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ABSTRACT

In this paper a unified theory for studying renewal processes in two
dimensions is developed. Bivariate probability generating functions and
bivariate Laplace transforms are the basic tools used in generalizing the
standard theory of univariate renewal processes. Two examples involving the
use of independent and correlated exponential distributions are presented.
These are wed to illustrate the general theory and explicit expressions for
the two dimensional renewal density, the two dimensional renewal function,
the correlation between the marginal univariate renewal counting processes,

and other related quantities are derived.
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1. INTRODUCTION

Let {(Xn,Yn)}, n=1,2,..., be a sequence of independent and identically
distributed non-negative bivariate random variables (r.v.'s) with common
distribution function F(x,y) = P{Xn S % Y o< yl.

n n

Let 5 = (St(xl)’ sr(12)) - (121xi’ i-_}zl T,

We shall call the sequence of bivariate r.v.'s {(Xn,Yn)} a bivariate
renewal process and observe that the marginal sequences, {Xn} and {Yn}
are each (univariate) renewal processes.

In order that we distinguish between the different renewal processes,

we shall say that an X-renewal occurs at the point x on the X-axis if

Sél) = x for some x, a Y-renewal occurs at the point y on the Y-axis
if séz) = y for some 1y, and an (X,Y)-renewal occurs at the point (x,y)
in (X,Y) plane if Sil) = x and séZ) =y for some n.
Define Nél) = max{n: sél) < x},
2 2
N; . max{n: sé ) < v},
- . (D (2)
Nx,y = max{n: S, <X, 8. < y}

Thus, associated with a bivariate renewal process we have various counting

(1) (2)
y

processes. Firstly, Nx are the (univariate) renewal counting

and N

processes for the X-renewals and the Y-renewals. We call the random pair

a®

. 0 N;Z)) the bivariate renewal counting process. Secondly, ny records

the number of (X,Y)-renewals that occur in the closed region of the positive
quadrant of the (X,Y) plane bounded by the axes and the lines X = x and

Y=y. Wecall N the two dimensiomal renewal counting process.
X,y
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This paper is concerned primarily with the development and derivation of
exact results for the distribution, moments and probability generating functions
of the bivariate and two-dimensional renewal counting processes. The approach
taken in this research is to generalize the univariate theory by using direct
two dimensional analogs to derive exact results.

In Section 2, an outline of the properties of bivariate convolutions,
bivariate probability generating functions (p.g.f.'s), and bivariate Laplace
transforms (L.T.'s) is presented for use in subsequent sections.

Section 3 is devoted exclusively to the properties of bivariate renewal
counting processes. The joint distribution of (Nxfl), N;Z)), its joint

p.g.f. and the bivariate L.T. of this p.g.f. are obtained. The moments of

(Nil), Néz)), the marginal renewal functions and renewal densities, and the

independence of Nil) and‘Néz) are also discussed.
Since it is easily seen that Nx y = min{Nil), Niz)}, i.e. the minimum of
3

two correlated r.v.'s, the results of Section 3 are utilized in Section 4 in
examining the characteristics of two dimensional renewal counting processes.
The distribution of Nx,y » its p.g.f. and the L.T. of this p.g.f. are dis-
cussed as is the two dimensional renewal functionm, ENx,y’ and its associated
renewal density.

The paper concludes with a detailed examination of two bivariate distri-
butions, viz. independent and correlated exponential distributions, and

explicit determination of their properties in the above renewal theoretic

context.



2. PRELIMINARIES

2.1 Convolutions of distribution functions and density functions.

In this paper F(:,.) and G(.,.) will be taken to be bivariate d.f.'s
of non-negative r.v.'s. For suchk functions, or any Stisltjes integrable
functions-of two variables, we define their double conVvolution as.

Xy
(2.1) FasGxy =] [Fx-u, y-v)dG(u,v).
0 o0
This operation 1s commutative with respect to F and G and the order of

integration is immaterial in the work to follow.

For x,y 2 0, we define

1 s

Fo(x,y)

Fl(x,y) F(x,y) ’

Fr+l(x,y) =F % & Fr(x,y) ,» (r 2 1);

where F(+,-) is taken to be the distribution function of (Xn,Yn). Then

@ (2
s, )s

Fr(',-) is the distribution function of the random pair (5% s i.e.,

F (x,y) = P{S(l) <x, sﬁz) <

. v} .

We shall also use the notation that, for d.f.'s F(.,-), the marginal

d.f.'s are given by

Fl(x,y) = lim F(x,y) = F(x,») = Fi(x) ,
y«+oo
2 _ _ _ L2
F7(x,y) = 1im F(x,y) = F(x,y) = F (y).
K->

Note that either of the upper limits of integration in (2.1) may be replaced

by + «, since F(x-u, y=v) = 0 whenu >x or v > y.



Furthermore,

1 Xy
F s s G6&x,y) =] [ F(x-u,»)dG(u,v)
0 0

© ¥
= [ [ F(x-u,®)dG(u,v) .
00
By virtue of this result (and the bounded convergence theorem) we may easily

deduce the following:

Lemma 2.1:

(F & & G)l(st) .

@ sty

1) w2 02Gy) = (F x5 6)2x,y) -

(111) (F' & » ©2x,y) = G(w,y) -

1) F w % 0 1x,y) = 6x,») -

The next Lemma is used in simplifying some of the results in Section 3.
Lemma 2.2:

For any d.f. G(x,y),

I 2
G'—'FO**G?-FO**G’-'FO**G.
In later parts of this paper we assume that F(-,:) is an absolutely

continuous d.f. of the non-negative r.v.'s (Xn’Yn) with joint probability

density function (j.p.d.f.) £(*,+). Thus

Xy
F(x,y) = f f f(u,v) du dv.
0 0
For any pair of j.p.d.f.'s, f and g we define their double con-

volution as

x y
£f88gx,y) =) [ f(x-u, y-v) g(u,v) du dv .
0 O



Thus, if we define, for x,y = O,
£,&xy) = £(x,y)

£ a0y =f BBy, (r21),

SENON
r

then fr(x,y) is the j.p.d.f. of (Sr s

We shall denote the marginal p.d.f.'s of Xn and Yn as fl(x) and

fz(y) respectively. Note that

oo

fl(x) = f f(x,v) dv ,

Q

[e 4

£2(y) = [ £u,y) du .
0

2.2 Generating functions for "tail probabilities.”

Feller [3, p. 265] investigates the relationship between the probability
generating function (p.g.f.) of a non-negative integer valued r.v. and the
g.f. of its "tail probabilities."” In this section we develop similar relation-
ships for bivariate, non-negative, integer valued r.v.'s (X,Y). It should be
noted that we define our "tail probabilities' slightly differently in order
that we obtain complete correspondence between the joint p.g.f. and the g.f.
of the "tail probabilities."

Lemma 2.3:

Let P(s,,s,) = ) 1P, o4 s
150 7 Ly P13t %2
and
Q(s,»8,) ) ! a,.s] s 3
0% T L 520 137172

where pij =P{X =1i,Y = j} and qij =P{X241i, Y 2 j} .

Then, fer |g | <1 and |s,| <1,



(2.2) (l—'sl)(l—sz)Q(sl,sz) =1-sP(5,1) - s, P(1,8,) + 8,8,P(5,,8,) , .
and
(2.3) 8,8,P(s;,8,) =1 - (l-Sl)Q(Sl»O)-— (1-8,)Q(0,8,) ,

+ (l—sl) (I—SZ)Q(SI’SZ) .
Proof:
By expanding (l-sl)(l-sz)Q(sl,sz) and collecting the terms involving

si sg together we obtain

i

(1-8)) (1-3))Q(5;,8)) = qp9 ~ 3 iZu(qio’ 441,00 %1

v i
-8 ) (q.- q )s
2 4509037 90,3417 %2

o0 [ <] i »
t o8 120 jZéqi+l,j+l- 94,3417 9441,79440 8 5 - ¢

Equation (2.2) then follows by observing that for 1i,j = 0,1,2,...,

Ui+1,3417 Y, 3417 Q41,57 Y45 = Pyy o

4397 9441,0 = P{X=1} = ] Pyy >
j=0
qu- qo’j+1 = P{Y=j} = ZO pij L]
and -
qoo - l .

Equation (2.3) is derived by putting § = 0 and s, = 0 in (2.2) to

obtain, respectively,

(204) (l-sz)Q(o, 52) = 1 - S2P(1! 52) H

(2.5) (l—sl)Q(sl,O) 1l - slP(sl,l) .




Substitution for P(l,sz) and P(Sl,l) yields the required result. [J
Let Pl(sl) and Pz(sz) denote the marginal p.g.f's of X and Y,

respectively. Then

© i ~
Z pi'sl - P(Sl,l) ’

i}si
i=0

P.(s,) = ] P{X
I A

P,(s,) = } P{Y

A ids) = jzop'js% = P(L,s,)

Similarly, let Q,(s,) and Q,(s,) denote the g.f.'s of the "tail
171 272

probabilities" of the marginal distribution of X and Y, respectively.

Then
0 i o] R
Ql(sl) = iZOP{X - i}sl = ,Z qiosi = Q(sl,O) ,
= i=0
Qy(sp) = [ R(Y > 3)s) = [ qpe) = Q0,5
j=0 i=0

Corollary 2.3.1:

1- slPl(sl)

(2.6) For |sl| <1, Q(sy) = —3= ) .
1 ~s.P,.(s,)
. 2282
(2.7) For |s,| < 1, Q,(s,) = —5= s

Proof: Equation (2.6) (resp. (2.7)) follows directly from (2.4) (resp. (2.5)).
| g
The following lemma is useful in determining the independence of the
random variables X and VY.
Lemma 2.4:

The following three conditions are equivalent:



(i) X and Y are independent,
(i.e., pij = pi-p-j for all i,j = 0,1,2,...) 3
(ii) P(Sl’sz) = P(Sl,l) P(l,Sz), lsll <1, |52l <1 ’

(iid) Q(sl.sz) = Q(sl,O) Q(0,s,), lsll <1, Iszl <1.

Proof:
The equivalence of (i) and (ii) is well known, e.g. Feller [3, p. 279].
The equivalence of (ii) and (iii) follows upon observing that from

(2.2),=(2.4) and (2.5) we may obtain the result that

(1-8,) (1-s,) [Q(s;58,) -~ Q(sl.O)Q(O,sz)]

slsz[P(sl,sz) - P(sl,l)P(l,sz)] . g

The moments of X and Y are, especially for low orders, easily

obtainable from the qij or from Q(sl,sz).

Lemma 2.5:

(2.8) EX = ] q;0=0Q(1,0) -1 =0,(1) -1 ,
i=1 :

(2.9) EY = Qny = Q(09l) -1= Q (1) -1 s
Loy 2

(2.10) EXY = ) ) q;; = Q(1,1) - Q(1,0) - Q(0,1) +1,
i=1 j=1

(2.11) Cov(X,Y)= Q(1,1) - Q(0,1)Q(1,0) = Q(1,1) - Q,(1)Q,(1).

Proof:
Equation (2.8) (and analogously (2.9) follows upon noting

«©
EX = Z ip
i=1

To obtain (2.10), differentiate (2.2% with respect to s; and then with respect

C =1 ilq,,q ) =) ain = Gng -
1 7,k 907,07 T L 950 T Y00

to s, to give

2
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BQ(SI’SZ) BQ(slisz) azQ(Sl,Sz)
Usyssy) ~Q=s )—gg = Ums) ——T—+ (I-s)) (I-s,) ——_
i 2 172
2
- P(sl’sz) + s SP(sl,sz) ‘s aP(sl,sz) ‘s 3 P(sl,sz) .
le 2 s, 172 2 Bgiasz

Taking the limits sS4 + 1 and s, t 1 yields Q(1,1) = 1 + EX + EY + EXY,
and the results follow upon using (2.8) and (2.9).

Equation (2.11) follows by the definition of cov(X,Y). ]

2.3 Laplace-Stielties transforms and Laplace franstorms.

By direct analogy with univariate transforms we define, for functions
which vanish identically for negative values of their arguments, the following »
bivariate transforms. |

(i) If F(x,y) is any function of bounded variation in every finite

rectangle then we shall write

% P ®
¥ (p,q) = [ [ & P*V gp(x,y)
00

for the bivariate Laplace-Stieltjes transform (L.S.T.) of F(x,y).
(ii) If F(x,y) is any function which is integrable in every finite

rectangle then we shall write

o) 2
F(p,q) = L™ {F(x,y)}
w 0
=[] PV px,y) ax ay ,

00

for the bivariate Laplace transform (L.T.) of F(x,y).
We do not discuss the region of convergenée of these transforms other

than to point out that this is discussed in some detail in both [2] and [10]
for bivariate L.T.'s. It should be remarked, however, that if the bivariate

L.T. is absolutely convergent for some complex valued (p,q) = (po,qo), then

the bivariate L.T. exists for all Psq such that R(p) 2 R(po) , and R(q)ZR(qo).



. 10
Note that when F(x,y) has both a bivariate L.S.T. and a bivariate L.T.

then

(2.12) . F*(p,q) = pq FQ(P,q) .

For the univariate transforms we write
[+2]
e P* gr(x) ,

©

e PX F(x) dx

F {p) =

and Fo(p) = L{F(x)} =

O+ O

for the L.S.T. and L.T. (when they exist) of the function F(x).

Let us now assume in what follows that F(x,y) is the d.f. of an
absolutely continuous distribution with j.p.d.f. f(x,y). As introduced
in §2.1 we let Fl(x) and Fz(y) denote the marginal d.f.'s and fl(x)
and fz(y) the marginal p.d.f.'s. We also tacitly assume that all the traus-
forms exist. (In fact, fckp,q) will exist for all p,q such that R(p) 2 0,
R(q) = 0).

The first observation we make is that

(2.13) F*(p,q) = £20,0) ,
(2.14) F(p,q) = 5% £°(p, )

The following lemma gives connections between the univariate and bivariate
transforms for the marginal d.f.'s and p.d.f.'s.

Lemma 2.6:

(2.15) F (p,0) = F () = £1°0) = £2(p,0) ,
(2.16) F (0,0 = F () = £2%q) =£°00,q) .
Also,
(2.17) £ %0, =§fo<p,o> :
(2.18) 'f2 O(p,q) = —rl)- fo(o,q)
Also,
10 _1 10 . 1o
(2.19) F(p,q) p (p) P £ (,0 ,
20 .1 20 . 1 o
(2.20) 77 (p,q) P F° (q) o f {0,q) .



Proof:

11

Equation (2.15) (and analogously (2.16)) follows from the fact that

*
F (p,0)

For (2.17) (and similarly (2.18))

]
8

O

10
£7 (p,q)

1
q

OoO— 8§ O“— 8

e PX dF(x,y)

O 8

e P* arl (x) = o),

e—px

fl(x)dx ( flo(p)).

o8

e PX f(x,y) dx dy (= fo(p,O)).

‘ /]
o8
o8

note that

e PX-TY fl(x) dx dy

o— 3

- (o]
e P* £l(x) ax -% £2° (p)

o— 8

and the result follows from (2.15).

Finally (2.19) (similarly (2.

[}
O 8
Q8

10
F~ (p,q)

-l
o8

1
q

1

Pq

(Note that the results concerning

absolute continuity).

20)) follows on noting that

e~px_qu(x,w) dx dy

3

o

o

F

N )

e P* 5l(x) ax ( ()

o— 8

-px 5 1
e P {f £ (u) du} dx
0

10 1 ©
- = — f ,0) .
(r oa (r,0) 0

L.S.T.'s do not require

the assumption of
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Concerning bivariate L.S.T.'s and L.T.'s of convolutions of bivariate
d.f.’'s and their p.d.f.'s we have the following: (See [10, p. 36])
Lemma 2.7:
Let F and G be bivariate d.f.'s, then
* % *
(2.21) (F % % G) (P,9) =F (p,q)G (p,q) .
Furthermore:

(1) If G is absolutely continuous with p.d.f. g then

(2.22) (F u » G)o(p,q) = Fo(p,q)go(P,q) .

(ii) 1If both F and G are absolutely continuous with p.d.f.'s

f and g, respectively, then

(2.23) F % % O, = =2 £°6,08°0,0)
(2.24) wl**m%m®=;§ﬁwmm%m®,
(2.25) ¢ % 2 ©°0,0) = =2 £20,08°(,a)
Also,

(2.26) £ 882°0,q = 20,0,

As an obvious corollary to (2.26) we may use induction to show that

(2.27) .
£, = £, 6,1} = 26,017 .

We conclude this section with a lemma that is used directly in Theorem
304.

Lemma 2.8:

For all r 20, k 2 0,
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(2.28) F » » FO0,0) = S0,

(2.29) F % % FOO) = Sl 0,01 €y 17
(2.30) F2 % % F0(000) = o1 0,01 € o))"
Proof:

From (2.22) we obtain the result

G % = Fr)o(p»q) = Go(psq)fg(p,q) .

Fl and F2 with bivariate L.T.'s

By taking G as Fk’ Kk k

1 .0, . 1.0 : 1 o0
P fk(p,q), oq fk(p,O), and o fk(O,q) obtained, respectively, from (2.14),

(2.19) and (2.20), the lemma follows for r 2 1, k 2 1 upon utilization of

(2.27). The results also hold for r = 0 or k = 0 since FO = F1 = F2
with bivariate L.T.-;% . O

3. BIVARIATE RENEWAL COUNTING PROCESSES

3.1 The distribution of (N(l) Néz)).

x H]
Theorem 3.1:
- (1) _ (2) _ . -
1if pr,s(x,y) =P{N =, Ny = s}, (x,y 2 0; r,s = 0,1,2,...),

then
(3.1) (x,y) = [F. - F* - F> + F] F (x,9) , (rz0)

. Pr’r 'Y 0 *® * r %4 ’ 2 ’

1 1 1 1

3.2) ps+n,s(x,y) =[F -F  -F #+F+F a4 F] % % Fs(x’Y)'

(s20,n21 ,
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2 2

2 2
(3.3) pr,r+n(x’y) =[F -F 1~ F 1##F+F & 2FlasF (xy)

(r 20,nz21).

Proof: To facilitate a direct proof of these results we partition the positive
quadrant of the (X,Y) plane into the following four regions. For fixed x

and y define

Exy ={(X,Y) : 0<X<x,0<Y<yl},
E;& = {(X,Y) : X>x, 0<Y <y} >
Eg; = {(X,Y) : 0sX<x, Y>>y} ,
E§§'= {(X,Y) : X>x, Y>y}.

1 2
For notational ease let §i = (Si ), Si )), (i=1,2,...),

and §O = (0,0).

We derive (3.1) as follows. For r 2 0,

€ E-- 1} .

prr(x,y) = P{§r ¢ Exy’ §r+l Xy

In particular, making use of Lemma 2,2,

poo(x,y) = P{§1 € Exy} = P{(XlYl) € E§§}

1 - F(x,») - F(=,y) + F(x,y)

1 2
[FO -F -F +F] u = FO(XsY) H

"

and forr 2 1,
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Xy
prr(x,y)=ffP{u.<.S§l)su+du,vsSI(_2) Sv+dv}

AL R T A
Xy

f f [1 - F(x-u,») -~ F(=,y-v) + F(x-u,y-v)]dFr(u,v)
00

1 2
=[F0-F - F +F]**Fr(x,y) .

To derive the expressions given by (3.2) (and analogously (3.3)) note

that for r > s,

prs(x,y)=P{_S_seE eEx;,S e E— 8 €E;;§}

xy’ Sst1 =r xy’ “r+l

Thus for s 20, n 21

ps+n,s(x’Y) = P{gs € Exy’ §s+l € Ex;’ —-s+nS € Ex;’ —S-s+n+l € E;&— b

In the general case when s > 0 and n > 1, consider  Figure 1.

Y

Figure I.
I | | |
; | | 0
I { | Setntl
S N I B
I : | | Setn
| l
V3 ' | |
1 | s |
| E— S S R S
: | 841 | |
| | |
I [
y I 1 }
| | | l
|, | | |
|7 | | |
Y P ¢TI mTTTTTo O e B
! l'5, | I
| | |
Ivl : | |
| o I . b
Y gl o S A< R it W M M "
0 ul ul-l~u2 u1+u2+u3 X
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Thus

(x,y) = [ f [ I
OSuISX OSUZSx-ul OSu3$x-ul-u2

OSVISy y—vlSv2<°° OSv3<m

ps+n,s

¢)) (2)
P{(u1 < SS < ul+dul, vl Ss < vl+dvl)

1A

n (u2 < Xs+l < u2+du2, v, < Ys+ls v2+dv2)
s{n sfn
n (u, < X, £ u,#du,, v, < Y, £ v +dv,)
3 i=s+2 i 3 3 3 i=s+2 i 3 3
20} .

2 X=-u.-u,.-u

n (xs+n+l 172 73 Ys+n+1

i.e.,
Xy X-u, ® -u

1 X
P (y,y) = f f /
stn,s {) {) 0 yw, O

-u

1 72

g {1 - F(x—ul-uz—u3,w)}

an_l(u3,v3)dF(u2,v2)dFs(ul,v1) .

Simplification is carried out in stages, namely

Xy X-u; © 1
f {Fn—l(x—ul_uZ'w) - F * i* Fn—l(x-ul-uZ’w)}_
000 y-vy

p (x,y)

s+n,s

dF(uz,vz) dFS(ul,vl)

= fxfy{Fl # # F(x-u ,») - (Fl F )l F(x-u_,»)
00 n-1 l, 3% #* n-1 3* % 1’
- F1 F(x-u.y-v, ) - (F1 F )l F(x-u Y;V)}
-1 * * 1 1 3 3% n-1 * % 1’

dFs(ul,vl)

1 1
F 1 ##F) »s F_(x,y)

1 1
-l a s P _) s eB)ea F ()
1
~(F ;##F) »s Fs(x,Y)

1 1 1
+((F % e F )7 %8 F) asF Oy




17
Simplifying using Lemma 2.1 yields (3.2). The other special cases (when
either s =0 or n=1) follow wusing Lemma 2.2 (or by special consider-
ation). 0

The marginal distributions of Nil) and Néz)

follow from the above
theorem.

Corollary 3.1.1:

(3.4) P{Nél) =1} = F (x,®) - F . (x,) (r = 0,1,2,...),
(3.5) P{N}‘,Z’ = s} =F_(=y) - F_ (=) , (s = 0,1,2,...) .
Proof:

For r 2 1, we may write

pND= 1} = )
X o=

o pr,s(x,y)

r o0
=) Pr gy + 0, () + ) Pr,r4n )
n=1 n=1

1 1 1 1
=nZI[Fn - Fn+l - Fn-l % # F + Fn # % Fl # a Fr_n(x,y)
1 2
+ [FO -F -F +F] % Fr(x,Y)
v 2 2 2 2
+ L [F = F - F #«F+F »sFlaeaF (xy).

n=1

Simplification is possible by noting, for eample, that
1 1
(Fn ##F)eaF Gy =F »«F &y

The terms involving the second marginal sum to zero, and the expression

reduces to give
M. 3= pt -l
P{Nx =xr}= [F. - F 1] # = Fy(x,y)

= Fr(x,w) - F (x,°)

r+l
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Equation (3.4) follows analogously for the special case r = 0, as does '
) (305) . D
These results are, in fact, well known since each marginal is a - univariate

renewal process (e.g. [1, p. 36]).

The results of Theorem 3.1 can be derived indirectly by considering the

1) (2)

"tail probabilities” of (Nx s Ny

).

For m, n= 0,1,2,..., define

qmsn(x,y) = P{N(l) 2 m, Néz)

2 n
» }

By the usual renewal theoretic arguments it is easily seen that

{Nil) 2m} = {sn(ll) < x},
2
{N}(' )2 n} = s <41,
and hence .
{Nil) 2 m, N;Z)Z'n} = {Sél) < x, S(z) < y}
Thus
U n &Y = P{Sél)s X, séz)s y} .
Theorem 3.2:
For m,n = 0,1,2,...
Fm(x’y) ’ (m = n) ,
(3.6) Gn@y) = [ Fi s % F 0y, @>n),
FloeefF 0uy), @<n) .

Proof:
(L (2) -
First note that 9 m(x,y) = P{Sm <x, 8§77 < y} = Fﬁ(x,y) and (3.6)

holds for m = n.
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Let us now assume that m > n. When n = 0, we have

auo@¥) = P8 < x) = B (r,) = FLGLy) = B 4k Fony)

When m > n 2 1 observe that {Sél) < x} 1implies {Sél) £ x} . Thus
q n(x,y) = P{§n € Exy 3 8 € Exm}
b
xy
= f f P{(u < S(l) < uhdu, v < S(z) < vHdv)
n n
00
Iil m
=n+11 t=nt+1t X
rr
= F (x-u,») dF (u,v)
0o BO n
- F # & F_(x,y)
m-n n 7
The result when m < n follows analogously. 0

The results of Theorem 3.1 follow from Theorem 3.2 (or vice-versa) by

noting that, for m, n = 0,1,... ,

(1) gy =] T &y,
’ r=-m s=n °’
(11) Po,nY) = Gy 4 G6Y) = qg gy GGY)

- qml,n(x,y) + qm’n(x,y)

1) (@)
i)

3.2 The joint probability generating function of (Nx s

The expressions given in Theorem 3.2 for the "tail probabilities" of

1)

(Nx s N§2)) are much easier to handle than those given by Theorem 3.1 for

P, S(x,y). For this reason we use the results of Lemma 2.3 to find the
s

j.p.g.f. of (Nél), Ngz)).
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Define
‘ n
P(x,y; 8,8,) = 2 Z P, oY) s S,
m=0 n=0
and 0 n
Qlx,y; s1,8)) = ] Z qm (x,y) s s, -
m=0 n=0
Theorem 3.3:
For Isll <1, |32| <1,
(3.7) Q(x,y58),8,) = [F+ Z s Z ] o w | Z (s, 2)r F_(x,0] ,
r=0

(3.8) 8;5, P(x,y;sl,sz)

1 S I, QX ° r
= (1-s))(1-s,) [Fy+ ] s +) 80 F.l s o# [] (sy8,) F_(x,3)1]
Sy 4Ts 121 1y 1Z 2 7yl B L%

v 1.1 v 2
sz(l-—sl)i_-z_1 s; Fy (x,y) - sl(l-sz)jzlsg Fj(X,y) + 58, 0(x,y)

Proof:
®
r Y
Q(X3Y931’V32) = rZqu’r(x,Y) sl 32

©o

+i r

+ Z z q (x,y) s s

r=0 4i=1 r+i,r 2
+ z Z q (x,y) Sr r
r=0 j=1 T, r+j 182

Equation (3.7) follows immediately on substitution from (3.6).

Equation (3.8) follows from (2.3) following substitution and simplification

using the results

N |
Qx,y58;,0) = [F + le Fil # # FyGx,y)
i=

Qx,y;0,s,) = [F, + Z s j] » % Folx,y) .
j=1
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Note that
, Yo _m ‘
P(X’stsl,l) = Z P{NX = m}sl = Pl(X,Sl) N
n=0
. v (2) n _
P(x,y,l,sz) = Z P{Ny = n}s2 = Pz(y;sz)
n=0
) 1) (2)
gives the marginal p.g.f.'s for NY and Ny respectively.

Define, analogously,

Q) (xis)) = Qx,y35;,0) and  Q,(y,s,) = Qx,¥;0,8,)-
From Theorem 3.3 we obtain immediately:

Corollary 3.3.1:

(3.9) P Gx; s) = 1+ (s,-1) nzl P s,
(3.10) P,(y; s,) = 1+ (s,-1) nzl Piy ),
(3.11) Q, (x5 8)) = 120 s) F (6,
(3.12) Qi s = 1 o Fi(ey)

i=0
It should be remarked that (3.9) and (3.10) giving the p.g.f.'s for
the marginal distribution of Nil) and N;z) are well known. See, for

example, Cox [1, p. 37].

3.3 The Laplace transform of the joint p.g.f. of (N;l), N;Z)).

In the discussion associated with the paper by W.L. Smith [8, p. 285],
Bartlett derives a portmanteau formula for univariate renewal processes -

basically an expression for the Laplace transform of the p.g.f. of Nil)
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A similar formula is given by Cox [1l, p. 37]. We derive an analogous expres-

sion for the bivariate L.T. of the j.p.g.f. of (Nil), N;Z)). Once again a

preferable method is via the "tail probabilities.”

o 2
Let P (p,q; 8,58,) = L7{P(x,y; s,,8,)}
3 808y = L IPGLYS 858

RN

m=0 n=0 0

m n
(p>q) 8, Sy >

and

Qckp,q; sl,sz) L*{Qx,y; 51’52)} .

Theorem 3.4:

For Isl| <1, Iszl

A
—
-

o [1-5,5,£ %(p,0)£ °(0, )]
(3-13) Q (P’q; 51)52) = ° o o s
Pall-s;s,f (p,q)1[1-s, £ (p,0)][1-5,f "(C,q)]

(1-5;) (1-s,) [£7(p,q) - £°(p,0)£°(0,9)]

(3.14)  PAp,q; s,,8,) =
VP pali-s s, %, )1 11-5,£%p, 001 [1-5,£ %0, 0) ]

+ (1%, 0111-£%0,)]
pql1-s£°(p, 0] [1-5,£ °(0,0)]

Proof:
Equation (3.13) follows from (3.7) and Lemma 2.8 and simplifying
by summing the geometric series.

To obtain (3.14) first note that from (2.3) we may write
P7(p,as ) = (1-s,) (1-s.) Q°(p,q; )
8182 F (Ps03 8p58p) = (1=5)){1=8,) Q(psa5 855,

- (1-s;) Q°(p,q; $150) - (1—s2)Q°(p,q;0,sz) + 1/pq.
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Substitution using (3.13) gives the required result. 0

Concerning the univariate L.T. of the p.g.f.'s of Nil) and N;Z) note
that

e} 2
P (PsQ§ Sl’l) =L {Pl(xssl)}
. l i =_l—‘ o) .
qL{Pl(x,sl)} a Pl(p’sl)

Similarly,

o} 1.0
Thus from (2.14), and (2.15) and (2.16) of Lemma 2.6, we obtain the following:

Corollary 3.4.1:

10
Q -
(3.15) Pl(P; Sl) = L £ lép) ’ Isll <13
pll - s, 87 (p)]
20
(o] - f .
(3.16) Pz(q;»sz) = L (Q){ ’ 'lszl <1.

O +
ql: - szf2 (@)

These are the well known portmanteau formulae referred to previously,
e-g. [1, P- 37]'
We find it convenient to consider the univariate L.T. of the marginal
g.f.'s for the tail probabilities.
QO( ; 8,,0) = LZ{Q(X 5 8,590} = LZ{Q (x; s.)}
P,q$ 1, ,y’ 1’ 1 s 1
=10, &5 s} =
q 1 "1

_di(p; s4)

Similarly
1 ©
Qo(p’q’ossz) - ; Qz(p’sz)
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Equation (2.13) and Lemma 1.6 now yiéld:

Corollary 3.4.2:

o 1 A'
(3.17) Q,(p; s8,) = y syl <1
1 1 pll - 3 £l (p)] 1

(3.18) Qy(a; s,) = 1 . syl <1

q[l - s, £2 (q)]

3.4 The marginal renewal functions and renewal densities.

The moments of (N

(l) (2))
Y

for low orders are given by the following:

Theorem 3.5: For allx 20, y 20

3.19) P - Z F (x,°)
X i=1 1

2)

(3.20) EN; Z F.(x,y) ,

j=1 3

(3.21) ENil)N(z) [F, + Z Fy o+ Z l 2) e w I Z Fy)
y g=1 1 r=1 T

covx{? i 5 )= IF, + Z Py + X Fj] el Z F_(x,y)]
(3.22)
SRR S NCRSY
1=1 j=1
Proof:

The results of this theorem follow from Lemma 2.5 and Theorem 3.3.

In particular note that

Z ;&) = 1Zlqlo(x,y)
and )
Z 3Py Gey) = Z qu(x,y) . 0
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(2)

The functions Hl(x) = EN(l)and Hz(y) = ENy are both univariate

x
renewal functions and have been studied extensively. (cf. Smith, [8]).

From (3.19) one can derive the well known "integral equation of
renewal theory” (cf. Smith [8, p. 252], viz.

X

(3.23) H () = FL() + [ H (x-w)dF' () ,
0
and also an expression for the L.S.T. of Hl(x), viz.
ey o FR )
(3.24) Hl(p) = 1% .
1-F (p)
When Fl(x) is absolutely continuous one can differentiate Hl(x)
and obtain h,(x) = —Q-H (x) = Z fl(x) , the renewal density for the
1 dx 1 Ln

X-renewals. From (3.23) one can infer the renewal density integral equation

1 x 1
(3.25) hy(x) = £7(x) + [ hy(x-u)f (u) du
0

from which one obtains an expression for the L.T. of hl(x) R

1o
(3.26) hf(p) = ————51—439—
1- £9()

Analogous results follow for the Y-renewals, in particular

2%
(3.27) H;(q) = ~———Eé;£gl s
1-F" (q)
and .
20
(3.28) hy(q) = —
1-£7"(q)

Since the marginal renewal functions Hl(x) and Hz(y) are concerned with the

first order moments of Nil) and N;Z) there is no joint renewal function
1
for Ni ) and N;Z). However, as a measure of the dependence of Nil) and
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e

y we could consider, for x,y 2 0,

K(x,y) = cov(N;l), N§2)) .

The result given by (3.22) for K(x,y) was obtained from (2.11) and

(3.7), i.e.

K(x,y) = Q(x,y; 1,1) - Ql(x;l)Qz(y;l)
and thus
Ko(p,q) = LZ{K(x,y)} = Qo(p,q;l,l) - Qf(p;l)Qg(q;l)
} £2(p,q) - £2(p,0)£°(0,q)
3.29) pa[1-£°(p, ) 111-£°(p,0) 1 [1-£°(0, )]
3.5 1Independence of N;l) and N;z).

We conclude this chapter with an interesting result concerning the
independence of the r.v.'s Nil) and Néz). (In the p;oof of the following
theorem we have assumed that F(x,y),bthe joint distribution of each (Xn’Yn)
is absolutely continuous. Thié restriction may be removed by using bivariate

L.S.T.'s rather than bivariate L.T.'s).

Theorem 3.6:
The following conditions are equivalent.

(1) Xl and Yl are independent.

(i1) cov(Nil), N;z) =0 for all x 20, y 2 0.
1 +(2)
(i41) Nx and ﬂy are independent for all x 2 0, y 2 0.
Proof:
X. and Y, are independent

1 1
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1ff F(x,y) = FLx)F3(y) , for all x,y ;
iff f(x,y) = fl(x)fz(y) , for all x,y, (a.e.);

o .
iff £20p,q)= £2° (m£2° () = £9%0p,0)£9(0,q).
Now K(x,y) = cov(Nél), N§2)) =0 , forallx =20,y 20,

(0]
iff K (p,q) o,

fo(p,O)fo(O,q) , (from (3.29)).

n(?
y

iFf £2(p,q)

09

X

Similarly, RN and are independent for all x =2 0, y 2 0,

1ff  Q(x,y,s1,8,) = Q; (x58,)Q,(y;s,) for Isll <1, |s2| <1 (from Lemma 2.4),

iff 6)(p,q;sl,s2) - di(p;sl)Qg(q;sz) =0,

it 925,000 - PG00
pall-s;s, (p,a)] [1-5, £ (p,0)1[1-5,£° (0,q)] ’

1£€ £°(p,q) = £°(p,0£°(0,) ;

and the results follow. g

4. TWO DIMENSIONAL RENEWAL COUNTING PROCESSES

4.1 The distribution of ny.

Theorem 4.1:
For x,y 2 0, and k 2 0,

(4.1) P{NX y = k} = Fk(x’y) - Fk+l(x,y) -

b

Proof:

1)

This result can be proven directly from the joint distribution of Nx

(2)

and N , since
y
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P{Nx,y =k} = P{min(Nil), N}(’Z)

) = k}

= )1 P, (x,y)
min(i,j)=k 13

0 ' ©
=P N+ I G+ e y)
n=1 n=1
Equation (4.1) follows upon substitution for the Py j(x,y) from Theorem 3.1.
1]

Alternatively, we may consider the "tail probabilities" of N, 3"

H

(4.2) (N, 2 0} = (ata itV N}(,Z)) > n}
= {Nil)Zn, H;Z) 2 n}
= {sél) < x, Séz) <y}
Thus ‘
4.3) P{Nx,y 2 n}l = qn’n(x,y) = Fn(x,y) ,
and (3.1) follows. O
4.2 The probability generating function of Nx,y'
As was the case for the joint p.g.f. of Nil) and Niz) we find it

expedient to consider also the (univariate) g.f. for the tail probabilities.

Define o
N(x,y;s) = | P{N = k}s®
k=0 X7
and -
k
O(x,y;8) = ) P{N_ _ > k}s* ..
k=0 XY
Theorem 4.2:
For |s| < 1, and x,y 2 0, '
vk
(4.4) 0(x,y;s) = ] s F (x,y) ,
k=0
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(4.5) M(x,y;s) = 1+ (s-1) § <% F, (5,y) .
k=1

Proof:
Equation (4.4) comes directly from (4.3) while (4.5) is derived by
utilizing (2.6) and (4.4). _ _ ad
One should note the similarity between the expressions for the p.g.f.'s
of Nil) and N;Z) given by equations (3.9) and (3.10) and the p.g.f. of

ny given by (4.4). In fact, we note that

I(x,»;8) = Pl(x;S) and Il(»,y;s) = Pz(y;S)-

(1) and N(z).

Thus from the p.g.f. of ny we can obtain the p.g.f.'s of NX v

Similarly for tail probabilities of ny we observe that

0(x,»;8) = Ql(x;s) and 0O(x,y;s) = Qz(y;S)

4.3 The Laplace transform of the p.g.f. of ny.

Let assume F(x,y) has a bivariate p.d.f. f(x,y) and define
0 2
I (p,q;3s) = L™{II(x,y;s)}
and o 2
0 (p>q;8) = L™{o(x,y;s)}.

Theorem 4.3:

For |s| <1

° 1
4.6 9" (p,q;8) =
(4.6) pall =~ sf°(p,q)]
Lt B aDy
O
4.7) 1°(p,qs8) = ——L(.0)
pqll - s£°(p,q))
Proof:
°(rass) = ] s* AR ), (From (4.4))
k=0

-]

=5 1 s“1°0,01%, (fron (2.28))
k=0
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and (4.6) follows. Equation (4.7) follows analogously, or may be derived by
observing that (2.6) gives

(l-s)Oégp,q;s) = 1/pq - sI°(p,q;8) . n

Equation (4.7) is the portmanteau formula for two dimensional
renewal processes and one should note its similarity with (3.15) and (3.16),
its one dimensional analogs.
One can also show that
o (o]

lim [ql"(p,q;8)] = P, (p;s)

q*0
and, similarly o o
lim [pl"(p,q;8)] = P,(q;s) .
p>0

4.4 The two dimensional renewal function and renewal density.

Nx is the number of two dimensional (X,Y)-renewals in the closed
b

rectangular region in the plane with corners at the points (0,0), (x,O),
(x,y) and (0,y). 1In analogy with the univariate theory we define the

two dimensional renewal function, H(x,y) = EN .

X,y
Theorem 4.4:
For all x =20, y 2 0, -
(4.8) H(x,y) = } F (%,y) .

k=1
Proof:

There are various ways of establishing this result, in particular note

that

X,y kZ]_k P{Nx’y = ki
z z min(i:j)Pij (X’Y)
i=l j=1

z q (XQY) . g
k=1 k,k

EN
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(2)

Just as the p.g.f. of Nx provides information concerning N(l) and Ny ,

¥ X
the univariate renewal functionscan be obtained from H(x,y), since from
(3.19), (3.20) and (4.8)

B (x) = ] F,(x,®) = H(x,) ,
i=1

Hy(y) = )
j=1

Furthermore, from (4.8), we observe that

Fj(w,y) = H(=,y)

oo

He w FO,y) = ] F o () = HX,Y) - Fx,y),
k=1

from whence we obtain the "integral equation of two dimensional renewal

theory” (cf. (3.23)),

Xy
(4.9) H(x,y) = F(x,y) + f f H(x~-u,y-v)dF (u,v)
: ' 00

From either (4.8) or (4.9) we can derive an expression for the L.S.T.

of H(x,y), viz.

%
(4.10) H*(p,q) = —*EISR*SL
1-F (p,q)

>

analogous to (3.24) and (3.27) which give the univariate L.S.T.'s of Hl(x) and
Hy(y).
It should be remarked that knowledgé of the two dimensional renewal
function H(x,y) implies complete knowledge of all aspects of the two-dimensional
renewal process., (cf. Smith [8, p. 254]). This is obvious from (4.10), and
expressions for the higher order mments of Nx,y can be found in terms of H(x,y).
If we assume F(xX,y) to be an absolutely continuous d.f. with j.p.d.f.
f(x,y) then we define the two dimensional renewal density

2

. ) .
funetion h(x,y) = §§5§'H(x’y) ;) l.e.,

(4.11) hGe,y) = ] £ (x,y) .
h=1
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From (4.9) we obtain the "two dimensional renewal density integral

equation’

SR - X y :
(4.12) hix,y) = f(x,y) + f f h(x-u,y-v)f (u,v)du dv .

00
Taking the bivariate L.T. of (4.12) we obtain
o
(4.13) B(p,q) = Elpaa)
1-f (p, qQ)

Note that (2.15) and (3.26) imply

10
o
B(p,0) =~ L 0,
1-£7"(p)
20
Similarly, o £ - ho(q) .
h7(0,q) = | (%0, 2

Thus ho(p,q) contains all the information concerning the (univariate) L.T.'s
of both hl(x) and hz(y), the univariate renewal densities. ‘
In fact, since

-}
-

[ e px(f h(x,y)dy) dx
0 0

% (p,0)

19 -px
hl(p) e hl(x) dx

we may deduce that
h, (%)

/
0
/

h(x,y) dy ,
0

and similarly o
hy(y) = [ hix,y) dx .
0.

These results could have been deduced directly from the definitions of hl(x),

h,(y) and h(x,y).
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5. EXAMPLES

5.1 Independent exponential distribution.

Let (Xn’Yn)’ for each n = 1,2,..., be independent exponential r;v.s.

with means a and b. Thus the j.p.d.f. of'(Xl,Yl) is given by

l ‘ .
f(xsy) = ;E exp[‘%"'%)]; x20,y20,

with o, 1
£0:9) = Tpyamg -
(1) (2)

For n = 1,2,..., Sn and S are independent, respectively gamma

n

(n,a) and gamma (n,b), r.v.'s with densities

1 _ 1 xn-l X
B&) =@ K expl- 5]
and
2y - L ¥
nY’) = T'(n) g exp|[- b
Thus
(5.1) £ Gxy) = £.00) £2(y)

and Fn(x,y), their joint d.f. is given by

(5.2) F_(x,y) = P(n, %:-).P(n, {-)

? un—l -u

where P(n,x) = e du, the incomplete gamma function.
T(n) O

From univariate theory it is well known that N(l)

X
and'N(z)
y

is a Poisson (29 r.v.

is a Poisson (%) r.v. Hence, by Theorem 3.6, or otherwise we can

o))

conclude that (I 77, N;Z)) are independently distributed.

x
o 1 o 1
Hote that f (p,0) = i;;;-, and £ (0,q) = 19bq and that
fo(p,q) = fo(p,O) fO(O,q). Thus the bivariate L.T. of P(x,y;sl;sz), the
(1) (2)

j.p.g.f. of N and Ny » 1s given, from Theorem 3.4, by

X
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0( ;s.,8.) = ab .
P 1P»458,,8, (l-sl+ap)(1-sz+bq)

From this bivariate L.T., or otherwise, we can deduce that

X y.S
"D

2 b el (§-+%)]

pr’s(x,y),= r! s!

Concerning the distribution of Nx y we have from Theorem 4.3 that the

bivariate L.T. of the p.g.f. of Nx y is given by

»

ap + bg + abpq
pqll - s + ap + bq + abpq] °

(0]
T (p,q;s) =

Inversion of this bivariate L.T., or more directly, using Theorem 4.1
and (5.2),gives

P{Nx y

H

= k} = P(k, E)P(k, Xy - p(k+1,§)1>(k+1,1) .

The two dimensional renewal density h(x,y) can be evaluated by inverting ‘

the bivariate L.T.

1
abpq + ap + bq

(5.3) ho(p,q) =

The tables in Voekler and Ibetsch [10, p. 209] give

/
(5.4) hex,y) = o expl- & + 5] 104.[3;,:5{- J :
1

where Io(x) = JO(ix) is the modified Bessél function of the first kind of

zero order. Using the series expansion , for the k-th order function,

+
(% Z)Zr k

I (=) = rZO r{T(ktr+l)! *

with k = 0 ; or directly from (4.11); we have the alternative expression
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(5.5 hGuy) = gpepl-(Z2+ D] ] (X )r L
r=0 (rl)

The two dimensional renewal function H(x,y) can be evaluated directly

using Theorem 4.4, viz.

(5.6) H(x,y) = ] P(k, DP(k, D) .
kel a b
Using the result that ’
w X r
P(k,x) = z & }1{ ’
‘ T
(5.6) can be expressed as
© 0 (_)_C_ i ) (X)j
(5.7) Heoy) = expl-G+ D1 [ (] -] -1} .
k=1 $=k ~°  g=k 3°

5.2 Bivariate exponential distributior.

Various bivariate exponential distributions have been proposed (see

Johnson and Kotz [4, Chapter 41]) but not all have a j.p.d.f. and most involve

severe restrictions on the correlation between the two r.v.'s. The bivariate
exponential distribution used in this example suffers little from these
restrictions and has other desirable characteristics. It is constructed using
a slight modification of the distribution proposed by Moran [5].
b2 4 2
Let X = 2<U3 + U4)

= 3w? 4+ y?
= 2(Ul + U2) and Y1

1
Voo

where Ul’ U2, U3, U4 are all unit normal r.v.'s; (Ul, U3) and (Uz,Ua) a?e

mutually independent, but each pair has a bivariate normal distribution

with correlation w.

The joint characteristic function is given by

E eit1Xl+it2Y1 - 1

(5.8) 2
(;—iagl)(l—ibt2)+m tlt2

This can be inverted (cf. Moran [5]) to give the joint p.d.f. of (Xl’Yl) as



w S
2n
£(x,y) = ] 0™g (x,7)
n=0
where

g (x,y) = i z ¢ 5 f’ &Ie™/a ] LG o CD Gk

We can also obtain alternative expressions for £(x,y). From (5.8)

we obtain the bivariate L.T. of f(x,y) as

o] -pX,-q¥ 1
f (pyq) =E e PA1mat1 o 5 .
l1+ap+bq+(1-w“)abpq

This may be inverted using the tables in Voelker and Doetsch {10, p. 209] to
yield the j.p.d.f.

S S 1 2.¥ 2W /xy
(5.9) f(x,y) = exp[- ——(>+HD]1I L———- ] .
ab(l—wz) (l-wz) a b 0 l-wz ab

This distribution has also been discussed by Nagao and Kadoga [6] who
also giv’e details as to the estimation of the parameters. .

Another expression for f(x,y) has been given by Vere-Jones [9] using
Laguerre polynomials. (See (5.11) to follow with n = 1).

Since flo(p) = (1+ap)-1 and fzo(q) = (1+bq)-'l we can deduce that the
marginal densities fl(x) and f2(y) are both exponential with means a and b
respectively.

The correlation between (Xl,Yl), p = wz.

This distribution generalizes thz distribution given in Section 5.1
since when p= 0 the bivariate exponential distribution reduces to two inde~-
pendent exponential distributions. Furthermore, we can find explicit

(l) (2)
n ).

expressions for the j.p.d.f. of (S Since

1
[1+ap+bq+(1-p)abpq]™

(o]
fn(PsQ) =
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inversion using the tables of Voekler and Doetsch [10, p. 235] gives

n-1
5.10)  £,Gy) = ab(l—p%(n—l)! [::Zb]z "p[‘_ G+ DI, 1[1/;./&1;}
 =(a-1)
= 20y G2E (2 2 amlpg+@mﬂﬁ§ gJ,
where f(x) and £2(y) are gamma (n,a) and gamma (n,b) p.d.f.'s respectively,
the marginal densities of Sél) and Séz).b

Another expression for fn(x,y) can be derived from (5.10) by using
generalized Laguerre polynomials Léu)(z) and the Eille-Hardy formula

(Szego [7, p. 101], cf. Vere-Jones [9]) viz.

(5.11) £ (x,y) = fi(x)fi(ﬂ X T%Ti% (n- 1)( )L(n l)(}1) ok

An explicit expression for Fn(x,y) can be found from (5.11) using the

fact (Szego [7, p. 100]) that

k r
Lén-l)(t) =7 (kin-l)izgl

o v i)
£=0 k-r r.

to give

(5.12) F_(x,y) = z ¢h k{Z( )(-1)ip(n+i )}{ Z G RIGIICE R

Note that (5.12) reduces to (5.2) when p = 0, as expected.

Explicit expressions for the joint distribution of Nil) and N;Z) are

difficult to obtain but the bivariate L.T. of the j.p.g.f. of (N(l) 52)) is
easily derived, viz.
Y o e = pab(l—sl)(l-sz)
P»d3;8y,8, [l-slsz+ap+bq+(l-p)abpq][l—sl+ap][1—sz+bq]

ab
+apl[1l-s +bq]

[l—s1 .
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Theoretically this can be inverted and the coefficients of sl s2

extracted to find prs(x,y). The marginal distribﬁtions are both Poisson,

as in Exanple 5.1.
(1)

The joint moments of Nx and N;Z) are of interest and we obtain

Ko(p,q) L {cov(ﬂ(l), N;Z)}from (3.29).

o _ 0
(5.13) K (p,q) = pqlap+ba+(1-p)abpq]

(2

Ve shall see later that, for this example, cov(Nil) ) is related to

the two dimensional renewal function ENx .
]

The bivariate L.T. of the p.g.f. of Nx y is given by

aptbq+(l-p)abpq
pq[1l-st+aptbg+(1l-p)abpql

(o]
T (p,q;8) =

This can be inverted, with some difficulty, but useful expressions for
P{ny = k} can be obtained by using (4.1) and (5.12).
A simple expression for h(x,y), the two dimensional renewal density is

obtained by inverting

1
apt+bq+(i-p)abpq

(5.14) 2 p,q) =

using the tables of Voekler and Doetsch [10, p. 209] to give

(5.15) h(x,y) = mexp[ ————(-+‘Y-)]I [1—3-5- V’};{%} .

Using the series expansion for IO(Z) we may write

1
rh?

Expressions (5.14), (5.15), (5.16) are the correlated analogs of

1
Sy Pl G+ D) EO[ w2

(5.16) h(x,y)
(5.2), (5.3), (5.4) which follow when p = 0.
There are various ways in which we can find expressions for the two

dimensional renewal function. We can invert the bivariate L.T.
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o o1 1
(5.17) B (p,q) = 50 Taptoqr (1p)abpal °

or we can use (4.8) in conjunction with (5.12). However, the simplest expres-

sion is obtained by using (5.16) and the fact that

Xy
H(x,y) = f f h(u,v) du dv
00

to obtain

- (1o v —_x P A
H(X,Y) (lp)n__X_lP(n’ (l-p)a ) P(n"g (l_p)b) ,.
(¢H)

We remarked earlier that we can, for this example, relate cov(Nx ,

to ENx . We note that (5.13) and (5.17) lead to the result that

b ]
(o) o) '
K (p,q) = pH (p,q)

and thus cov(N(l)

@, _ .
L Ny ). pme

b

Since Nil)and N(Z) are each marginally distributed as Poisson (ED
| a_ x ‘

(2)
Ny )

and Poisson (%? r.v.'s respectively, var Nx Py and var Néz) = %-. Thus the

B g v
y

correlation between N, is given by

o) (), /ab
corr(I\x . Ny ) DV/xy _H(x,y) .
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