u

then Qn + !n - m 1 , n 2

Lcl/ﬁi oz/ﬁf J

The result will follow-from Lemma 2.1 if we can show Mn +> 0 in probability, or

equivalently for all ¢ > 9.

lim P{Vv. | 2e}=0.
(m,n)- A

Now Evm,n =0 and
P m - n ) n
Var(VIn n) = (1/01) var{(1/vm) Z Xi - (1/vn Z X.] = (1/01) var Z Zi
o i=1 i=1 i=1
(1/vm - 1/Va) X,, i =1,..., n,
where Z, = 1
1 (1/Vm) X, o, i=mn+l,..., m.



Thus var(Vm )

+

n
o1 s -1/t
i=1

2{1-vn/m} .

Since Evm 0= 0, we can use Chebyshev's inequality to deduce that

H

P{Ivm,nl >el e 2 var(V_ ) = 25—2(1-¢n/m) +0 as (m,n) >~ 0.

3

We make use of the foliowing lemma in the proof of Theorem 2.4.

, 1 2
LEMMA 2.3: If Ax( )’ Ay( )’ V"(I), vy(z) are functions such that Ax(l) »+ 1,
A (2) -1, v (1) + 0, v (2) +0 as (x,y) >~ and if (2 (1), Z (2)) is a

y X y X y

family of random vectors such that as (x,y) - ©

(1) , (1) (1) 2 ., (2) (2) | 5
P{Ax Z, * v < a, Ay zy * vy < B} @D(a,a)

for each fixed o and B, then

. (1) (2)
2.4 1 P{z Sa, 2 < B} =29 ,B8) .
@9 (x,;?*“ X oy p(a )

Proof: Let él >0 and €, > 0 be arbitraily chosen. Then for x and vy

both sufficiently large

Ax(l) o+ vx(l) <o+ €4 and Aycz) B + vy(z) < B + €,y -
Thus P{Zxcl) < a, Zy(z) < B}
- (1), (1 (1) (1) (1) (2), (2) (2) 2 2
= P{Ax Zx vy < Ax a+ v T, Ay Zy + vy < Ay( ) B + vy( )}

IA

P{AX(I)ZX(I) * “x(l) Setep Ay(Z)zy(Z) i “y(2) <B et

Therefore, 1lin sup P{

7 (1 <a, (2)
(x,y)+e X y

< B} s Qp(a+e1,8+sz) .




But both e > 0 and e, > 0 are arbitrary and ¢p(°,° is continuous

and thus

lim sup P{Z (1)
(x,y)>e

IA

o, Zy(z) < B} < @p(a,B) .

Similarly

IA

., D) (2)
lim inf P{Z , Z < B} =229 B
(x,y)r'l*‘” x oy P e

and (2.4) follows. O

It should be remarked that the result also holds if @p(a,B) is replaced
by any continuous joint d.f.

Furthermore, the result also holds if the continuous variables X and vy
are replaced by positive integers m and n with (m,n)-w.

We are now in the position to be able to state and prove the main theoren
of this section.
THEOREM 2.4: If o and B are any two fixed real numbers then, provided

2 2
both 01<'J° and o'2<oo’

S R
(2.5) lim Pt~ <aq, L < 8p =0 (a,8) .
(X/-Hls)’/llz)'*“’ Ol/x/u': 0,2 /y/u;

Proof:1 Let o and B be given. For any a (positive or negative) the function

Xuy + aol/f is increasing in x for all sufficiently large x. Similarly,

1The proofs of both Lemmna.2.3 and Theorem 2.4 are generalizations of the
analogous univariate results as proved by W.L. Smith in unpublished lecture
notes on Stochastic Processes presented in the Department of Statistics,
University of North Carolina at Chapel Hill. See also [12, p. 254].



Yu, + 802/)7 is ultimately an increasing function of vy.
Thus, for large x and y, we can define two positive, single valued,

. (1) (2) ;
functions n and ny by the equations .

(2.6) “lnx(l) + aol/.r‘xx(l) = X ,

@7 @ s o o

Uzy Y'

We first show that (x/ul,y/uz)-*‘-'w iff (nx(l),ny(z)) + o . From (2.6)

and (2.7) it is obvious that x/u1 + o iff nx(l) + o and that
(1)

1) ~
u1 nx

o 2, . . . (1)
)’/u2 - iff ny + oo . It is easily seen that n + aolr/nx

(@)

and that n + Bozw’ny(z) u, ~ nycz) and thus from (2.6) and (2.7) we see

2
(D and y/u2 ~ny(2) .

that x/u; ~n From this result we can deduce that
~ : 1) . (@)
x/u1 y/u2 iff n, ny .
Let [nx(l)] denote the integer part of nx(l) and {nxcl)} = [nx(l)] + 1.
Similarly for [nycz)] and {ny (2)y, ‘
Suppose (x/ul,y/uz) + o, or equivalently ({nx(n}, {ny(z) D+ « , then

Lemma 2.2 gives

(1) 1) (2) (2)
S{n (1)} - ul{nx } S{n (2)}- uz{ny }
p X < a, —2 <Bl> o (o,8) .
o,/ 1) o,/tn )3
Rearrangement of this expression gives
(s (1)]
S - u,n
(1) I'x (1) (1)
o {n """} “1{"x } - MR <y
o va ) o A Dy
L 1 x 1 X
s> (2) |
Y, Dy Ty l n @ i @y @
Y 1.2y 2y < 8}
) 9y RGN
L o,'n, y a,Y{ng

> q>p (a,8) as (nx(l),ny(z)) > ®

-9-



Application of Lemma 2.3 with A @) . J/ﬁi (1)/{n (1)} which tends to

1, and vx(i) = ui({nx(i)}-nx(i))/oi / {nx(i)} , which tends to 0 as

L @)y, ..
(n My, ) ;

X

(1) 1) Foa (@ < (2) /o (@) 4
P S (1)} < ¥y x + a0,/ n s S (2)} u ny + 602 ny
Y

- @p(a,B), as (n (1),ny(2)) > o,

gives

X

Thus by (2.6) and (2.7) we deduce that

(2.8) PSU) s(2) Syp> o (@.8) .

(1)}S v tn, @)

Now, by the definition of Nxcl) and NY(Z), we have that
(2.9) P{N (1 2m, N (2) > n} = P{S (1) < x, S (2 < y} .
X y m n

Thus, as (x/u;,y/u,) + «» (and equivalently (nx(l),ny(z)) > @) we

deduce from (2.8 and (2.9) that

p{Nx(l) > tn, Wy, N @ 2 {ny(z)}} >0 (a,8) ,

and consequently

1y o (1) @, ., @, .
(2.10) P{Nx R N >ny } ¢p(a,8) H

since E\Jx(l) (1):’

and N, () , (2)_J

FRO I (1{] ,
| x X

i

(@ 0 @)
LY y

-10-



If we now substitute in (2.10) the expressions for nx(l) and ny(z)

given by (2.6) and (2.7) we obtain

Nx(l) - x/ulf Vx/u1 ] - Ny(Z) _ y/uz ,Gaq;;

ol/fx/ui l/fnx(l) l 02¢y/u§ 4 ny(z)

P

} > B, > ¢p(a,8) .

An additional appeal to Lemma 2.3 with Ax(l) = Vx/ui / ¢/nx(1) +1 (by

(2.6) and (2.7)) and v, ) =0, gives

Nx(l) - x/yy N, (B y/u,
lim P > -q, X > Bt =8 (a,B) .
(x/ul,y/u2)+w o, /x/“i ozv/y/ug

The final result (2.5) now follows upon noting that Qp(a,B) = P{lea,ZZSB}
where (Zl,Zz) is bivariate normal (0,0;1,1;p). But (-Z ,-Zz) is also
bivariate normal (0,0;1,1;p) and thus Qp(a,B) = P{-Z,Sa,-Zzss} =

P{Z,2-0,2,2-8} 0.

As a corollarly to Theorem 2.4 we take x/u1 = y/u2 = z and deduce that

along the line of expectation Nx(l) and Ny(z) is asymptotically bivariate
normal, viz.
COROLLARLY 2.4.1: For fixed o and B, oi < = and cg < o,

. (1) (2) =
212 P{Nulz -z < aol/EVul, Nuzz -z < BOZVEVuz} = ¢p(a,6) .

-11-




3. ASYMPTOTIC DISTRIBUTION OF Nx

E

In an earlier paper ([8]) we showed that

(3.1) Ney® min(Nx(I),NY(z))

and that

(3.2) P{N zn} P{N Wop x (2)2n} ,
X,y X Y

(3.3) = P{Sn(l)Sx,Sn(z)Sy} .

It appears that we have two approaches to finding an asymptotic distribution
for Nx y; one using (3.2) and proceeding‘via the results of Section2 on the

3

asymptotic distribution of (Nx(l),Ny(z)) and one using (3.3) and the Bivariate

Central Limit Theorem. Both of these approaches lead effectively to the same
result when we restrict attention to limits along the line of expectation. In
fact, in order that we obtain a satisfactory proof we need to make this restric-
tion and use the second approach suggested above.

From Lemma 2.1 (the Bivariate Central Limit Theorem), for fixed o and B8

we have
. (1) (2) -
(3.4) lin P{Sn snu1+a01/rT, S, Snu2+soz/5 <1>p(a,s)
n-r«w

Thus we need to define an1x y) such that
(3.5) ny, + a01/5'= X
(3.6) nu, + Bcz/ﬁ'= y

Solving equations (3.5) and (3.6) simultaneously for n we see that
(3.7) n = /gy /u) % (a0, fuy 80, 0 )

) 1 2 171 77272

provided aol/ul # Bcz/u2 .
-12-



To use (3.4) we require n > , But if [x/ul,y/uz] + o then
lx/ul-y/uzl < B together with the condition aol/ul # Boz/u2 implies, from

(3.7) that n is bounded and hence cannot become arbitrarily large. Thus,

if we use (3.4), (3.5) and (3.6) with x and y in closé proximity to the line

of expectation, we require aol/u1 = Boz/uz . This condition is, in fact,

equivalent to x/u; = y/u, . [Since, if x/u; = y/u, = z then (3.5) and (3.6)

become, respectively n + a01¢57u1 =z and n + BGZVSYuZ = z which imply
(acl/ul-de/uz)/E'= 0, which in turn implies aol/ul = Bcz/u2 since n ~ z.

Conversely, aol/ul = Boz/uz implies x/u; = )’/u2 J

As a consequence of the above observations, we state and prove the following

theorem concerning the asymptotic distribution of Nx y for x and vy

’

constrained to lie on the line of expectation.

THEOREM 3.1: 1If oi < @ and og < o , then for any fixed c,

(3.8) lim P <Scp = 5

Nu z,u.z 2 -u, ¢ -u.c
1%:%; A s bl
2> vz o 1 2

Proof: Let c¢ (positive or negative) be given and define a = ulc/o1 and
B = uzc/o2 . For sufficiently large z we can define n,a positive single

valued function, by the equation
(3.9) n, + c/E; =z .

Observe that n,~2, and n >« iff z > . Define {nz} = [nz] + 1.

From (3.4) we may write

lim P{S (1)

e {n_}
z
We can now rearrange this above expression, apply Lemma 2.3, and use equation

(3.9), (analogous to the technique used in the proof of Theorem 2.4) to obtain

-13-

< {nz}u1+u1c¢inzT, S{ijg < {nz}u2+uzc¢TnzF} = Qp(ulc/ol,uzc/oz) .




. ) . . (2) B}
lim P{S{nz} < Wz, S{nz} < uzz} = @p(ulc/ol,uzc/cz) .

n e

From equation (3.3) we deduce that

lim P{N 12’“22 > {nz}} = ép(ulc/ol,uzc/oz)

Z-rco
Nu Z,0,2 ]
]
Now P{N zug 2 {nz}} = P{N 2wz > ML= p 172 42 > -¢

and using a univariate version of Lemma 2.3 we may deduce that, since (3.9)
implies t’z/nZ »>1,
Nozouz "
ul ’uz

lim P > -cp = ¢ {u,c/o,yu,c/0,)
- 7 o H1®/912 1%

Equation (3.8) follows by replacing c¢ by -c and taking the complementary

event. 0

The limit distribution given by (3.8) seems to be a little unusual in that
we have come to expect normal limit laws. However, from Theorem A.1 of the
appendix, we can conclude that the limit distribution arises as the distribution
of the minimum of two bivariate normal (0,0; ci/ui,og/ug;p) r.v.'s.

This serves as a means of reconciling the two approaches mentioned at the

beginning of this section. Let

1) _ (1) 3
(3.10) z D - o D - xuse and
(3.11) 2, - (Ny(z) - Y/ /oy yivs

Using (3.10) and (3.11) in conjunction with (3.1) we can deduce that

= m (1 (2)
(3.12) (Nulz’“zz -2)/V7 = mln[olzulz/ul,ozzuzz/uz] .

-14-



Cor 2.4.1 implies that (251;, 2522) is asymptotically bivariate normal
1 2
(0,0;1,1;p). Thus from (3.12) we can infer that (N - z)/Vz is

HpZsHp2 ()

distributed as the minimum of two bivariate normal (0,0;c§/uf, cg/ug,p) r.v.'s

in accordance with our observation above.

(2)
y )

is asymptotically bivariate normal (x/ul,y/uz; oix/ﬁi,cgy/pg;p). Hence, by

More generally, Theorem 2.4 implies that, as (x/ul,y/uz) +> ®, (Nx(l),N

virtue of (3.1) and Theorem A.1l, we would expect to conclude that

o ’
o,v X/uf 0,7 y/u3

2
as (x/ul,y/uz) + o , This result is of limited use in that in order that we
obtain any useful approximations we require c¢ to be of the same order as

x/u1 and y/u2 . Theorem 3.1 provides us with a more satisfactory result.

The only work related to limit distributions of the type considered in ‘ .
this section is that of Farrell [5], [7] where he considers a class of stopping
variables for multidimensional random walks. However his results cannot be
applied to finding the asymptotic distribution of Nx,y' In terms of our
notation he defines g, =g (sn(l),sn(z)) which is assumed
to be a homogeneous function of degree one in the two variables. Given t > 0,
let M(t) be the least integer n such that g, >t with M(t) = = if
for alln 21, g, £ t. Under the assumption that g has continuous first

partial derivatives in the open first quadrant Farrell, [7], shows

(3.13) lim PE'M(t) - t/g t/? < ct{g(g)}-s/z:] - 8(t),
too
o2 po.0
2 vl 172 . . .
where 0" = o 2 a and g is the column vector of first partial
pdlcz o,

-15-



)
derivatives of g evaluated at L o= (ul,uz) .

If we define g(x,y) = max (x/u,,y/u,), then M(t) = N + 1 and we
1 2 ult,uzt

would expect a normal limit law for N However, it is easily seen

Hyteu,t
that, for this particular choice of g, (3.13) does not hold since the first
partial derivatives of g are discontinuous along the line of expectation

x/uy = y/u, .

-16-



4. THE TWO DIMENSIONAL RENEWAL FUNCTION

In this section we investigate the determination of asymptotic expressions
for H(x,y) = ENx,y .
In univariate renewal theory, the renewal function Hl(x) = ENSS) has

been well studied, (see Smith [12]). The simplest result is the so called

""elementary renewal theorem'':

(4.1) Lin Hy(e)/t = u]l,

tro
where Wy = EXi S o, with the limit uil being interpreted as zero if o=@,
Several authors have considered generalizations of (4.1) to more than one

dimension. In Section 3 we mentioned the studies by Farrell of the asymptotic

behavior of some multidimensional random walks. One of the results obtained in

his paper [5] is that, if g(x,y) = min(x,y) then 1lim BM(t)/t = 1/min(u1,u2).

t>o

-This result is related to the "elementary renewal theorem for the plane" given
by Bickel and Yahav [1]: Under the assumption of non negative, non arithmetic
r.v.'s with finite means,
4.2) lim H(t,t)/t = 1/max(u1,u2) ,
tro
where the limit = « if both Hy = My = 0. (This is actually a special case
of their theorem, using the L_ - norm.)

In this paper we have found it natural to consider limits in the plane
along the line of expectation. The following theorem, which we derive from
(4.2), provides a result in this direction.

THEOREM 4.1:

If the bivariate renewal process is non arithmetic and 0 < By <=,

0 < Hy < @, then

-17-




‘ (4.3) lim H(ult , uzt)/t =1 .

tro

Proof: From the bivariate renewal proéess {(Xn,Yn)} form a new renewal
process {(Un,Vn)} where u, = Xn/ul, and Vn = Yn/uz. Let

n n
Tél) = Z Ui = Sr(ll)/u1 and Tiz) = Z Vi = Séz)/uz-‘

i=1 i=1
Since TY_ = EV_ =1 we have from (4.2) lim EN! _/t = 1, where
n n t,t
trom
- . (1) (2)
Nt,t = max {n : s, Tn <t}
= max {n s S upt, S(Z) < uzt}
= N , and the result follows. {J
ult)uzt

In the univariate case, if one makes the additional assumption that

Exi < = even more specific information can be obtained about Hl(t), viz..

(4.4) Hy(t) = t/uy + (cf - uf)/zuf +o(1) .

Both of the results (4.1) and (4.4) are satisfied for all t, without any
limiting operation, when the underlying renewal process is sampled from an
exponential (ul) distribution with p.d.f. given by fl(x) = (l/ul)exp(-x/ul) ;
x > 0.

Prepatory to giving a general discussion of the two dimensional renewal
function we obtain explicit expressions for H(x,y) when the bivariate renewal
process is sampled from a bivariate exponential distribution. The results we
obtain will be special cases of any gereral asymptotic expression, hopefully

with some of the properties satisfied in the univariate case.

. oo



Let (xl’Yl) have a bivariate expdnential distribution with j.p.d.f.

given by
4.5) £06y) = £,00 £,00 I "D weP o s xz20,y20;
n=0 .

where fl(x) and fz(y) are the marginal p.d.f.®s of X1 and Y1 which are

both exponential distributions with means Hy and Hy respectively;

e ) - Z R ( S e o) - 2 G- 1)) Cralt
520
and p = corr(X;,Y;), (0 <p < 1). (Other alternative forms for f(x,y) are

also given in [8].)

When p = 0, f(x,y) fl(x)fq(y), and‘(xl,Yl) are two independent expon-
ential distributions.
Let Hp(x,y) be the two dimensional renewal function for the bivariate

renewal process {(Xn,Yn)} with (Xl,Yl) having the j.p.d.f. given by (4.5).

LEMMA 4.2:

(4.6) H (x,y) = (1-6) Hy(x/(1-0), ¥/ (1-p)) -

Proof: In [8] we showed that
Hy(x,y) = § P(k,x/u;) P(k,y/u,)
0 i1 1 2
and

Ho(x,y) = (1- p)kZIP(k %/ (1-p)uy) P(K,¥/ (1-p)n,)

where P(k,x) is the incomplete gamma function which can be expressed as

Y e* x"/r!. (4.6) follows from these two results. 0

For any two dimensional renewal function we have from (3.1)

-19-




EN =€ min(N(l), N(z)) .
X,y X Y
= ) 1 min(d, Py Gy,
i=0 j=0
= I T (¥G+5) - Bli-jldp; 500
i=0 j=0
4.7 = 4E N‘(l)+ %E N(z) % Z Z |i- 3!p 37

i=0 j=0
where P; j(x,y) = P{Nil) =i, N§2) = jl.

This result enables us to establish the following lemma:

LEMMA 4.3: For 0 sp <1, t > 0,

(4.8) Hp(ult,uzt) =t -t exp{-2t/(1-0)}I,(2t/(1-p)) + I,(2t/(1-p))]
where In(x) is the modified Bessel function of the first kind of the n-th

order. Furthermore , as t *> =,

4.9) H () thuyt) = ¢ - (ta-0)/n?% + 0tV?), as t + .

Proof: From Lemma (4.2) it is sufficient to determine only Ho(ult,uzt).

For the independent exponential case

i/
= .S A IR, Sl AT R
(x,y) exp| m “2](“1) G )/ it g,

1) _ - (2) .
E Nx = x/u1 , and [ Ay = y/u2 ;

thus if we let x/u1 = y/u2 = t we obtain from (4.7)

(4.10) Ho(“lt’“zt) =t - A1/2 ,
where
A= Z Z li'j‘p- P.:
1520 320 r o
‘with

p. = et tt/il

-20-



Ramasubban [20] shows that Al, the '""mean difference'" for the Poisson

distribution, with p; as above, can be expressed as

4.11) o =2t e-Zt{IO(Zt) » 120} .

From (4.10) and (4.11) we obtain an expression for Ho(ult,uzt) from
which, upon replacing t by t/(1-p) and using (4.6), we deduce (4.8}.
The asymptotic expression for Hp(ult,uzt), (4.9), follows upon using

the asymptotic expansion, In(z) ~ ez//2nz as Z > o (n fixed). 0

Let us now consider the general two dimensional function H(x,y). The
proof of Theorem 4.1 required the finiteness of the first order moments of
(xl’Yl)' If we ave willing to assume the existence of higher order moments
it should be pssible to obtain more precise estimates, especially along the
line of expectation, than those given by Theorem 4.1. To this end we have been
able to obtain some approximate formulae that give an indication as to the
asymptotic behavior.

Our approximation is based upon the premise that convergence in distribu-
tion implies convergence of the moments - a result that is not in general
true without "uniform integrability" conditions.

We have seen (Theorem 3.1 and Theorem A.1l) that (N ... -t)/t s
distributed asymptotically as the minimum of two bivariate normal

2,2 2,2 .
(0,0; ol/ul, cZ/uz,p) r.v.'s. Thus we would expect that
lim E(N

o “1t’”2
by oi/ui (i=1,2). This leads to the approximation, as t - =,

¢ - t)/vt wouid be given by (A.9) with 8 = 0 and o, replaced

4.12) HQupt,ut) - t - 2(e/2m 2 + o021/
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where D = [(ol/ul)2 + (oz/uz)2 - Zp(oloz/uluz)]% .

Thus, under the assumption of the existence of second order moments for
(xl’Yl)’ the result given by (4.12) is an improvement over (4.3).

Note that when the (Xl,Yl) are sampled from the bivariate exponential

distribution (with j.p.d.f given by (4.5)). 0 = Wy and g, = and thus

H2
D = V2(I-p) and the expansion given by (4.12) is the same as that given by
(4.9).

As a slight generalization we can obtain an approximation to £ N as

X,y

© = inen()  (2)
(x/ul, y/uz) -+ o, Now Nx y = mm(Nx s Ny )where, from Theorem 3.4 under

)

the stated limiting operations, (Nil), N(z)) is asymptotically bivariate normal

y
(x/ul, Y/uz; Gix/uf, ogy/ug;p). Thus from (A.7) we would expect
y/v,-x/u [x/uy-y/u
(4.13) lim EN =a-’i¢[__i———1+iy-¢+—2-
(Supay/udre YR X,y 2 X,y

X/nl—y/uzl

- A ..
X.¥ ¢[ Ax,y

ch 02y 2p0. 0
where Ai = é + g - 1 2 Xy
24 WoooH HiMa / Hi¥2

Note that (4.12) also follows from (4.13) with x/u1 = y/u2 =t.



5.

5.1

5.2

5.3

FURTHER RESEARCH

Although we presented, in Section 4, an approximate expression, (4.12),
for H(ult,uzt) for large t, further research is required to give a
rigorous proof of this result. Attempts to generalize the one dimen-
sional techniques have so far proved fruitless.

If one is interested in examining the behavior of var(Nx,y), an approxi-

mate expression can be obtained from (A.10) giving, as t > o

Lt 012 922 p?
) - 5{(519 + (EEJ - =]

No detailed examination of this result has been carried out.

var (N
ult,uzt

Theorem 2.4 provides a motivation that would lead us to suspect that

il); Niz)) tends to the correlation of the

as (x/u;,y/u,) > ©, corr(N
limiting bivariate normal r.v.'s, p = corr(Xl,Yl). Actually, in [8]

we showed that if (Xl,Yl) has the j.p.d.f. given by (4.5) then

H,H
corr(Nil), Nﬁz)) = py/ iyzn H(x,y) .

Thus, for (x,y) lying on the line of expectation, we can conclude from
(4.3) that

lim corr(Nclz N(Zl) = p
too Hits M

Further investigations need to be carried out to determine the validity

of this result in general.
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' APPENDIX

In this appendix we examine the distribution and moments of the minimum
of two bivariate normal r.v.'s. The techniques used are based upon those
used by Afonja [17] in deriving more general results for the moments of
the maximum of correlated normal r.v.'s.

Let (UI’UZ) have a bivariate normal (61,62; of,og;p) distribution; i.e.
E U1 = 61, EU2 = 62, var U1 = of, var U2 = cg , corr(Ul,UZ) = p.

Let @p(x,y) be the joint d.f., and ¢p(x,y) be the joint p.d.f., of a
pair of bivariate normal (0,0; 1,1;p) random variables.

THEOREM, A. L:

The d.f., F(y), of Y = min(Ul,Uz) is given by

el-y 62—y
) ‘ (A.1) F(y) =1 - <I>p 01 ’ 02

Proof:

1-F(y) = P{min(Ul,Uz) >y} = P{U1> Y, U2 > y}

© oo ul-el 2 ul-en uz-ez] u2—62]2 .
= (1/2n0102¢1-p2)£ iexp[-{{ 5 ] -Zp[ ) J[ 5 ] + { 5, ] }/2(1-0 )] duzdu1 .

The result follows upon making the substitution

z; = —(ul—el)/o1 s 2y = -(u2 - 62)/02 . d

THEOREL! A.2:

If Y = min(Ul,Uz) then, for r =z 1,

o -24-



2

Y ro_ i3 J
{A.2) EY = Z (J) oF oi ai’j/A ,
i=1 j=0
where
© (05570378 ;
= AN -
% .5 " (1/2m) J {(1-p9) o5 323 * (o5 ""3-1)23-1}
2 2 . .
exp[—(zi + zS-i)/z]dZS-idzi s (i=1,2; j=0,1,...
and
_ 2 2 ¥
A= (cl + o, 200 02)
Proof:

From (A.1) we can express the d.f. of Y, F(y), as

F(y) =1 - J J ¢p(21,22)d22 dzl
b, () b, ()

where bl(y) = (y-el)/o1 and bz(y) = (y-@z)/c2

The p.d.f. of Y, f(y), is given by

2 .p 3b,
£(y) = 21 T ay
= (1/9y) J ¢p((y-91)/01,22)dzz * (1/0,) J ¢p(21,(y-62)/02))d21
b, () b,
=£ () + £,(3) , say.
Now,
(A.4) EYT fy £(y)dy = Z fy £, (y)dy = f I

i=] -w i=1 o T

-25-
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where, for example,

I = (/210 /1p2) Jy" f exp[-{ (
-= (y-8,)/0,

y-el
o

2 Y5
)%~ 20 (—

)z, + 25 }/2(1-09)]

dz2 dy

1 1

This can be simplified by a series of transformations. First, put

z, = (y—el)/c1 to obtain
T
Il,r = j J (61+21°1) ¢p(z1,22)dz2 dz1
= (8)-0,+072,)/0,
Secondly, the transformation uy =z, u,

and the binomial expansion of (61+u101)r gives

(A.5) L,.=1I ei'jo{ 8

where

Bl,

; = (/20152 J J u,)

-0 00

exp[-{UfAz/og - 2u1u2(01/02~p) + ug}/Z(l-pz)] du2 du1 .

Now 51 j can be simplified by the transformation

3

%

_ - n?
ulA/c2 uz(o1 poz)/A 21(1 p<)

uzcz/A =z,

%
(whose Jacobian is (1-p2)%), to give

-]

. (6,-8,)/4 )
El,j = (1/2nAJ)f J 21 {zlcz(l—p‘)%

+

-00 .00

-26-
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zz(cl—poz)}Jexp[-(zl+zz)/2]dz2 dz

= zlal/c2 -2, (whose Jacobian is 1)

1



Equation (A.2) follows from (A.4), (A.5), (A.6) and analogous results for
IZ,r' 0
Evaluation of the ay j can now be effected (using integration by

parts, where necessary) in terms of the standard normal d.f. ¢(x) and p.d.f.

$(x). In particular, for i = 1,2,

%,0 = 2(3;)

o,

1,1 =‘(Oi-003-i)¢(ai) )

2 2
ai’z = A Q(ai) = ai(oi'pcs_i) ¢(ai) H

where a;, = (63-1 - Bi)/A.

The corollary below follows from these results together with the obser-

vations that ¢(x) = ¢(-x), @(0) = %, and ¢(0) = 1//77 .
Cor. A.2.1:
(A7) EY = 61¢((92-61)/A) +82¢((61—62)/A) - A¢((91-62)/A) s

(AES) E Y2= (6i+of)¢((62-61)/A) + (6§+0§)@((91—82)/A)

- (el+62)A¢((62-61)/A)

In particular, when 91 = 62 = 0 , say,
(A.9) EY=6- a3 ,
(A.10) var Y = (o} + o2 - 2%/m/2 .
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