
ORIGINAL RESEARCH ARTICLE
published: 13 July 2012

doi: 10.3389/fncom.2012.00045

Renewing the respect for similarity

Shimon Edelman* and Reza Shahbazi

Department of Psychology, Cornell University, Ithaca, NY, USA

Edited by:

Evgeniy Bart, Palo Alto Research

Center, USA

Reviewed by:

Florentin Wörgötter, University

Goettingen, Germany

Evgeniy Bart, Palo Alto Research

Center, USA

*Correspondence:

Shimon Edelman, Department of

Psychology, Cornell University,

Ithaca, NY 14853-7601, USA.

e-mail: se37@cornell.edu

In psychology, the concept of similarity has traditionally evoked a mixture of respect,

stemming from its ubiquity and intuitive appeal, and concern, due to its dependence
on the framing of the problem at hand and on its context. We argue for a renewed

focus on similarity as an explanatory concept, by surveying established results and new
developments in the theory and methods of similarity-preserving associative lookup and

dimensionality reduction—critical components of many cognitive functions, as well as of

intelligent data management in computer vision. We focus in particular on the growing
family of algorithms that support associative memory by performing hashing that respects

local similarity, and on the uses of similarity in representing structured objects and scenes.

Insofar as these similarity-based ideas and methods are useful in cognitive modeling and
in AI applications, they should be included in the core conceptual toolkit of computational

neuroscience. In support of this stance, the present paper (1) offers a discussion of
conceptual, mathematical, computational, and empirical aspects of similarity, as applied

to the problems of visual object and scene representation, recognition, and interpretation,

(2) mentions some key computational problems arising in attempts to put similarity
to use, along with their possible solutions, (3) briefly states a previously developed

similarity-based framework for visual object representation, the Chorus of Prototypes,

along with the empirical support it enjoys, (4) presents new mathematical insights into
the effectiveness of this framework, derived from its relationship to locality-sensitive

hashing (LSH) and to concomitant statistics, (5) introduces a new model, the Chorus
of Relational Descriptors (ChoRD), that extends this framework to scene representation

and interpretation, (6) describes its implementation and testing, and finally (7) suggests

possible directions in which the present research program can be extended in the future.

Keywords: object recognition, scene interpretation, scene space, shape space, similarity, view space, visual

structure

1. THE UBIQUITY OF SIMILARITY
The effectiveness of an embodied cognitive system in fending for

itself depends on its ability to gain insights into its situation that

may not be immediately obvious, either because the properties of

interest are not explicit in its sensory assessment of the outside

world, or, more interestingly, because they are projections into

a potential future. Species that share an ecological niche cannot

entirely avoid the need for forethought, or reasoning about the

future (Dewey, 1910; Craik, 1943; Dennett, 2003; Edelman, 2008;

Bar, 2011). Indeed, evolutionary experiments in which a species

seemingly drops out of the smarts race by opting for thicker

armor or bigger teeth are merely bets that these bodily attributes

will continue to be effective in the future. Such bets that are likely

to go horribly wrong when a competitor invents the next brainy

countermeasure to brawn.

Forethought works because the world is “well-behaved” in the

sense that the future resembles the remembered past and can be

often enough estimated from it, in relevant respects, and up to

a point. In particular, similar consequences are likely to follow

from similar observable causes—an observation that has influ-

enced philosophical thought since Aristotle and that has been

expressed forcefully by Hume (1748, ch. IX):

ALL our reasonings concerning matter of fact are founded on a

species of Analogy, which leads us to expect from any cause the

same events, which we have observed to result from similar causes.

Where the causes are entirely similar, the analogy is perfect, and

the inference, drawn from it, is regarded as certain and conclu-

sive. [. . . ] But where the objects have not so exact a similarity, the

analogy is less perfect, and the inference is less conclusive; though

still it has some force, in proportion to the degree of similarity and

resemblance.

While Hume’s observation applies to visual objects and scenes just

as it does to all of cognition, bringing out similarity in vision and

putting it to work requires some extra ingenuity on the part of

any visual system, natural or artificial. In particular, to obtain

information regarding the shapes of the objects that are present

in the scene, the visual system must overcome the effects of the

orientation of objects, of their juxtaposition, and of illumination.

As it turns out that these computational challenges are subsumed

under the general rubric of similarity-based processing, we shall

begin by considering the most general issues first1.

1We discuss a similarity-based approach to dealing with the effects of orien-

tation and juxtaposition of objects in scenes later in this paper. For related

approaches to countering the effect of illumination, which rely on similarity

to previously encountered exemplars, see for instance (Shashua, 1992; Sali and

Ullman, 1998). Evidence that the human visual system relies on prior experi-

ence in its treatment of illumination in face recognition is offered by Moses

et al. (1996).

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 45 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00045/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ShimonEdelman&UID=19824
http://community.frontiersin.org/people/RezaShahbazi/43557
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Edelman and Shahbazi Renewing the respect for similarity

The past several decades saw a concerted effort to put the

explanatory role of similarity in psychology on a mathemati-

cal foundation. One well-known approach has employed set-

theoretical tools (Tversky, 1977; Tversky and Gati, 1978); another

one resulted in the development, from first principles, of a the-

ory of similarity based on metric representation spaces (Shepard,

1980, 1984, 1987). In the present brief overview, we initially focus

on the metric-space approach (although, as we shall see, the

differences between the two turn out to be immaterial).

The basic premise of the metric theory of similarity posits

that a perceiver encodes entities that are of interest to it, such

as visual objects, scenes, or events, as points in a representation

space in which perceived similarity between two items is mono-

tonically related to their proximity. Shepard (1987) showed that

a few fundamental assumptions, such as the Bayes theorem and

the maximum entropy principle, lead to a representation space

endowed with the Minkowski lp metric (with p = 1 if its dimen-

sions are separable (Attneave, 1950; Garner and Felfoldy, 1970)

and p = 2 if they are not), and that the dependence of generaliza-

tion from one item to another on their similarity—that is, on the

representation-space distance—is negative exponential.

This dependence of generalization on representation-space

distance had been found to hold for a range of taxa and tasks,

from hue discrimination in goldfish to vowel categorization in

humans. Shepard (1987) interpreted the ubiquity of this pat-

tern as evidence for a universal law of generalization. This idea

has been revisited in a special issue of the Behavioral and Brain

Sciences (Shepard, 2001), where it has also been given a Bayesian

formulation (Tenenbaum and Griffiths, 2001). Its empirical sup-

port has also been broadened. In a typical study, a confusion table

for a set of stimuli is first formed by measuring same/different

error rates for each pair of stimuli (this can be accomplished by

various means; cf. Cutzu and Edelman, 1998). The table is then

submitted to multidimensional scaling (MDS; Beals et al., 1968;

Shepard, 1980), which yields a spatial configuration of the stim-

uli in a metric space of prescribed dimensionality (usually two

or three) that best fits the confusion table data. Finally, the prob-

ability of generalization is plotted against distance in this “psy-

chological space,” invariably resulting in a negative exponential

dependence.

Chater and Vitányi (2003) have recently shown that this

dependence of generalization on similarity must hold in princi-

ple even without the assumption that items are represented by

points in a Minkowski metric space. Resorting instead to the

notion of algorithmic information distance, defined as the length

of the shortest program that transforms the representations of

the two items that are being compared into one another, Chater

and Vitányi derived the same negative exponential dependence

as in Shepard’s formulation. They also noted that their “gener-

alized law of generalization” holds even for “complex visual or

linguistic material that seems unlikely to embed naturally into a

multidimensional psychological space.”

Combined with the assumption that the world is well-behaved

in the sense that similar situations occur often enough and have

similar consequences, Shepard’s Universal Law of generalization

suggests that cognitive processes that guide behavior all conform

to the same functional template. A cognitive system faced with a

potentially novel situation needs (1) to determine where the new

representation lands in the space of prior experience, (2) to look

up records of the consequences of responses to similar situations,

(3) to use those in thinking ahead to likely outcomes of possi-

ble responses, and (4) to generate an actual response while taking

into account these data. Notably, this functional template applies

all across cognition, from perception (as when conceptual knowl-

edge is distilled from similar pieces of episodic information) to

thinking (as in case-based reasoning) and action (where behav-

ioral plans and motor programs are synthesized from whatever

worked in the past).

In the remainder of this paper, we offer a series of discussions

highlighting a series of conceptual, mathematical, computational,

and empirical aspects of similarity, as applied to the problems

of visual object and scene representation, recognition, and inter-

pretation. Section 2 discusses certain issues with similarity and

argues that these need not prevent it from being a useful explana-

tory concept in cognition. Sections 3 and 4 offer, respectively, a

very brief introduction to a similarity-based framework for visual

object representation, the Chorus of Prototypes, and an equally

brief overview of the empirical support it enjoys (with multiple

references to a detailed treatment elsewhere). In section 5, we

present some new mathematical insights into the effectiveness of

this framework, derived from its relationship to locality-sensitive

hashing (LSH) and to concomitant statistics. Section 6 introduces

a new model, the Chorus of Relational Descriptors (ChoRD),

that extends this framework to scene representation and interpre-

tation. An implementation and testing of the ChoRD model is

described in section 7. Finally, section 8 offers some conclusions

and suggests possible directions in which the present research

program can be extended in the future.

2. THE PROBLEMATICITY OF SIMILARITY

Although first-principles considerations of the kind invoked by

Shepard (1987), Tenenbaum and Griffiths (2001), and Chater and

Vitányi (2003) clearly suggest that similarity should serve as an

indispensable and broad foundation for cognition, its status as an

explanatory concept in psychology and in neuroscience has been

subject to much doubt (Goodman, 1972; Tversky, 1977; Tversky

and Gati, 1978; Rips, 1989; Medin et al., 1993; Townsend and

Thomas, 1993; Hahn and Chater, 1998). The prime reason for

this is the ambiguity of similarity with regard to items that vary

along independent or potentially conflicting dimensions.

Any two objects or situations that are not identical to each

other are bound to be similar in some respects and dissimilar in

others. As Eisler (1960, p. 77) put it, “An observer instructed to

estimate the similarity of e.g., two differently colored weights, is

supposed to ask: in what respect?” Because the respects in which

objects are to be compared do generally depend on the task and

on the mindset that the subject brings to it, similarity appears to

be too ill-defined to have explanatory value for the psychologist

or, indeed, practical value for the perceiver.

This conceptual difficulty is, however, not insurmountable.

Rather than seeking an ironclad, universally valid set of similar-

ity relations that are prior to any experience, cognitive systems use

their experience in interacting with the world to learn the respects

in which various situations should be considered as similar, by
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tracking the consequences of their actions. The similarity question

thus turns out to be an instance of the well-known computational

problem of credit assignment (Minsky, 1961). Here, it takes the

form of the need to differentiate between those features (dimen-

sions) of similarity of two items that are, in the context of the task,

predictive of the consequences of generalizing between them, and

those that are not2.

In general, the credit assignment problem has both tempo-

ral (diachronic) and structural aspects. The former has to do

with apportioning credit to each of a potentially long sequence

of actions, and the latter—to the various dimensions of the situ-

ation/action representation. With regard to similarity-based pro-

cessing, it is the dimensionality of the representation space that

is of prime concern. The three related computational problems

discussed below all arise from the typically high dimensionality of

measurement and representation spaces.

The need for high-dimensional representation spaces in cogni-

tion stems in turn from the foundational role of experience in the

planning of future behavior. To increase the chances that at least

some of the stored data would bring out the similarity patterns

on which generalization can be based, an advanced cognitive sys-

tem must measure up as many episodes of its interaction with the

world as possible, while making each measurement as detailed as

possible. It is no wonder, then, that the amount of information

that the brains of long-lived animals in complex ecosystems must

capture, process, and store is vast (Merker, 2004). To understand

how the brains of such animals, including ourselves, manage this

deluge of data, we must first identify the computational principles

that are in the play.

2.1. THE TUG OF WAR BETWEEN CONTENT-BASED RETRIEVAL

AND GENERALIZATION

Seeing that storage as such appears to be cheap (e.g., Brady et al.,

2008), the main problem here is retrieval. In other words, if a

vast amount of data is stored against a possible future need, the

efficiency of retrieval becomes all the more important. Clearly,

retrieval must be selective: only those records that are similar to

the present experience must be brought to the fore. Moreover,

retrieval must be fast: a sequential scan of the full contents of the

multitude of stored items will not do. A computational scheme

that fulfills these requirements is hashing (Aho et al., 1974). By

storing each item under a key that is computed from its con-

tent and that uniquely specifies a memory address, hashing allows

fast associative recall: a test item can be looked up in constant

time, independent of the number of stored items. In that respect,

hashing is like a massively parallel, content-addressable biological

memory system, in which a cue can be compared simultaneously

to multiple stored items (see Willshaw et al., 1969 for an early

computational model and Lamdan and Wolfson, 1988 for an early

application in a computer vision system for object recognition).

To minimize recall mistakes stemming from memory colli-

sions, hashing functions in data management applications were

traditionally engineered to map any two items, even similar ones,

2Cf. Shepard’s (1987) notion of consequential regions, and the need for dif-

ferential valuation of stimulus dimensions implied by the Ugly Duckling

Theorem (Watanabe, 1969, pp. 376–377).

to very different addresses. This way, the probability of confus-

ing distinct items could be kept low—but only at the expense

of destroying any similarity relationships that may hold over

the items. Because under a classical hashing scheme two sim-

ilar and therefore possibly related cues may wind up very far

apart in the representation space, simply “looking around” the

address of the best-matching item for anything that may be worth

retrieving along with it would not work. Thus, while enabling

content-based retrieval, classical hashing hinders similarity-based

generalization.

2.2. THE CHALLENGE OF DIMENSIONALITY REDUCTION

Earlier in this section we noted that the measurement space in

which objects external to the system are first represented is likely

to be high-dimensional. Indeed, in the human visual system,

the nominal dimensionality of the input signal from each eye

is equal to the number of axons that comprise the optic nerve,

or about 106. Any perceivable similarities over visual objects or

scenes must, therefore, exist as patterns in that multidimensional

signal 3. The task of finding such patterns is, however, extremely

hard.

What kind of measurement-space pattern could be useful for

similarity-based generalization? Two generic types of patterns are

those that afford categorization and those that support regres-

sion (Edelman and Intrator, 2002; Bishop, 2006). In the first case,

a number of previously encountered exemplars fall into a small

number of distinct categories according to some characteristics,

making it possible to categorize a new item by its similarity to

each of those. In the second case, exemplars cluster in a subspace

of dimensionality that is lower than that of the original measure-

ment space. In each of the two cases, subsequent generalization

becomes possible because the description of the data in terms of

the patterns is simpler than the original representation (as per the

Minimum Description Length (MDL) principle; cf. Adriaans and

Vitányi, 2007).

The problem is that the characteristics that define the “small

number” of clusters or the “lower-dimensional” subspace in the

above formulation need not correspond to any of the original

measurement dimensions by themselves. The similarity of two

spatially sampled visual objects, for instance, is always distributed

over a multitude of pixels (that is, dimensions) rather than being

confined to a single pixel. The visual system must find the right

function of pixel values (e.g., a rotation of the original space

followed by a projection onto a subspace, if the function is con-

strained to be linear) under which the sought-after similarity

pattern—in the two-category case, a bimodal distribution—is

made explicit (in the sense of Marr, 1982).

The linear version of the problem of finding such a function

is known as projection pursuit (Huber, 1985). By the central

limit theorem, most low-dimensional projections of a high-

dimensional “cloud” of points will be approximately normal,

3This observation applies to natural or analog similarities, not symbolic or

conventional ones. Thus, a heap of 19 marbles is naturally similar to a heap of

20 marbles under any of a wide range of visual measurement schemes, whereas

under most schemes the number 19 on this page is only conventionally sim-

ilar to the number 20. A natural similarity space for shapes is discussed in

(Edelman, 1999, 3.2–3.3).
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that is, they will look like noise. Consequently, an “interesting”

projection is one that yields a distribution that deviates from

normality, e.g., because it is bimodal, or perhaps heavy-tailed

(Intrator and Cooper, 1992). Algorithms based on this approach

can be extremely effective in cases where the pattern of interest is

indeed linear (e.g., two linearly separable clusters of data points

side by side). They are, however, of no avail in the general case,

where no linear projection can do the job (e.g., if the pattern

consists of two concentric spherical shells of data points).

2.3. THE COMPLEXITY OF LEARNING FROM EXAMPLES

A complementary problem to the separation of a pattern into a

few clusters or a subspace of a few dimensions is that of pattern

build-up. How many data points suffice to define a pattern that

can support reliable generalization? This question is of central

concern in machine learning (along with the related issue of the

number of degrees of freedom of the learning mechanism; e.g.,

Haussler, 1992). Intuitively, learning from examples can be seen

as an instance of function approximation (Poggio, 1990), which

suggests that the set of examples must cover the domain of the

sought-after function in a representative manner4.

The need to cover the representation space with exam-

ples implies that the number of required data points depends

exponentially on the number of dimensions of the representa-

tion space—a problem known as the curse of dimensionality

(Bellman, 1961). While it can be circumvented in supervised

learning on a task-by-task basis5, the problem of dimensionality

in an exploratory (unsupervised) setting or in a situation where

transfer of performance is expected between tasks (Intrator and

Edelman, 1996) must be addressed by undertaking dimensional-

ity reduction prior to learning.

2.4. THE TRUTH IS OUT THERE

The last computational consideration that we would like to

bring to bear on the problem of learning and use of similarity

is that perceptual similarity (as opposed to arbitrary associa-

tions that the cognitive system may form following experience)

is “out there” in the world, waiting to be transduced into the

measurement space and preserved and discovered in the reduced-

dimensionality representation. In the domain of visual object

shapes, for instance, natural similarity relations arise from the

mathematics of shape parametrization, where certain unique-

ness results have been proved (see Edelman, 1999, App.C for

references). As noted in the introduction, these relations are in

principle discoverable by agents situated in the world, insofar as

similar causes tend to lead to similar consequences.

This observation suggests that perceptual representations

should be evaluated on the basis of their veridi-cality—the degree

to which they preserve the qualities of the objects “out there.”

In particular, a veridical representation scheme that preserves

4Note that this formulation is related to the more general view of the problem

of learning from examples as the estimation of the joint probability density

over input and output variables.
5The support vector approach to supervised learning can solve classification

and regression tasks directly in a high-dimensional space; see Cortes and

Vapnik (1995) for an early formulation and Malisiewicz et al. (2011) for a

recent application.

relational qualities such as similarity amounts to what Shepard

(1987, 2001; cf. Shepard and Chipman, 1970) termed a second-

order isomorphism between the representations and their targets

(this must be distinguished from first-order isomorphism, which

posits representations that individually resemble their respective

objects and which, it should be noted, merely postpones the prob-

lem of making sense of the world rather than solving it; Edelman,

1999)6.

We may therefore conclude that the twofold computational

challenge that any perceptual system must address is (1) to achieve

veridical representation of similarities among objects, so as to

forge a link between sensory data and consequentially responsible

behavior, and (2) to do so in a low-dimensional representation

space, so as to allow effective pattern discovery and learning from

experience. The rest of this article offers a brief overview of a com-

prehensive computational theory that explains how the primate

system for visual object recognition solves these two problems.

This theory has been implemented and tested both as a com-

puter vision system and as a model of biological vision and is

backed by behavioral and neurobiological findings, as detailed in

the references.

3. A SIMILARITY-BASED FRAMEWORK FOR VISUAL OBJECT

PROCESSING: THE CHORUS OF PROTOTYPES

In problems that arise in visual object processing (see Table 1), the

nature of the stimulus universe and certain generic properties of

visual systems ensure that veridical representation of distal object

similarities in a low-dimensional space is easy to achieve (for

a detailed argument, based on properties of smooth mappings,

see Edelman, 1999). In this section, we outline a computational

framework that offers a solution to these problems, which is based

on the idea of putting similarity itself to work in constructing a

representation space for distal objects. Because it represents each

Table 1 | A hierarchy of tasks arising in visual object and scene

processing.

Task What needs to be done What it takes

Recognition Dealing with novel views

of shapes

Tolerance to extraneous

factors (pose,

illumination, etc.)

Categorization Dealing with novel

instances of known

categories

Tolerance to

within-category

differences

Open-ended

representation

Dealing with shapes that

differ from familiar

categories

Representing a novel

shape without

necessarily categorizing it

Structural

analysis

Reasoning about (i) the

arrangement of parts in an

object; (ii) the arrangement

of objects in a scene

Explicit coding of parts

and relationships of

objects and scenes

6Despite its intuitive appeal and deep roots that go back to Plato, the

first-order isomorphism approach is also infeasible in practice (given the com-

putational difficulties associated with the task of reconstructing the world

from sensory data) and is a poor model of human performance (given that

subjects are in fact very bad at such reconstruction).
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stimulus by a vector of its similarities to a small set of refer-

ence objects, this framework is called the “Chorus of Prototypes”

(Edelman, 1995, 1999).

The Chorus framework is founded on the observation that,

no matter how high-dimensional the measurement space of a

visual system is, certain events and relationships of interest “out

there” in the world give rise to representational signatures whose

structure ensures tractability. One behaviorally important type

of such event is the rotation of a rigid object in front of the

observer around a fixed axis (or, equivalently, the circumambu-

lation of the object by the observer). Provided that the imaging

function that maps the object’s geometry into the representa-

tion space is smooth, the footprint of the rotation event in

the representation space will be a one-dimensional manifold—

a smooth curve (which, moreover, will loop back upon itself,

due to the cyclic nature of the rotation event)7. For rotation

around three mutually orthogonal axes, the manifold will be

three-dimensional8.

3.1. OBJECT VIEW SPACES

Because the representation of the set of views of a rotating

object—its view space—has the manifold property, the views can

be related to one another by computationally tractable proce-

dures. In particular, given that the view space is smooth, a small

number of exemplars (representation-space points that encode

particular views of the object) typically suffice to interpolate it,

using any of the many existing methods for function approxima-

tion. One such method, which, as we shall see in the next section,

is especially interesting from the neurobiological standpoint, is

approximation by a linear superposition of radial basis functions

(Poggio and Edelman, 1990; Poggio and Girosi, 1990).

This corresponds to representing any view of the object by its

similarities to a handful of exemplar views that can be learned

from experience (Poggio and Edelman, 1990; this, in turn, implies

that the view space for the object, as well as a decision function for

object identity, can take the form of a weighted sum of the outputs

of a set of neurons each of which is broadly tuned to one of the

exemplar views). While recognition performance of this mecha-

nism can be highly tolerant to viewpoint changes (if the exemplars

are chosen so as to jointly cover the view space well), it is not fully

viewpoint-invariant—but neither is the performance of human

subjects (Bülthoff and Edelman, 1992; Edelman and Bülthoff,

1992; Edelman, 1999; DiCarlo and Cox, 2007; more about this

in section 4).

3.2. OBJECT SHAPE SPACES

Edelman (1995) noted that the principles that facilitate this kind

of low-dimensional representation of relationships between dif-

ferent views of the same object apply also to the relationships

between different object shapes. Specifically, object shapes that

are not too dissimilar from each other—say, a duck, a goose,

and a chicken—can be meaningfully morphed into one another

by simple linear interpolation of some fiducial features such as

7For definitions of formal concepts such as smoothness and manifolds, and

for other mathematical details, see Edelman (1999).
8If the object is opaque, the manifold will be piecewise smooth.

edge configurations, so that intermediate shapes do make sense.

Indeed, they form a smooth, low-dimensional manifold.

This implies that under a smooth representation mapping,

the set of view spaces of the objects in such a “tight” shape

category—its collective shape space—can be interpolated by the

same means that support the interpolation of individual view

spaces (Edelman, 1998). Moreover, because the view spaces of the

shapes in question will be roughly parallel to each other, learning

a view-related task for one shape would readily transfer to another

(Intrator and Edelman, 1996, 1997; Edelman and Duvdevani-Bar,

1997). For instance, learning to predict the appearance of a three

quarters view of one face from its frontal view would work also

for other faces (Lando and Edelman, 1995; Duvdevani-Bar et al.,

1998).

With regards to implementation, the shape space can be

approximated by the same means as the view space, as a weighted

sum of tuned unit responses, which serve as basis functions. If

each of the units is tuned to an entire view space of some object

(which may itself appear at a range of orientations), together

they will span the shape space for the family of objects in ques-

tion. Given a potentially novel stimulus, each such tuned unit

effectively signals how distant (that is, dissimilar) it is from its pre-

ferred shape, or “prototype.” The joint ensemble activity (which

inspired the name Chorus of Prototypes; Edelman, 1995) pinpoints

the location of the stimulus in shape space, just as in a land survey

the distances to a handful of landmarks jointly fix the location of

a test point in the terrain.

3.3. THE CHORUS TRANSFORM

Formally, representing a new view by its similarities to familiar

views or a new shape by its similarities to familiar shapes are both

instances of an application of the Chorus Transform (Edelman,

1999). Let p1, . . . , pn be n prototypes and let x be an input vector,

pk, x ∈ R
d. The Chorus Transform (CT) is defined as follows:

CT(x) =
1

√
n

⎛

⎜

⎝

‖x − p1‖
...

‖x − pn‖

⎞

⎟

⎠
(1)

The application of this transform CT : R
d → R

n results in

dimensionality reduction, if the number of prototypical objects,

n, is smaller than the dimensionality of the measurement space d.

Edelman (1999, App.B) showed that the Chorus Transform

can support a logarithmic dimensionality reduction, while

approximately preserving the inter-point distances in the origi-

nal space (the proof of this claim is based on a theorem due to

Bourgain, 1985). In other words, even with a very small num-

ber of prototypes—O(log d), where d is the dimensionality of

the original space—the relative positions of the data points in

the new, low-dimensional space approximate their original lay-

out, implying that the original similarity relations, and with them

category boundaries, etc., are largely preserved9.

9Recent developments in neighborhood-preserving embedding and immer-

sion (Bartal et al., 2011) improve on the Johnson and Lindenstrauss (1984)

result that had been cited by Edelman (1999). The original J-L lemma states
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A statistically robust version of CT can be derived by observing

that a representation based on distances to a set of points (pro-

totypes) is related to vector quantization (Linde et al., 1980; the

following exposition is borrowed from Edelman, 1999, App.B). A

vector quantizer Q is a mapping from a d-dimensional Euclidean

space, S, into a finite set C of code vectors, Q : S → C,C =
(p1, p2, . . . , pn), pi ∈ S, i = 1, 2, . . . , n. Every n-point vector

quantizer partitions S into n regions, Ri = {x ∈ S : Q(x) = pi};
the Voronoi diagram is an example of such a partition. Whereas

vector quantization encodes each input pattern in terms of one of

the code vectors chosen by the nearest-neighbor principle (Cover

and Hart, 1967), Chorus does so in terms of similarities to several

prototypes. This parallel suggests that a discretized representa-

tion of the input space, related to the Voronoi diagram, can be

obtained by considering ranks of distances to prototypes, instead

of the distances themselves.

Let p1, . . . , pn be n prototypes, and consider a representation

that associates with each input stimulus the Rank Order of its

Distances to the prototypes (ROD). That is, an input x is rep-

resented by an ordered list of indices ROD(x) = (i1, i2, . . . in),

meaning that among all prototypes pi, x is the most similar to

pi1
, then to pi2

, and so on. Note that the index i always heads the

list ROD(pi) corresponding to the prototype pi (a prototype is

most similar to itself). The total number of distinct representa-

tions under the ROD scheme is n! (the number of permutations

of the n indices). To compare two representations, one may use

Spearman rank order correlation of the index lists.

4. EXPERIMENTAL SUPPORT FOR THE CHORUS

FRAMEWORK

The Chorus framework has been implemented and evaluated

as a computer vision system for recognition and categorization

of isolated objects (Duvdevani-Bar and Edelman, 1999) and for

class-based generalization (Lando and Edelman, 1995; Edelman

and Duvdevani-Bar, 1997). It had also generated predictions for

behavioral, electrophysiological, and imaging experiments, all

of which were subsequently corroborated. The relevant studies,

which are mentioned briefly in this section, have been discussed

at great length elsewhere (Edelman, 1998, 1999).

The basic tenet of the Chorus model—that object vision

is fundamentally viewpoint-dependent because its functional

building block is a unit broadly tuned to a specific view of

a specific object—received early support from psychophysical

(Bülthoff and Edelman, 1992; Edelman and Bülthoff, 1992) and

neurophysio-logical (Logothetis et al., 1994; Logothetis and Pauls,

1995; Wachsmuth et al., 1994; Perrett and Oram, 1998) exper-

iments. Subsequent studies consolidated the notion that object

recognition is characterized not by invariance but by tolerance to

extraneous factors such as orientation and retinal position, which,

that any n-point subset of Euclidean space can be embedded in O(ǫ−2 log n)

dimensions with at most (1 + ǫ) distortion of the inter-point distances. In

contrast, the new local dimension reduction lemma (Bartal et al., 2011) offers a

likewise bounded-distortion embedding into a space whose dimensionality

does not depend on n, as long as it is the local and not the global struc-

ture of the data set that is to be preserved. It remains to be seen whether

this embedding method can be carried out by mechanisms whose biological

implementation is as straightforward as that of the Chorus scheme.

furthermore, depends on the task and on the prior experience

with the objects in question (Dill and Edelman, 2001; DiCarlo

and Maunsell, 2003; Cox et al., 2005; Rust and DiCarlo, 2010).

A particularly interesting feature of the Chorus framework is

that object representations that it posits are generically veridi-

cal with regard to inter-object similarities. As noted above,

the dimensionality reduction method employed by the Chorus

model—representing each stimulus by its distances to shape-

space landmarks—is guaranteed to approximately preserve orig-

inal similarities among stimulus shapes, insofar as it implements

the random subspace projection method of near-isomorphic

embedding (Johnson and Lindenstrauss, 1984; Bourgain, 1985).

The predicted metrically veridical perception of object similarities

has indeed been demonstrated in behavioral and physiological

studies with humans (Cutzu and Edelman, 1996, 1998; Edelman

et al., 1998, 1999; Giese et al., 2008; Panis et al., 2008) and

monkeys (Sugihara et al., 1998; Op de Beeck et al., 2001).

In summary, results from human and monkey psychophysics

and physiology suggest, as predicted by the Chorus framework,

(1) that the visual system seeks tolerance rather than invariance to

object transformations (Rust and DiCarlo, 2010), as predicted by

the view- and shape-space idea (Edelman et al., 1998; DiCarlo and

Cox, 2007), (2) that object translation can be disruptive, especially

for structure representation (Dill and Edelman, 2001; Cox et al.,

2005; Kravitz et al., 2008), as predicted by the retinotopy of the

classical receptive fields that are the functional building blocks of

the Chorus model, (3) that this trait is compatible with extrastri-

ate neural response properties (Vogels, 1999; Gallant et al., 2000;

DiCarlo and Maunsell, 2003), and (4) that the peculiarities in

the manner in which primate vision deals with object structure

(Tsunoda et al., 2001; Newell et al., 2005; van Dam and Hommel,

2010) can be accounted for by a fragment-based scheme that relies

on binding by retinotopy Edelman and Intrator (2003).

5. A RENEWED INTEREST IN THE MATHEMATICS

OF SIMILARITY AND THE CHORUS TRANSFORM

The past decade saw a variety of new and exciting develop-

ments in the theory of similarity-preserving associative recall,

which are proving to be widely useful in computer vision, notably

LSH (Andoni and Indyk, 2008). Furthermore, some old ideas for

embedding structured data in vector spaces, such as holographic

reduced representations (Plate, 1991), are being rediscovered and

applied (Jones and Mewhort, 2007), albeit not in the visual

domain. We see both these sets of development as important to

visual scene representation and processing: the former contribute

to the struggle against the curse of dimensionality, while the latter

suggest computationally convenient and neurally plausible ways

of dealing with structure. In this section and in section 6, we

briefly describe representative methods from these two domains

and show that they are either related to the Chorus Transform or

can benefit from its application.

5.1. THE CHORUS TRANSFORM IMPLEMENTS LOCALITY-SENSITIVE

HASHING (LSH)

Significant progress in similarity-based high-dimensional data

management has been recently brought about by the development

of new algorithms that perform hashing while respecting local
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similarity (Andoni and Indyk, 2008; Paulevé et al., 2010). The

growing family of LSH algorithms “effectively enables the reduc-

tion of the approximate nearest neighbor problem for worst-

case data to the exact nearest neighbor problem over random

(or pseudorandom) point configurartion in low-dimensional

spaces” (Andoni and Indyk, 2008). Both steps in this process—

forming the random projections and quantizing the resulting

low-dimensional space into address bins—rely on the same com-

putational principles that underlies the Chorus Transform and

can be carried out by the same mechanism, namely, a set of

tuned units.

As outlined in Figure 1, the process begins by choosing a num-

ber of hash functions from a family of functions H = {h : R
d →

U} that satisfies the LSH condition: the probability P1 of mapping

two data points p, q ∈ R
d to the same bin must be larger than the

probability P2 of mapping them to different bins if the points are

close together —

if ||p − q|| ≤ R then PrH[h(p) = h(q)] ≥ P1 (2)

if ||p − q|| ≥ cR then PrH[h(p) = h(q)] ≤ P2 (3)

where R is the radius of the neighborhood that defines proximity

and c > 1 is a constant (which defines an “exclusion zone” around

the R-neighborhood). Each of the hash functions is then used to

construct a hash table, which are populated by points from the

given data-set. The lookup procedure for a query point q iterates

over the hash tables and returns retrieved points that fall within

an R-neighborhood of q.

Now, consider the “multidimensional line partitioning” LSH

family described by Andoni and Indyk (2008, p. 121). A hash

function from this family first performs a random projection of

the data point p into R
t , where t is super-constant [i.e., grows

slowly with n, as in t = o(log n)]. The space R
t is then partitioned

into cells, and the hash function is made to return the index of the

cell that contains the projected point p.

This last part suggests a ready parallel to the Chorus

Transform. Specifically, the receptive fields of the tuned units rep-

resenting the prototypes effectively function as the cells in the

second step of the above procedure (the first step being the pro-

jection of the probe point on the manifold defined implicitly by

the choice of prototypes). To complete the analogy, the outputs

of the tuned units can be thresholded (as in the ROD version of

the transform), so that the resulting code consists of the identi-

ties (that is, indices) of units whose activation by the probe point

exceeds the threshold.

The original Chorus Transform, without thresholding, can

be seen to carry out kernelized LSH (a variant introduced

by Kulis and Grauman (2009), which, as those authors note,

is applicable to both vector and non-vector data). In a

recent development of this approach, He et al. (2010, p.1133)

defined the space Vj onto which the data are projected by

the jth hashing function by a linear combination of “land-

marks” {zn} in the kernel space. This idea leads to the hash

function.

h(p) = sign(aT kp − b) (4)

where a are the linear combination weights and

kx = [K(x, z1), . . . , K(x, zn)]T (5)

are the kernel values between x and each of the landmark points

zn. With the distance function || · || serving as the kernel and zn

FIGURE 1 | The locality-sensitive hashing (LSH) scheme (after Andoni and Indyk, 2008, Figure 2). For an explanation of how the Chorus Transform

implements LSH, see section 5.1.
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as the prototypes, this corresponds precisely to an application of

the Chorus Transform to the data point x.

5.2. THE CHORUS TRANSFORM COMPUTES CONCOMITANT

STATISTICS

In their discussion of LSH families, Andoni and Indyk (2008,

p. 120) note that if the Jaccard similarity, defined for two sets

A and B as s(A, B) = |A ∩ B|/|A ∪ B|, is used as a basis for

hashing, the LSH framework is thereby extended to include the

so-called minwise hashing methods. Minwise hashing (Broder,

1997; Li and König, 2011) is a special case of pairwise char-

acterization of ordered sets through their concomitant statistics

(Eshghi and Rajaram, 2008, Section 4), and is best explained

as such.

Consider n independent sample pairs, {(x1, y1), (x2, y2),

. . . , (xn, yn)} obtained from a bivariate distribution f (x, y). In the

theory of rank order statistics, yk is called the concomitant of xk.

Formally, concomitant theory captures the relation between the

order statistics of x and y in the form of a rank distribution given

by Pr
[

Rank
(

yi

)

= j | Rank (xi) = k
]

.

Let
∏n

1,1 be the probability that the smallest of xi is the con-

comitant of the smallest of yi. The link to the LSH theory now

becomes apparent: if the smallest element among xi is identical to

that of yi, it must lie in the intersection of the two sets, which

implies that the probability
∏n

1,1 is equal to the Jaccard simi-

larity between them (this is the defining insight behind minwise

hashing, due to Broder, 1997).

Eshghi and Rajaram (2008) observe that the same reasoning

holds not just for the smallest (lowest-ranking) pair but also for

any range of smallest concomitant ranking pairs of the two sets.

They proceed to define a “min k-multi-hash” LSH family based

on this observation. For us, it is of interest because the smallest

k values in a Chorus Transform—a representation that supports

LSH—are effectively computed by retaining the smallest k out of

the n distances to the prototypes that define it10.

In a related vein, Yagnik et al. (2011) introduce the Winner

Take All (WTA) hash, “a sparse embedding method that trans-

forms the input feature space into binary codes such that

Hamming distance in the resulting space closely correlates

with rank similarity measures.” Their hash functions define

the similarity between two points by the degree to which

their feature dimension rankings agree. Yagnik et al. (2011)

point out that the simplest of such measures is the pairwise

order function PO(x, y) =
∑

i

∑

j<i T((xi − xj)(yi − yj)), where

xi and yi are the ith dimension values of x, y ∈ R
n and

T is a threshold function, T(x) = 1 if x > 0 and T(x) = 0

otherwise.

Whereas Yagnik et al. (2011) proceed to define their WTA

hash family using random permutations of feature dimensions,

it can also be formulated in terms of the Chorus Transform.

To that end, in lieu of permuting the dimensions, all we have

to do is administer a vector of random biases (drawn from a

10These are the k landmarks that are the closest to the probe data point;

cf. the discussion of the relationship between CT and vector quantization

in section 3.3. We also note that this idea is related to the coding scheme of

Thorpe et al. (1996) and the MAX model of Rousselet et al. (2003).

predetermined set of random vectors) to the landmark units;

each such bias vector effectively permutes the rank order of the

unit responses. Given that under the Chorus Transform, the out-

put representation by distances to prototypes preserves the rank

order of data point similarities in the original space (Edelman,

1999, App.B), the above procedure is exactly equivalent to the

one proposed by Yagnik et al. (2011), with the added advan-

tage of being carried out in a more convenient low-dimensional

space.

6. EXTENDING THE CHORUS FRAMEWORK TO COVER

STRUCTURAL SIMILARITY

The kinds of visual stimuli discussed up to now in this paper

did not include objects composed of parts or scenes contain-

ing multiple objects, such as those depicted in Figure 2, or that

which you will see if you raise your eyes from this paragraph

and look around you. In this section we first list some of the

functional requirements posed by structured scenes and the chal-

lenges presented by those requirements. We then briefly mention

a previously published biologically motivated model of scene pro-

cessing (Edelman and Intrator, 2003). Finally, we outline a new

computational approach to scene interpretation, the Chorus of

Relational Descriptors (ChoRD), which uses CT on all the repre-

sentational levels: for representing shapes, their relationships, and

entire scenes.

6.1. FUNCTIONAL REQUIREMENTS AND CHALLENGES IN

COMPOSITE SCENE INTERPRETATION: SYSTEMATICITY

AND STRUCTURAL ALIGNMENT

Operational parsimony, which in animal vision translates into

evolutionary pressure, dictates that a visual system should rep-

resent a structured scene hierarchically, in terms of intermediate-

size parts and their spatial relations, if such a representation is

warranted for the family of scenes at hand by the MDL principle

(Rissanen, 1987; Adriaans and Vitányi, 2007). Ideally, therefore,

the representation of scene structure would be fully composi-

tional in the classical sense of Frege (1891)11.

A compositional representation would allow the visual system

to be systematic in its interpretation of parts and relations—a

desideratum that is traditionally invoked in support of composi-

tional models based on MDL (Bienenstock et al., 1997). Formally,

an agent employing symbolic representations is systematic if its

ability to entertain the proposition R(a, b) implies a concomi-

tant ability to entertain the proposition R(b, a). In vision, this

would mean that a system that can make sense of a scene in

which a man rides a donkey should also be able to make sense

of a scene in which a donkey rides a man (Edelman and Intrator,

2003, Figure 1). In practice, however, human cognition is often

far from systematic in its dealing with structure, and so is unlikely

to rely on fully compositional representations (see Johnson, 2004

for informal arguments and Edelman and Intrator, 2003 for

empirical evidence).

11For a thorough introduction to the principle of compositionality, see

(Szabó, 2008); for a discussion in the context of vision, see (Edelman and

Intrator, 2003).
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FIGURE 2 | Problem #75 of the 100-long sequence of challenges

to pattern recognition posed by Bongard (1970). The task is to determine

what distinguishes the scenes on the left from the scenes on the right.

To answer this question, it is not enough to list the shapes that appear in

the scenes: their spatial attitudes and relations must be made explicit too.

This representational requirement is often referred to as (a spatial counterpart

to) structural systematicity (Edelman and Intrator, 2003). See text for

discussion.

If a modicum of systematicity is to be preserved, a certain

amount of spatial analysis must be carried out (Edelman and

Intrator, 2003), so as to enable structural alignment (Markman

and Gentner, 1993)—a procedure in which parts and relations

found in one scene are matched to parts and relations found

in the other 12. Consider, for instance, the two scenes at the top

of Figure 3. Disparate as these scenes are, certain parallels can

be drawn between some fragments of one and fragments of the

other. In particular, the vertical ridge at the center of the sand-

stone depression in the scene on the left resembles the narrow

vertical lean-to attached to the wall of the building depicted in

the scene on the right. Furthermore, each of the two circular

windows on both sides of this vertical feature can be matched,

respectively, to two rounded (but not very circular) holes in the

scene on the left. In each of the two scenes, the spatial arrange-

ment of the matched fragments forms a stylized face (two eyes and

a nose between them)—a realization that in turn suggests struc-

tural similarity to the spatial composition of the head of the owl

in the scene on the bottom left and, stretching the imagination a

bit, to the Chinese character on the bottom right of Figure 3.

Structural alignment thus turns the question of scene inter-

pretation (and with it also the question of scene similarity) into a

nested set of questions about similarities of scene parts and their

relations. The four scenes resemble each other (up to a point)

because each one consists of individually alignable fragments (the

12Structural alignment differs from shape alignment for recognition, intro-

duced by Huttenlocher and Ullman (1987) and Ullman (1989), in that it

operates on the objects’ parts (which, further, could be defined in terms of

their function rather than shape) and relations, instead of on the global shapes

of the objects.

“eyes” and the “nose”) that, moreover, form the same spatial

pattern on a larger scale. Given a proper interpretation of each

of those scenes, we can answer questions such as “what shape

appears to the left of the vertical feature?”, “what

feature appears between the rounded ones?” or “what is the

structural counterpart of this vertical feature in the other

scene?”

What kind of representation can meet these functional needs

without running afoul of constraints imposed by neural imple-

mentation? Let us suppose for the moment that the represen-

tations of structured objects or scenes are themselves made to

possess an analogous symbolic structure. Following this logic, the

representation of a scene composed of two shapes, one above the

other, could take the form of an ordered pair of the two fea-

ture vectors corresponding to the two constituent shapes. This

approach, however, creates a dilemma. On the one hand, it relies

on abstract relational binding (which is how the ordered pair-

ing of constituents is implemented in symbolic models; see, e.g.,

Hummel and Holyoak, 1998; Hummel, 2001). Although such an

implementation, being fully compositional, would result in ideal

systematicity, it is not, we believe, entirely biologically or behav-

iorally plausible, as noted above13. On the other hand, eschew-

ing symbolic binding in favor of a more biologically relevant

approach, such as representing composite scenes by bags of fea-

tures each of which carries both shape and location information

13Concerns about biological plausibility arise also with regard to the other-

wise fascinating idea of representing structured objects in the same metric

space as simple ones, as in the Holographic Reduced Representations of Plate

(1991) and other approaches based on similar mathematical principles (e.g.,

Jones and Mewhort, 2007; Sahlgren et al., 2008; Basile et al., 2011).
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FIGURE 3 | Four scenes for which possibilities for structural

alignment can be profitably explored. Image sources: top left,

a pattern in weathered sandstone, Lower Muley Twist Canyon,

Capitol Reef National Park, Utah; top right, the eastern wall

of the Old Synagogue, Jewish Quarter, Prague; bottom left, a

proto-Corinthian figurine of an owl, ca. 640 B.C. (from the antiquities

collection at the Louvre); bottom right, the Chinese character for

“middle” (zhōng).

(cf. the “what + where” features of Rao et al., 1997; see also Op

de Beeck and Vogels, 2000) has problems of its own in supporting

structural alignment, insofar as scene constituents are not easy to

address selectively in such a representation.

6.2. AN EARLY APPROACH: THE CHORUS OF FRAGMENTS

Edelman and Intrator (2000; 2003) attempted to avoid both horns

of the above dilemma by developing the Chorus of Prototypes

into a non-compositional model of structure representation that

exhibits appropriately limited systematicity. Instead of positing

generic parts and abstract relations, their Chorus of Fragments

model relied on the scene layout and on binding by retinotopy to

represent structure and on multiple location-bound shape spaces

to represent its constituents. The resulting model exhibited a

degree of systematicity, in that it interpreted correctly spatial rear-

rangements of shapes familiar to it through training (namely,

digit shapes). It also showed productivity, in that it performed

nearly equally well for novel shapes, which had had no “what”

units dedicated to them (letter shapes).

The model, described in detail by Edelman and Intrator

(2003), consisted of “what + where” units, which by definition

respond selectively in a graded manner both to stimulus shape

and to its location (Rao et al., 1997; Op de Beeck and Vogels,

2000). During learning, it relied on multiple fixations to train

the functional equivalent of a shape-tuned (“what”) unit param-

eterized by location (“where”). This functionality, which can be

thought of as gain modulation through covert attention shifts

(Connor et al., 1997; Salinas and Abbott, 1997; Salinas and Thier,

2000), offers a solution of sorts to the problem of constituent

addressing, which, as we just mentioned, arises in structural

alignment. During testing, a single fixation of the composite stim-

ulus by the model sufficed for interpreting it—that is, for making

explicit, through the pattern of the units’ responses, of what shape

was present at what location in the stimulus.

6.3. A NEW IDEA: CHORUS OF RELATIONAL DESCRIPTORS

(ChoRD)

While the CoF model did the right thing in predicating a full rep-

resentation of a scene on multiple fixations of its constituents,

it implemented the “what + where” functionality using a black-

box learning mechanism (a bottleneck autoencoder; DeMers and

Cottrell, 1993) that performed the task while leaving its inner

workings opaque. In this section, we describe a new approach

to implementing limited systematicity and thereby supporting

various structure-related tasks, which is characterized by two

main features. First, similar, to the CoF model, it is constrained

by the architectural and functional considerations that call for

distributed, graded, low-dimensional representations. Second, it

improves on the CoF model by dealing explicitly with the many

related versions of the same scene arising from multiple fixations,

and by doing so through recourse to the same computational

mechanism that is at the core of CT: representation by similarities

to multiple prototypes. Because of that, the new approach has also

the advantage of being related to the similarity-preserving hash-

ing methods that are being currently used in computer vision (as

we pointed out in preceding sections).

The new approach, Chorus of Relational Descriptors, or

ChoRD, represents a given scene by multiple entries in an

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 45 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Edelman and Shahbazi Renewing the respect for similarity

associative memory. The memory system is implemented by a

hash table of the LSH type, in which (1) each of the possibly many

entries for a given scene uses one of the scene’s regions of interest

(ROIs) as the key, and (2) key values falling within a certain range

of similarity to a given ROI are all mapped to the same record.

The record associated with a key ROI is the scene minus that ROI;

it is represented by a list of the remaining ROIs along with the

spatial displacement of each of them relative to the key ROI.

To give a concrete example, consider a scene consisting of

an object, A, which appears above another object, B (in gen-

eral, of course, a scene can consist of more than two objects).

Representations of this scene will be stored in the hash table under

two keys, ROI(A) and ROI(B)—and so will scenes that contain

objects sufficiently similar to A and B. In particular, the represen-

tation stored under ROI(A) will consist of the list {ROI (B), dir

(A, B)}, where the last element encodes the direction from A to B.

The ChoRD model that we just outlined uses CT on two lev-

els. First, and most fundamentally, both the ROIs comprising the

scene and their relative spatial displacements with regard to each

other are represented by vectors of distances to select sets of shape

and layout prototypes, respectively. Second, given that an LSH-

based representation is itself equivalent to CT (as we showed in

section 5.1), the entire scene is de facto represented in a dis-

tributed, redundant, graded fashion by the ensemble of records

associated with its constituent ROIs, in a manner that neither dis-

cards the spatial structure of the scene, nor attempts to capture it

categorically, as the symbolic models aim to do.

7. TESTING A SIMPLE IMPLEMENTATION OF ChoRD

We now describe a series of tests of the ChoRD model, carried

out in the simple domain of scenes composed of two ROIs each

(a detailed examination of the model’s performance and its scal-

ing to more complex scenes will be reported elsewhere; Shahbazi

and Edelman, in preparation). Each scene was constructed by

embedding two object images, drawn from six most populous

object categories in the LabelMe database (Russell et al., 2008), in

a black background. The objects were converted to grayscale and

scaled to a size of 50 × 50 pixels; the entire scene was 150 × 150

pixels (see Figure 7 for some scene examples). While this type of

test image will probably fail to impress computer vision practi-

tioners, it has the advantage of allowing a very tight control over

the scene parameters, which is why such scenes are at present

widely used in behavioral and imaging studies (e.g., Newell et al.,

2005; Hayworth et al., 2011; MacEvoy and Epstein, 2011; Zhang

et al., 2011), some of whose results we replicate below.

7.1. ENCODING THE ROIs AND THEIR LAYOUT

Regions of interest (ROIs) were detected in the scene by sliding a

Gaussian patch along the image and locating the ROI at the place

that resulted in a maximum sum of the pixel values of the con-

volved image. The size of the Gaussian patch was made to match

the size of the objects. Ten objects were chosen at random from

the list of LabelMe objects to serve as the prototypes for CT (see

Figure 4). Each of those was represented by a list of outputs of

Gabor filters at two different scales, 5 and 10 pixels, and two ori-

entations, 0◦ and 90◦14. Every detected ROI patch was represented

by the list of filter values, then encoded by the 10-prototype CT.

To encode the spatial structure or layout of the scene, we

represented it by similarities to a set of 10 layout prototypes.

Fixation-dependent encoding was simulated by using one such

set of 10 layouts for cases in which the top ROI was fixated

and another one for cases in which the bottom ROI was fixated

(see Figure 5). Each layout prototype consisted of two Gaussian

14The original implementation of CT-based object recognition (Duvdevani-

Bar and Edelman, 1999) used an even simpler ROI representation with great

effect. In a modern computer vision setting, a SIFT-based representation

(Lowe, 1999) would be used.

FIGURE 4 | The 10 shape prototypes used in conjunction with CT to encode the ROIs comprising the scenes (see section 7.1). Each ROI detected in a

scene was represented by a 10-dimensional vector of its respective similarities to these 10 images.

FIGURE 5 | The layout prototypes used in conjunction with CT to

encode the spatial structure of scenes (see section 7.1). There are two

different sets of such prototypes. One set of 10 prototypes is used for

encoding the scene when the top ROI is fixated; the other set of 10

prototypes is used when the bottom ROI is fixated. For each situation

(scene + fixation), the scene structure was thus represented by a

10-dimensional vector of similarities between the layout of the scene’s ROIs

and the 10 layout prototypes.
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image patches. The image location of one of these, correspond-

ing to the would-be scene placement of the reference or key ROI

for the given fixation, was fixed, and the location of the other

differed systematically among the 10 prototypes, spanning col-

lectively a range of displacements as illustrated in Figure 5. The

entire scene’s layout was therefore encoded relative to the fixa-

tion point (the location of the key ROI) by listing its image-based

similarities to the 10 displacement prototypes.

The entire procedure whereby the representation of a scene

was computed is illustrated in Figure 6. Altogether, the com-

plete representation of a scene for a given fixation (“entry” or

key) point consisted of the concatenation of (1) a 10-dimensional

representation of the fixation ROI, (2) a 10-dimensional represen-

tation of the other ROI, and (3) a 10-dimensional representation

of the spatial layout relative to fixation. Scene representations

constructed in this manner were entered into an LSH table, imple-

mented using Shakhnarovich’s Matlab code with ten 64-bit hash

tables (Shakhnarovich, 2008).

The LSH functionality (which, as we showed in section 6, is

equivalent to that of CT) subsequently allowed content-based

lookup—a key ingredient in testing the resulting ChoRD model

on additional scenes, which could be familiar or novel in some

respects. In the experiments described in the remainder of this

section, we tested the ability of the ChoRD model to sup-

port certain systematicity-related queries and to replicate several

behavioral and imaging studies involving human subjects.

Following training (that is, populating the LSH with scene

representations), each familiar scene is represented redundantly,

by as many records as it has ROIs. Given a test scene, the

model’s LSH table returns all the representations that match

the ROIs contained in it. Importantly, because of the locality-

sensitive property of the hashing scheme that we used, a novel

scene—that is, a scene that differs somewhat from the familiar

examples either in its ROIs or in their locations, or both—results

in the retrieval of familiar scenes that are sufficiently similar to

it. Thus, we expected the model’s performance to degrade grace-

fully when tested on progressively more novel stimuli, rather

than crash.

7.2. EXPERIMENT 1: PRODUCTIVITY

Our first experiment tested the model’s productivity: its abil-

ity to deal with moderate novelty as just defined. Each of the

test stimuli in this experiment had one novel and one familiar

object in a familiar configuration, two novel objects in a familiar

configuration, or two familiar objects in a novel configuration.

The dissimilarity between the test scene and the representation

retrieved in response to it was defined as

�k = ‖ROI11 − ROI12‖ + ‖D11 − D12‖

+‖ROI21 − ROI22‖ (6)

where ROIij is the ith ROI of scene j, and Dij, is the layout

representation of scene j relative to ROIij . Identical computa-

tions were performed by fixating each of the two objects in

FIGURE 6 | The procedure for computing a ChoRD representation of a scene. The representation of each encountered scene is entered into the model’s

LSH table, with the representation of the fixated ROI serving as the key. See text for additional details.
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the test scene, yielding �1 and �2, which were then aver-

aged together to form the composite dissimilarity between the

two scenes.

We remark that the form of Eq. 6 glosses over the conceptual

difficulty inherent in trying to deal simultaneously with multiple

shape and location differences. This difficulty is universal in that it

arises in any attempt to compare composite entities (say, estimat-

ing the similarity of two sets of fruit containing one apple and one

orange each), including certain structural alignment tasks (sec-

tion 6.1). In psychology, this corresponds to the classical problem

of scaling (Shepard, 1987), which is beyond the scope of the

present discussion. Thankfully, in the present context of testing

a given model (rather than defining the representation that serves

as its foundation), this difficulty amounts merely to a matter

of preference that may or may not be given to some compo-

nents of the composite dissimilarity, depending on the task. This

can be done simply by weighting those components as needed.

Our choice in Equation 6 corresponds to using equal weights

for all.

The experiment was performed on 6000 test scenes in three

different conditions: condition N, 2000 test scenes with one

novel object; condition NN, 2000 test scenes with two novel

objects; and condition L with 2000 test scenes with two famil-

iar objects in a new spatial layout. For each condition, the test

scene was encoded according to both possible fixations, and the

query was performed for both encodings. For each query, the five

nearest neighbors were retrieved and their (dis)similarity to the

test scene was computed. The reported results are for the best

match obtained (i.e., the most similar scene retrieved from the

hash table). Figure 7 shows examples of test scenes (on the left)

and their corresponding five most similar scenes retrieved from

the table.

To investigate the contribution of CT to the model’s perfor-

mance, we carried out another experiment, this time using the

raw filter-based encoding of the scenes. Figure 8 shows side by

side the results for the raw and CT-encoded scenes. Note that

there is no significant difference in the similarity of the test and

retrieved scenes for different conditions in the non-CT version.

7.3. EXPERIMENT 2: SENSITIVITY TO GRADUAL CHANGE

In the second experiment, we measured the similarity of two

scenes represented by the ChoRD model, in one of which the

two objects were progressively displaced relative to each other

(see Figure 9). Newell et al. (2005) found that the performance

of human subjects in this situation indicated their reliance on

representations that yielded graded similarity, rather than break-

ing down categorically as the layout of the manipulated scene

changed. To simulate their study, we generated a series of test

scenes with the same two objects. By keeping one object’s position

constant and displacing the other one, the relative positions of the

objects were changed, either horizontally or vertically, in incre-

ments of 10 pixels. Figure 10 shows the resulting dissimilarities

between reference and test scenes. The experiment was performed

on 2000 different scenes, with five levels of displacement tested for

each scene, and resulted in a gradual increase of dissimilarity with

displacement. A linear regression fit the results well: R2 = 0.72,

F(9998) = 2.06 × 104 (p < 2.2 × 10−16).

7.4. EXPERIMENT 3: SENSITIVITY TO DIFFERENT TYPES

OF QUALITATIVE CHANGE

Our third experiment examined the ChoRD model’s representa-

tion of relative similarities of scenes that were subjected to certain

structural transformations. It has been patterned on the imag-

ing study of Hayworth et al. (2011), who showed that for human

subjects the BOLD response of brain areas implicated in scene

representation is more sensitive to some structural transforma-

tions than to others. In particular, for scenes composed of two

objects, switching the two objects around resulted in a larger

release of adaptation, compared to simply translating both objects

within the scene while keeping their relative positions unchanged.

To replicate this finding, we constructed test scenes related to

reference ones in three ways: through a joint translation of both

objects (condition T), or reversal of the objects’ locations (con-

dition R), or both (condition TR). Two thousand scenes were

generated for each of these conditions. The results, plotted in

Figure 11, conform to those of Hayworth et al. (2011).

7.5. THE ChoRD MODEL: A DISCUSSION

We have tested the ChoRD model on simple scenes composed

of two objects, in three experiments. In the first experiment,

the model exhibited a degree of productivity, that is, an ability

to deal, systematically, with scenes that differed in various ways

from those to which it had been exposed during “training” (cf.

Edelman and Intrator, 2003). In the second experiment, we found

that the model’s estimate of similarity between a reference scene

and a series of test scenes differing from it progressively was it

self graded—a finding that echoed that of Newell et al. (2005) in a

similar setup. In the third experiment, we used the model to repli-

cate one of the findings of an fMRI adaptation study (Hayworth

et al., 2011), which found differential effects on brain activation of

two types of scene transformation: joint translation vs. switching

around of the scene’s constituents. All these results were obtained

by a model that used CT on every relevant representational level

to reduce dimensionality and enact tolerance to moderate novelty,

supporting our assertion of the importance of similarity-based

representations in scene processing.

In addition to being rooted in our own earlier work on

similarity-based object and scene representation (Edelman, 1999;

Edelman et al., 2002; Edelman and Intrator, 2003), the ChoRD

model can be seen as related to several contemporary lines of

thinking in computer vision, as mentioned very briefly below (a

detailed comparison will be offered in Shahbazi and Edelman,

in preparation). In particular, the location-specific CT-based rep-

resentations used here resemble the locality-constrained linear

coding of Wang et al. (2010). The relationship between CT and

vector quantization (VQ), from which Wang et al. (2010) derive

their approach, has been noted and analyzed in (Edelman, 1999;

cf. section 3.3). Continuing this parallel, the graded manner in

which CT codes the similarities between the target object and pro-

totype shapes may be compared to the variant of VQ that uses soft

assignment (van Gemert et al., 2010).

Whereas many computer vision methods for image represen-

tation and retrieval rely on the bag of (visual) words idea (which

goes back to the first histogram-based approaches developed two

decades ago), there is an increasing number of attempts to extend
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FIGURE 7 | Experiment 1, testing productivity. See section 7.2 for a

description of the procedure and Figure 8 for quantitative results. Above: the

performance of the ChoRD model, which uses CT to represent ROIs. The

leftmost column shows test scenes; the other columns show the best five

matches retrieved from the model’s LSH table, in the decreasing order of

similarity to the test scene. Top row: One novel object at position ROI1 .

Middle row: One novel object at position ROI2. Bottom row: Two novel

objects. Below: the performance of a version of the model that uses raw ROI

encoding rather than one based on CT (the layout was still encoded

with CT ).

this simple and powerful principle to capture some of the scene

structure (and not just the mere presence in it of certain objects).

One step in this direction is expressed by the “context chal-

lenge” of Torralba (2003), which led to the development of such

successful systems for context-based recognition as that of Divvala

et al. (2009). Our model can be seen to engage with this chal-

lenge by coding scenes relative to certain “entry points” or key

objects, for which the rest of the scene then constitutes a context
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FIGURE 8 | Productivity as measured by dissimilarity between test and

retrieved scenes (experiment 1; means with 95% confidence intervals)

of the full version of the ChoRD model, which uses CT both for ROI

and for layout representation (gray bars) compared to that of a version

that uses raw ROI encoding (black bars). Cf. Figure 7, top and bottom,

respectively.

(of course, it still needs to be tested in an actual context-based

recognition task).

We single out the work of Zhang et al. (2011) on image

retrieval using geometry-preserving visual phrases (GVP) as the

closest to ChoRD among the present computer vision approaches.

Rather than trying to make scene structure matter by subjecting a

set of images, preselected on the basis of bag of visual words simi-

larity, to a spatial voting test (RANSAC; Fischler and Bolles, 1981),

Zhang et al. (2011) incorporate information about relative spatial

locations of the features forming a visual phrase into its repre-

sentation (hence “geometry-preserving”). Compared to GVP, the

ChoRD model appears to be more flexible and open-ended, inso-

far as it relies on CT in representing both the features and their

layout.

Insofar as the ChoRD model represents a scene by a set of

records keyed to its constituents and stored in an LSH table, it can

be said to treat a scene merely as a big object. Imaging evidence

for this kind of scene representation in the lateral occipital com-

plex in the human brain has been reported recently by MacEvoy

and Epstein (2011), who write that “patterns of activity evoked

in LO by scenes are well predicted by linear combinations of the

patterns evoked by their constituent objects.” Notably, there was

no evidence of such summation in the parahippocampal place

area (PPA), implicated by previous studies in the representation

of scene structure (Epstein and Kanwisher, 1998; Bar, 2004). In

comparison, in the ChoRD model, the spatial structure of the

scene is not lost in summation, as it would be under a bag of fea-

tures approach. This pattern of results suggests to us the following

tentative double analogy: (1) between the (distributed, CT-based)

ChoRD representation of constituent shape and the LO complex,

and (2) between the (also CT-based) ChoRD representation of

scene layout and the PPA.

8. CONCLUSIONS

In the first part of this paper, we surveyed the role of similarity

in theories and models of object recognition and described some

newly discovered computational parallels between the Chorus

Transform, or CT (an idea that received a book-length treat-

ment in Edelman, 1999) and the widely popular computer vision

methods of similarity-preserving hashing and dimensionality

reduction. In the second part, we described the outcome of some

(rather preliminary) tests of the ChoRD model, which extends CT

so as to support a joint representation of scene content and lay-

out. In this concluding section, we outline some of the directions

in which the similarity project can be extended.

Taken together, our findings suggest that similarity to proto-

types may constitute a viable general approach to representing

structured objects and scenes. In particular, the same CT-based

method can be used to span view spaces of individual shapes

and shape spaces of object categories (Edelman, 1999), as well

as “scene spaces” defined by objects and their spatial relations

(the present work). From the computational standpoint, this is

an exciting development, given that scene-related work in com-

puter vision tended until recently to focus on scene categorization

rather than interpretation (Oliva and Torralba, 2001; Lazebnik

et al., 2006; Loeff and Farhadi, 2008).

The approach proposed here can support scene interpretation

(over and above categorization), insofar as a list of objects, con-

texts, and relations to which a given scene is similar constitutes a

rather complete representation of its content and structure (just

FIGURE 9 | An example of five scenes used in one trial of experiment 2 (sensitivity to gradual changes; see section 7.3). In each image, ROI1 is

displaced by 10 pixels relative to the scenes on either side.
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FIGURE 10 | Experiment 2, sensitivity to gradual change. The plot

shows the difference between two scenes composed of the same objects

(means with 95% confidence intervals), with different amounts of

displacements: 10, 20, 30, 40, and 50 pixels. The pattern of results

replicates that of the corresponding experiment in (Newell et al., 2005).

like in a text local adjacency relations within character n-grams

jointly enforce global structure of phrases; cf. Wickelgren, 1969;

Mel and Fiser, 2000). In computer vision, similar ideas underlie

the work on “visual phrases” (Sadeghi and Farhadi, 2011; Zhang

et al., 2011) and Conditional Random Fields (Kulkarni et al.,

2011, Figure 3). To ensure flexibility, this representation should

be parameterized by task, so that the similarity patterns revealed

by it could focus on shape similarity (say) in some cases and

on spatial relation similarity in others; a related idea has been

proposed by Edelman and Intrator (2003, Figures 6 and 7).

We believe that further development of the similarity-based

representational framework outlined in this paper should focus

on the following three issues.

Neural implementation. Edelman and Intrator (2003) dis-

cussed the biological plausibility of their similarity-based scheme

that coded scene fragments and their spatial relations (which they

called the Chorus of Fragments). Indeed, this approach seems

quite amenable to a neural implementation: a set of laterally

interacting receptive fields, each tuned to an object category and

embedded in a retinotopic map, would seem to do the job. More

thought needs, however, to be given to the implementation of

tuning. In particular, units that employ radial basis functions are

not good at rejecting false positives. This calls for alternatives such

as Exemplar-SVM (Malisiewicz et al., 2011), which may, perhaps,

be amenable to implementation by augmenting RBF units with

massive inhibition (Wang et al., 2000).

Scalability. Much progress has been achieved in computer

vision by methods that utilize huge databases of images (e.g.,

Malisiewicz and Efros, 2009). Given the close relationship

between the Chorus framework and similarity-tolerant hashing,

FIGURE 11 | Experiment 3, sensitivity to qualitative change; see

section 7.4. The plot shows the difference between two scenes (means

with 95% confidence intervals), one of which has been generated from the

other via three types of structural transformations: translation (T), reversal,

or switching the two objects around (R), and both translation and reversal

combined (TR). The results replicate those of the corresponding experiment

in (Hayworth et al., 2011).

which we detailed in section 5, those methods may be on a

convergence course with our approach. This may in turn result

in a biologically inspired emulation of the vast human memory

for visual objects and scenes (e.g., Brady et al., 2008).

A probabilistic turn. The Chorus framework is determinis-

tic in its operation, its only stochastic aspect being the choice of

prototypes during learning; it is also purely feedforward. While

such models may be adequate for categorization tasks (Serre

et al., 2008), they do not allow for the kind of flexibility that is

afforded by the generative Bayesian approach (Tenenbaum and

Griffiths, 2001; Chater et al., 2006). It is often the case, how-

ever, that successful models of learning and inference can be

recast in Bayesian terms with very little modification (Edelman

and Shahbazi, 2011). Developing the Chorus framework into

a hierarchical generative model 15 is, therefore, a worthwhile

future pursuit, which may take as its starting points the use of

maximum-entropy reasoning and the Bayes theorem by Shepard

(1987) and the generative theory of similarity proposed by Kemp

et al. (2005).

In summary, we remark that the idea that similarity could play

a key explanatory role in vision (as well as in other cognitive

sciences) has experienced ups and downs in the centuries since

its introduction by Hume. The Chorus project has previously

shown that coding objects by their similarities to select proto-

types can support a veridical representation of distal similarities

15The importance of hierarchy in this context is underscored by the recent

finding that human observers learn to interpret hierarchically structured

scenes more readily than others (Shahbazi et al., 2011).
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among objects “out there” in the world, and to do so in a

low-dimensional space that affords effective learning from expe-

rience. The ChoRD approach to representing structure enables

the extension of the Chorus framework to composite objects and

scenes. Moreover, the deep parallels between the Chorus idea and

similarity-preserving hashing techniques indicate that the result-

ing methods could be made to scale up to deal with massive

amounts of visual data. These developments suggest that vision

researchers would do well to renew their respect for similarity and

assign it a key role in their conceptual toolkit.
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