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Renormalization flow of bound states
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A renormalization group flow equation with a scale-dependent transformation of field variables gives a
unified description of fundamental and composite degrees of freedom. In the context of the effective average
action, we study the renormalization flow of scalar bound states which are formed out of fundamental fermi-
ons. We use the gauged Nambu–Jona-Lasinio model at weak gauge coupling as an example. Thereby, the
notions of a bound state or fundamental particle become scale dependent, being classified by the fixed-point
structure of the flow of effective couplings.
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I. INTRODUCTION

Bound states, as opposed to fundamental particles,
commonly thought of as derived quantities, in the sense
the properties of positronium or atoms can be computed f
the known electromagnetic interactions of their constitue
The conceptual separation between bound states and fu
mental particles is, however, not always so obvious. As
example, it has been proposed that the Higgs scalar ca
viewed as a top-quark–top-antiquark bound state@1#, with a
compositeness scale much above the characteristic sca
electroweak symmetry breaking. The mass of the bound s
~and therefore the scale of electroweak symmetry break!
depends in this model on a free parameter characterizing
strength of a four-fermion interaction. For a bound-st
mass or momentum near the compositeness scaleL, all the
usual properties of bound states are visible. If the Higgs
son mass is substantially smaller thanL, however, the bound
state behaves like a fundamental particle for all practical
pects relating to momentum scales sufficiently below
compositeness scale. Depending on the momentum scale
particle can therefore appear either as a typical bound sta
a fundamental particle. The scale dependence of the phy
picture can be cast into the language of the renormaliza
group ~RG! by considering a scale-dependent effective
tion. It should be possible to understand the issues relate
bound states or composite fields in this context. In this pa
we demonstrate how the effective behavior as bound sta
‘‘fundamental particle’’ in dependence on a parameter of
model can be understood within the exact renormaliza
group equation for the effective average action@2#.

In strong interactions, bound states or composite fie
play an essential role in the dynamics at low momenta
particular, scalar quark-antiquark bound states are res
sible for chiral symmetry breaking with the associated d
namics of the pions. Furthermore, it has been proposed
the condensation of a color octet composite field may lea
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‘‘spontaneous breaking of color’’@3# with a successful phe
nomenology of the spectrum and interactions of the lig
pseudoscalars, vector mesons and baryons. In order to v
or falsify such a proposal and connect the parameters o
effective low-energy description to the fundamental para
eters of QCD one needs a reliable connection between s
and long distance within the RG approach. In such a form
ism it is convenient to represent fundamental particles
bound states by fields on equal footing. For quark-antiqu
bound states this can be achieved by partial bosonizatio
first picture of the flow of bound states in the exact R
approach has been developed in@4#. A shortcoming of these
initial proposals is the fact that the bosonization is typica
performed at a fixed scale. In a RG picture it would se
more appropriate that the relation between the fields for co
posite and fundamental particles becomes scale depen
Furthermore, the simple observation that a typical bou
state behavior should not lead to the same relevant~or mar-
ginal! parameters as in the case of fundamental particles
not been very apparent so far.

In this paper we propose a modified exact renormalizat
group equation which copes with these issues. The field v
ables themselves depend on the renormalization scalek. For
this purpose we usek-dependent nonlinear field transform
tions @5,6#. As a consequence, partial bosonization can
performed continuously for allk. This yields a description
where explicit four-quark interactions which have the sa
structure as those produced by the exchange of a bound
are absent for every scalek. These interactions are then com
pletely accounted for by the exchange of composite fie
We will demonstrate this approach in a simple mod
whereas the more formal aspects can be found in the App
dixes. As a result, we conclude that ‘‘fundamental behavio
is related to a flow governed by an infrared unstable fix
point with the appropriate relevant parameters. For the ty
cal ‘‘bound-state behavior’’ such a fixed point does not go
ern the flow. The parameters characterizing the bound-s
mass and interactions are rather determined by an infra
attractive~partial! fixed point and become therefore predic
able as a function of the relevant or marginal parame
characterizing masses and interactions of other ‘‘fundame
©2002 The American Physical Society01-1
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HOLGER GIES AND CHRISTOF WETTERICH PHYSICAL REVIEW D65 065001
fields.’’ As a consequence, the notions of bound state or f
damental particle become scale dependent, with a pos
crossover from one behavior to another.

As a simplified model sharing many features of ele
troweak or strong interactions we consider the gau
Nambu–Jona-Lasinio~NJL! model @7# ~with one flavorNF
51), with the action

S5E d4xF c̄ igm~]m1 ieAm!c12lNJL~ c̄RcL!~ c̄LcR!

1
1

4
FmnFmn1

1

2a
~]mAm!2G . ~1!

We consider here a small gauge couplinge. This model has
two simple limits: For smalllNJL we recover massless qua
tum electrodynamics~QED!, whereas for large enoughlNJL
one expects spontaneous chiral symmetry breaking. The
gion of validity of perturbative electrodynamics can be e
tablished by comparinglNJL to the effective four-fermion
interaction generated by box diagrams in the limit of vani
ing external momenta:

DLB5
1

4
Dl~c̄gmg5c!~c̄gmg5c!

5DlF2~ c̄LcR!~ c̄RcL!1
1

4
~ c̄gmc!~c̄gmc!G .

~2!

Since the box diagrams are infrared divergent in the ch
limit of vanishing electron mass, we have introduced a sc
by implementing an infrared cutoff;k in the propagators
such that1

Dl56e4E d4q

~2p!4
@q2

„11r B~q!…#22@q2
„11r F~q!…2#21

5
9

16p2

e4

k2
. ~3!

~The second equality holds for the particular cutoff functio
r B ,r F described in Appendix E.! As long as perturbation
theory remains valid~small e), and lNJL&Dl, we do not
expect the four-fermion interaction;lNJL to disturb sub-
stantially the physics of massless QED.@In this caselNJL is
an irrelevant parameter in the renormalization group~RG!
language.#

The spontaneous breaking of the chiral symmetry
lNJL.lc has been studied by a variety of methods@7–10#.
For strong four-fermion interactions the dominant phys
can be described by a Yukawa interaction with an effect
composite scalar field. The phase transition atlNJL5lc is of
second order. In the vicinity of this transition the compos
scalar has all the properties usually attributed to a fundam
tal field. In particular, its mass is governed by a relev

1We note thatDl does not depend on the gauge-fixing parame
a.
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parameter. In this paper we present a unified description
all these different features in terms of flow equations for
effective average action.

II. FLOW EQUATION FOR THE GAUGED NJL MODEL

Our starting point is the exact renormalization gro
equation for the scale-dependent effective actionGk in the
form @2#

] tGk5
1

2
STr$] tRk~Gk

(2)1Rk!
21%. ~4!

The solutionGk to this equation interpolates between
boundary condition in the ultravioletGL , usually given by
the classical action, and the effective actionGk50, represent-
ing the generating functional of the one particle irreducib
~1PI! Green’s functions. This flow is controlled by the t
some extent arbitrary positive functionRk(q

2) that regulates
the infrared fluctuations at a scalek and falls off quickly for
q2.k2. Indeed, the insertion] tRk suppresses the contribu
tion of modes with momentaq2@k2. The operator] t repre-
sents a logarithmic derivative] t5k(d/dk). The heart of the
flow equation is the fluctuation matrixGk

(2) that comprises
second functional derivatives ofGk with respect to all fields,
and together withRk it corresponds to the exact invers
propagator at a given scalek. The ~super-!trace runs over
momenta and all internal indices including momenta a
provides appropriate minus signs for the fermionic secto

For our study, we use the following simple truncation f
the gauged NJL model including the scalars arising fr
bosonization@10# ~Hubbard-Stratonovich transformation!:

Gk5E d4xH c̄ i]”c12l̄s,kc̄RcLc̄LcR1Zf,k]mf* ]mf

1m̄k
2f* f1h̄k~ c̄RcLf2c̄LcRf* !1

1

4
FmnFmn

1
1

2a
~]mAm!22ec̄A” cJ . ~5!

This truncation is sufficient for our purposes. For quanti
tive estimates some of the simplifications could be improv
in future work. This concerns, in particular: setting the fe
mion and gauge-field wave function renormalization co
stants to 1, reducing ana priori arbitrary scalar potential to a
pure mass term, skipping all vector, axialvector, etc. chann
of the four-fermion interaction as well as all higher-ord
operators, neglecting the running of the gauge couplinge and
dropping all higher-order derivative terms. Especially t
gauge sector is treated insufficiently, although this is app
priate for smalle; for simplicity, we use Feynman gauge,a
51. The running of the scalar wave function renormalizati
Zf,k will also not be studied explicitly; sinceZf,k is zero for
the bosonization of a point-like four-fermion interaction, w
shall assume that it remains small in the region of intere

Nevertheless, the essential points of how fermionic int
actions may be translated into the scalar sector can be stu
r

1-2
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RENORMALIZATION FLOW OF BOUND STATES PHYSICAL REVIEW D65 065001
in this simple truncation. Of course, the truncation is oth
wise not supposed to reveal all properties of the system e
qualitatively; in particular, the interesting aspects of t
gauged NJL model at strong coupling@11–13# cannot be
covered unless the scalar potential is generalized.

The truncation~5! is related to the bosonized gauged N
model, if we impose the relation

lNJLª
1

2

h̄L
2

m̄L
2

~6!

as a boundary condition at the bosonization scaleL and
l̄s,L50, Zf,L50; it is this bosonization scaleL that we
consider as the ultraviolet starting point of the flow. In fa
the action~1! can be recovered by solving the field equati
of f as functional ofc,c̄ and reinserting the solution int
Eq. ~5!.

Using the truncation~5!, the flow equation~4! can be
boiled down to first-order coupled differential equations
the couplingsm̄k

2 , h̄k and l̄s,k . For this, we rewrite Eq.~4!
in the form

] tGk5
1

2
STr ]̃ t ln~Gk

(2)1Rk!, ~7!

where the symbol]̃ t specifies a formal derivative that ac
only on thek dependence of the cutoff functionRk . Let us
specify the elements of Eq.~4! more precisely:

~Gk
(2)!abª

dW

dFa
T

Gk

dQ

dFb
, F5S A

f

f*

c

c̄T

D ,

~8!

FT5~AT,f,f* ,cT,c̄ !.

Here A[Am is understood as a column vector, andAT de-
notes its Lorentz transposed row vector. For spinors the
perscript T characterizes transposed quantities in Di
space. The complex scalarsf andf* as well as the fermi-
ons c̄ and c are considered as independent, but transpo
quantities are not: e.g.,F and FT carry the same informa
tion.

Performing the functional differentiation, the fluctuatio
matrix can be decomposed as

Gk
(2)1Rk5P1F, ~9!

whereF contains all the field dependence andP the propa-
gators including the cutoff functions. Their explicit represe
tations are given in Appendix B. Inserting Eq.~9! into Eq.
~7!, we can perform an expansion in the number of fields
06500
-
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r
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] tGk5
1

2
STr ]̃ t ln~P1F !5

1

2
STr ]̃ tS 1

PFD2
1

4
STr ]̃ tS 1

PFD 2

1
1

6
STr ]̃ tS 1

PFD 3

2
1

8
STr ]̃ tS 1

PFD 4

1•••. ~10!

The ellipsis denotes field-independent terms and terms
yond our truncation. For our purposes it suffices to take
fields constant in space.

The corresponding powers of (1/P)F can be computed by
simple matrix multiplication and the~super-!traces can be
taken straightforwardly. This results in the following flo
equations for the desired couplings:

] tm̄k
2[bm58k2v4l 1

(F)4~0!h̄k
2 ,

] th̄k[bh5216k2v4l 1
(F)4~0!l̄s,kh̄k

216v4l 1,1
(FB)4~0,0!e2h̄k , ~11!

] tl̄s,k[bls
5224k22v4l 1,2

(FB)4~0,0!e4

232v4l 1,1
(FB)4~0,0!e2l̄s,k

18v4

1

Zf,k
l 1,1
(FB)4S 0,

m̄k
2

Zf,kk
2D h̄k

2l̄s,k

28k2v4l 1
(F)4~0!l̄s,k

2

1
2v4

Zf,k
2 k2

l 1,2
(FB)4S 0,

m̄k
2

Zf,kk
2D h̄k

4 ,

wherev451/(32p2). The threshold functionsl fall off for
large arguments and describe the decoupling of particles
mass larger thank. They are defined in@10#; explicit ex-
amples are given in Appendix E. At this point, it is importa
to stress that all vector~V! and axial-vector~A! four-fermion
couplings on the right-hand side of the flow equation ha
been brought into the form~V! and (V1A), and then the
(V1A) terms have been Fierz transformed into the chira
invariant scalar four-fermion coupling (S2P) used in our
truncation@cf. Eq. ~2!#. The pure vector coupling is omitte
for the time being and will be discussed in Sec. VI. It shou
also be mentioned that no tensor four-fermion coupling
generated on the right-hand side of the flow equation.

Incidentally, the mass equation coincides with the resu
of @10#; we find agreement of the third equation with th
results of@12# where the same model was investigated in
nonbosonized version.2 We note that the last term inbls

,

which is ;h̄k
4 , is suppressed by the threshold function

long asm̄2/(Zfk2) remains large. For simplicity of the dis

2Remaining numerical differences arise from wave function ren
malization which was included in@12#, but is neglected here fo
simplicity.
1-3
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HOLGER GIES AND CHRISTOF WETTERICH PHYSICAL REVIEW D65 065001
cussion we will first omit it and comment on its quantitati
impact later on. The inclusion of this term does not chan
the qualitative behavior.

III. FERMION-BOSON TRANSLATION BY HAND

As mentioned above, the boundary conditions for the fl
equation are such that the four-fermion interaction vanis
at the bosonization scale,l̄s,L50. But loweringk a bit in-
troduces the four-fermion interaction again according to
~11!:

] tl̄s,kuk5L5224L22v4l 1,2
(FB)4~0,0!e4Þ0. ~12!

In Eq. ~5!, we may again solve the field equations forf as a
functional of c̄,c and find in Fourier space

f~q!5
h̄k~ c̄LcR!~q!

m̄k
21Zf,kq

2
, f* ~q!52

h̄k~ c̄RcL!~2q!

m̄k
21Zf,kq

2
.

~13!

Inserting this result intoGk yields the ‘‘total’’ four-fermion
interaction@*q[*(dq/2p)4#

E
q
S 2l̄s,k1

h̄k
2

m̄k
21Zf,kq

2D ~ c̄RcL!~2q!~ c̄LcR!~q!.

~14!

The local component~for q250) contains a direct contribu
tion ;2l̄s,k ~one-particle irreducible in the bosonized ve
sion! and a scalar exchange contribution~one-particle reduc-
ible in the bosonized version!. From the point of view of the
original fermionic theory, there is no distinction between t
two contributions~both are 1PI in the purely fermionic lan
guage!. This shows a redundancy in our parametrizati
since we may changel̄s,k , h̄k and m̄k

2 while keeping the
effective coupling

2ls
eff~q!52l̄s,k1

h̄k
2

m̄k
21Zf,kq

2
~15!

fixed. Indeed, a choicel̄s,k8 , h̄k8 , m̄k
2 8 leads to the same

ls
eff(0) if it obeys

l̄s,k8 5l̄s,k1
h̄k

2

2m̄k
2

2
h̄k

2 8

2m̄k
2 8

. ~16!

In particular, we will choose a parametrization wherel̄s,k8

vanishes for allk. In this parametrization, any increasedl̄s,k
according to Eq.~11! is compensated for by a change
1
2 d(h̄k

2/m̄k
2) of the same size. An increase inl̄s,k is mapped

into an increase inh̄k
2/(2m̄k

2). In this parametrization, the
four-fermion coupling remains zero, whereas the flow
h̄k

2/m̄k
2 receives an additional contribution
06500
e

s

.

,

f

] tS h̄k
2

m̄k
2D 5] tS h̄k

2

m̄k
2D U

l̄s,k

12] tl̄s,ku h̄
k
2 ,m̄

k
2. ~17!

More explicitly, we can write

] tS m̄k
2

h̄k
2 D 5

1

h̄k
2
] tm̄k

2u l̄s,k
22

m̄k
2

h̄k
3

] th̄ku l̄s,k
22

m̄k
4

h̄k
4

] tl̄s,k ,

~18!

with ] tm̄k
2u l̄s,k

, ] th̄ku l̄s,k
, ] tl̄s,k given by Eq.~11! with the

replacementl̄s,k→0 on the right-hand sides. One obtains

] tS m̄k
2

h̄k
2 D 5v4F8l 1

(F)4~0!k2132l 1,1
(FB)4~0,0!e2

m̄k
2

h̄k
2

148l 1,2
(FB)4~0,0!

e4

k2 S m̄k
2

h̄k
2 D 2G . ~19!

The characteristics of this flow can be understood bes
terms of the dimensionless quantity

ẽk5
m̄k

2

h̄k
2k2

. ~20!

It obeys the flow equation

] tẽk5bẽ522ẽk1v4@8l 1
(F)4~0!132l 1,1

(FB)4~0,0!e2ẽk

148l 1,2
(FB)4~0,0!e4ẽk

2#

522ẽk1
1

8p2
1

1

p2
e2ẽk1

9

4p2
e4ẽ k

2 , ~21!

where in the last line we have inserted the values of
threshold functions for optimized cutoffs@14# discussed in
Appendix E. Neglecting the running of the gauge couplinge,
we note in Fig. 1 the appearance of two fixed points. F
gauge couplings of order 1 or smaller and to leading orde
e, these two fixed points are given by

ẽ1* .
1

16p2
1O„e2/~16p2!2

…, ẽ2* .
8p2

9e4
1O~1/e2!.

~22!

The smaller fixed pointẽ1* is infrared unstable, wherea

the larger fixed pointẽ2* is infrared stable. Therefore, startin

with an initial value of 0, ẽL, ẽ1* , the flow of the scalar
mass-to-Yukawa-coupling ratio will be dominated by the fi
two terms in the modified flow equation~21! ;22ẽk
11/(8p2). This is nothing but the flow of a theory involving
a ‘‘fundamental’’ scalar with Yukawa coupling to a fermio
sector. Moreover, we will end in a phase with~dynamical!
chiral symmetry breaking, sinceẽ is driven to negative val-
ues. ~Higher order terms in the scalar potential need to
included onceẽ becomes zero or negative.! This all agrees
1-4
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RENORMALIZATION FLOW OF BOUND STATES PHYSICAL REVIEW D65 065001
with the common knowledge that the low-energy degrees
freedom of the strongly coupled NJL model are~composite!
scalars which nevertheless behave as fundamental parti

On the other hand, if we start with an initialẽL value that
is larger than the first~infrared unstable! fixed point, the flow
will necessarily be attracted towards the second fixed p
ẽ2* ; there, the flow will stop. This flow does not at all remin
us of the flow of a fundamental scalar. Moreover, there w
be no dynamical symmetry breaking, since the mass rem
positive. The effective four-fermion interaction correspon
ing to the second fixed point reads

ls* 5
1

2k2ẽ2*
'

9

16p2

e4

k2
. ~23!

It coincides with the perturbative value~3! of massless QED
We conclude that the second fixed point characterizes m
less QED. The scalar field shows a typical bound-state
havior with mass and couplings expressed bye andk. @The
question as to whether the bound state behaves like a pr
gating particle~i.e., ‘‘positronium’’! depends on the exis
tence of an appropriate pole in the scalar propagator. At l
for massive QED one would expect such a pole with ren
malized mass corresponding to the ‘‘rest mass’’ of scalar p
itronium.#

From a different viewpoint, the fixed pointẽ1* corre-
sponds directly to the critical coupling of the NJL mode
which distinguishes between the symmetric and the bro
phase. As long as the flow is governed by the vicinity of t
fixed point, the scalar behaves like a fundamental parti
with mass given by the relevant parameter characterizing
flow away from this fixed point.

Our interpretation is that the ‘‘range of relevance’’
these two fixed points tell us whether the scalar appears
‘‘fundamental’’ or a ‘‘composite’’ particle, corresponding t
the state of the system being governed byẽ1* or ẽ2* , respec-
tively.

FIG. 1. Fixed-point structure of theẽk flow equation after
fermion-boson translation by hand. The graph is plotted for
threshold functions discussed in Appendix E withe51. Note that

ẽ1* is small but different from zero@cf. Eq. ~22!#. Arrows indicate
the flow towards the infrared,k→0.
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The incorporation of the flow of the momentum
independent part ofl̄s,k into the flow of h̄k and m̄k

2 affects

only the ratiom̄k
2/h̄k

2 . At this point, it does not differentiate
which part of the correction appears in the separate fl
equations form̄k

2 and h̄k , respectively. This degeneracy ca

be lifted if we include information about the flow ofl̄s,k
for two different values of the external momenta. Let
define l̄s,k(s) as l̄s,k(p1 ,p2 ,p3 ,p4) with p15p3

5(1/2)(As,As,0,0), p25p45(1/2)(As,2As,0,0), where
s5(p11p2)25(p31p4)2 is the square of the exchange
momentum in thes channel@5#. The couplingl̄s,k appearing
on the right-hand side of Eq.~17! corresponds in this nota
tion to l̄s,k(s50). We can now achieve the simultaneo
vanishing ofl̄s,k(s50) andl̄s,k(s5k2) if we redefinem̄k

2

and h̄k such that they obey in addition

] tS h̄k
2

m̄k
21Zf,kk

2D 5] tS h̄k
2

m̄k
21Zf,kk

2D
ul̄s,k

12] tl̄s,k~s5k2!.

~24!

Incorporation of this effect should improve a truncatio
where the 1PI four-fermion coupling is neglected sub
quently, since we realize now a matching at two differe
momenta.

The combination of Eqs.~17! and ~24! specifies the evo-
lution of m̄k

2 and h̄k ,

] tm̄k
25bmu l̄s,k

1
2m̄k

2~m̄k
21Zf,kk

2!

h̄k
2 S m̄k

21Zf,kk
2

Zf,kk
2

] tDl̄s,k

1] tl̄s,k~s50!D , ~25!

] th̄k5bhu l̄s,k
1

2m̄k
21Zf,kk

2

h̄k

] tl̄s,k~s50!

1
~m̄k

21Zf,kk
2!2

Zf,kk
2h̄k

] tDl̄s,k , ~26!

where we have used

Dl̄s,k5l̄s,k~s5k2!2l̄s,k~s50!. ~27!

Let us finally comment on the influence of the last te
;h̄k

4 of Eq. ~11!, omitted up to now, on the flow equatio

~21! for ẽk : the contribution of this term to Eq.~21! is
;(m̄k

2/Zf,kk
2)2l 1,2

(FB)4(0,m̄k
2/Zf,kk

2). For large (m̄k
2/Zf,kk

2),
this term approaches a constant, so that a slight vertical s
of the parabola of Fig. 1 is induced. We observe that t
shift leaves the position of the second fixed pointẽ2* unaf-
fected to lowest order ine. This justifies the omission of the

e

1-5
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;h̄k
4 term in the preceding discussion. The influence of

h̄k
4 term on the first fixed point is discussed at the end of

next section.

IV. FLOW WITH CONTINUOUS FERMION-BOSON
TRANSLATION

The ideas of the preceding section shall now be m
more rigorous by deriving the results directly from an app
priate exact flow equation. As a natural approach to this a
we could search for ak-dependent field transformation of th
scalars,f→f̂k@f#. In terms of the new variables, the flo
equation~7! should then provide for the vanishing of th
four-fermion coupling in the transformed effective actio
Indeed, we sketch this approach briefly in Appendix D.
stead, we propose here a somewhat different approach
ing on a variant of the usual flow equation where the cutof
adapted tok-dependent fields. The advantage is a very sim
structure of the resulting flow equations in coincidence w
those of the preceding section.

The idea is to employ a flow equation for a sca
dependent effective actionGk@fk#, where the field variable
fk is allowed to vary during the flow; we derive this flo
equation in Appendix C. To be precise within the pres
context, upon an infinitesimal renormalization group s
from a scalek to k2dk, the scalar field variables also un
dergo an infinitesimal transformation of the type~in momen-
tum space!

fk2dk~q!5fk~q!1dak~q!~ c̄LcR!~q!

[fk~q!1dak~q!E
p
c̄L~p!cR~p1q!. ~28!

Including the corresponding transformation of the comp
conjugate variable, the flow of the scalar fields is given b

] tfk~q!52~ c̄LcR!~q!] tak~q!,
~29!

] tfk* ~q!5~ c̄RcL!~2q!] tak~q!.

The transformation parameterak(q) is ana priori arbitrary
function, expressing a redundancy in the parametrization
the effective action. As shown in Eq.~C8!, the effective ac-
tion Gk@fk ,fk* # obeys the modified flow equation

] tGk@fk ,fk* #5] tGk@fk ,fk* #ufk ,f
k*
1E

q
S dGk

dfk~q!
] tfk~q!

1
dGk

dfk* ~q!
] tfk* ~q!D , ~30!

where the notation omits the remaining fermion and ga
fields for simplicity. The first term on the right-hand side
nothing but the flow equation for fixed variables evaluated
fk , fk* instead off,f* 5fL ,fL* . The second term re
flects the flow of the variable. Projecting Eq.~30! onto our
truncation~5!, we arrive at modified flows for the couplings
06500
e

e

e
-
,

.
-
ly-
s
le

-

t
p

x

of

e

t

] tm̄k
25] tm̄k

2ufk ,f
k*
,

] th̄k5] th̄kufk ,f
k*
1~m̄k

21Zf,kq
2!] tak~q!, ~31!

] tl̄s,k5] tl̄s,kufk ,f
k*
2h̄k] tak~q!.

Again, the first terms on the right-hand sides are nothing
the right-hand sides of Eq.~11!, i.e., the corresponding bet
functionsbm,h,ls

. The further terms represent the modific
tions owing to the flow of the field variables, as obtain
from the two last terms in Eq.~30! by inserting Eq.~29!.
Obviously, we could have generalized the method easily
the case of momentum-dependent couplings~see below!. In
the following, however, it suffices to study the point-lik
limit, which we associate toq50.

We exploit the freedom in the choice of variables in E
~29! by fixing ak5ak(q50) in such a way that the four
fermion coupling is not renormalized,] tl̄s,k50. This im-
plies the flow equation forak ,

] tak5bls
/h̄k . ~32!

Together with the boundary conditionls,L50, this guaran-
tees a vanishing four-fermion coupling at all scales,l̄s,k
50. The ~nonlinear! fields corresponding to this choice ob
tain for everyk by integrating the flow~32! for ak , with
aL50.

Of course, imposing the condition~32! also influences the
flow of the Yukawa coupling according to Eq.~31!,

] th̄k5bh1
m̄k

2

h̄k

bls
. ~33!

In consequence, the flow equation for the quantity of inter
h̄k

2/m̄k
2 , then reads

] tS h̄k
2

m̄k
2D 5] tS h̄k

2

m̄k
2D U

fk ,f
k*

12bls
. ~34!

This coincides precisely with Eq.~17! where we have trans
lated the fermionic interaction into the scalar sector by ha
The flow equation of the dimensionless combinationẽk

5m̄k
2/k2h̄k

2 is therefore identical to the one derived in E
~21!, so that the fixed-point structure described above is a
recovered in the more rigorous approach. The underly
picture of this approach can be described as a perma
translation of four-fermion interactions, arising during ea
renormalization group step, into the scalar interactio
Thereby, bosonization takes place at any scale and not
at a fixed initial one.

One should note that the field transformation is not fix
uniquely by the vanishing ofl̄s,k . For instance, an addi
tional contribution in Eq.~28! ;dbk(q)fk(q) can absorb
the momentum dependence of the Yukawa coupling
modifying the scalar propagator. Similarly to the discuss
in Sec. III, this can be used in order to achieve simul
1-6
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neously the vanishing ofl̄s,k(s) for all s and k and a

momentum-independenth̄k . First, the variable change

] tfk~q!52~ c̄LcR!~q!] tak~q!1fk~q!] tbk~q!,
~35!

] tfk* ~q!5~ c̄RcL!~2q!] tak~q!1fk* ~q!] tbk~q!

indeed ensures the vanishing ofl̄s,k(s5q2) if ] tak(q)
5h̄k

21] tl̄s,k(q
2). This choice results in

] th̄k~q!5] th̄k~q!u l̄s,k

1
Zf,kq

21m̄k
2

h̄k

] tl̄s,k~q2!

1h̄k] tbk~q!,
~36!

] tZf,k~q!q21] tm̄k
25] tm̄k

2u l̄s,k

12] tbk~q!~Zf,kq
21m̄k

2!,

whereh̄k(q) andZf,k(q) depend now onq2. Secondly, the
momentum dependence ofh̄k(q) can be absorbed by th
choice

] tbk~q!52
Zf,kq

21m̄k
2

h̄k
2

] tl̄s,k~q2!1
1

Zf,kk
2h̄k

2

3@~Zf,kk
21m̄k

2!2] tl̄s,k~k2!2m̄k
4] tl̄s,k~0!#.

~37!

The particular form of theq-independent part of] tbk was
selected in order to obtain] tZf,k(q

25k2)50 such that our
approximation of constantZf,k is self-consistent. Inserting
Eq. ~37! into the evolution equation~36! for h̄k andm̄k

2 , we
recover Eqs.~25! and~26!. We also note that the evolution o
ẽ5m̄k

2/(h̄k
2(0)k2) is independent of the choice ofbk(q).

It is interesting to observe that reinserting the class
equations of motion at a given scale in order to elimin
auxiliary variables is equivalent to the here-proposed var
of the flow equation with flowing variables. In contrast, t
standard form of the flow equation in combination with
variable transformation, to be discussed in Appendix
leads to a more complex structure, which is in general m
difficult to solve.

V. BETWEEN MASSLESS QED AND SPONTANEOUS
CHIRAL SYMMETRY BREAKING

In this section, we briefly present some quantitative
sults for the flow in the gauged NJL model. Despite o
rough approximation, they represent the characteristic ph
ics. We concentrate on the flow of the dimensionless ren
malized couplings
06500
l
e
nt

,
re
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ek5
m̄k

2

Zf,kk
2

, hk5h̄kZf,k
21/2, ẽk5

ek

hk
2

, ãk5akZf,k
1/2 k2

~38!

in the symmetric phase. Inserting the specific threshold fu
tions of Appendix E, we find the system of differential flo
equations

] tek522ek1
hk

2

8p2
2

ek~ek11!

hk
2 S 9e4

4p2
2

hk
4

16p2

31ek

~11ek!
3D

3@11~11ek!Qs#,
~39!

] thk52
e2

2p2
hk

2
2ek111~11ek!

2Qs

hk
S 9e4

8p2
2

hk
4

32p2

31ek

~11ek!
3D .

The resulting flow for ẽk is independent of Qs

[] tDl̄s,k /] tl̄s,k(0):

] tẽk5bẽ522ẽk1
1

8p2
1

e2

p2
ẽk1

9e4

4p2
ẽk

2

2
1

16p2

ek
2~31ek!

~11ek!
3

. ~40!

Here the last term reflects the last contribution tobls
in Eq.

~11!, which has been neglected in the preceding section@cf.
Eq. ~21!#. We see that its influence is small forek!1,
whereas forek@1 it reduces the constant term by a fact
1/2.

Note that, for a givenQs , Eqs.~39! form a closed set of
equations. The same is true for the flows ofẽk andek if we
expresshk in terms ofẽk andek in the first line of Eq.~39!.
In order to obtainQs , the flow of l̄s,k(s) has to be known;
however, far less information is already sufficient for a qua
tative analysis. First, it is natural to expect thatl̄s,k(s) is
maximal fors50, sincel̄s,k(s) will be suppressed for large
s owing to the external momenta. This implie
Dl̄s,k /l̄s,k(s50),0. With the simplifying assumption tha
Dl̄s,k /l̄s,k(0).const, we also conclude that

Qs,0. ~41!

For a qualitative solution of the flow equations, we assu
uQsu to be of order 1 or smaller.

We next need initial valueseL , ẽL for solving the system
of differential equations. We note that the initial valueeL

diverges for the pure NJL model, sinceZf,L50. For large
ek , one has
1-7
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FIG. 2. Flows ofek , hk , ẽk and ãk in the symmetric phase according to Eqs.~39!, ~40! and ~46! for the initial valueseL5106, ẽL

50.17*1/(6e2), e51, Qs520.1. For a better visualization,ãk has been multiplied by a factor of 100. The plot ofẽk on the right panel

exhibits the crossover behavior between the fixed pointsẽ1* at smallt to ẽ2* for t→2`.
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] tek5F221
1

8p2ẽk

1~ uQsuek21!S 9e4ẽk

4p2
2

1

16p2ẽk
D Gek ,

~42!

and we find thatek decreases rapidly for

ẽL.
1

6e2
. ~43!

~In a more complete treatment, it decreases rapidly for a
trary ẽk owing to the generation of a nonvanishingZf,k by
the fluctuations. In the present truncation, the qualitative
havior of the flow will depend on the details ofQs if ẽL does
not satisfy this bound.! We confine our discussion to initia
values satisfying Eq.~43!, which can always be accom
plished without fine-tuning.

In Fig. 2 we present a numerical solution for largeeL

~small nonzeroZf,k), Qs520.1, andẽL slightly above the
bound given by Eq.~43! for e51; these initial conditions
correspond to the symmetric phase. We observe that bothk
andek approach constant values in the infrared. This cor
sponds to the ‘‘bound-state fixed point’’ forẽk : ẽ2*
.8p2/(9e4). A constantek implies that the renormalized
mass termmk

25ekk
2 decreases;k2 in the symmetric phase

The precise value of the Yukawa coupling at the fixed po
depends one and uQsu:

~h* !2516p2e* 2
8e* ~e* 11!@12uQsu~e* 11!#

@2e* 112uQsu~e* 11!2#
e2.

~44!

If e* @1 still holds, the fixed-point values can be given mo
explicitly:

e* .
2

uQsu
, h* .

3e2

2pAuQsu
. ~45!

Note thate* @1 is equivalent touQsu!1; numerically, we
find that Eqs.~45! describe the fixed-point values reasonab
well already foruQsu&0.1. We observe that the fixed-poin
06500
i-

-

-

t

values are independent of the initial valueseL and ẽL , so
that the system has ‘‘lost its memory.’’

Finally, the parameterãk governing the field redefinition
obeys the flow equation

] tãk52ãk2
9e4

8p2hk

1
hk

3

32p2

31ek

~11ek!
3

. ~46!

A numerical solution is plotted in Fig. 2, right panel. Alsoãk
approaches a constant for smallk. Therefore, the transforma
tion parameterak;ãk /k2 increases for smallk.

The physical picture of the fixed point~45! is quite
simple. We may first translate back to an effective fo
fermion interaction by solving the scalar field equations:

l̄s,k~q2!5
1

2

~h* !2

~q21e* k2!
5

9e4

8p2

1

~ uQsuq212k2!
. ~47!

In the limit k→0, this mimics the exchange of a massle
positronium-like state with effective couplingh*
53e2/(2pAuQsu). Indeed, if we switch on the electron ma
me, we expect that the running of the positronium mass te
stops atk2.me

2 . In consequence, the positronium state w
acquire a mass;me, which is, in principle, calculable by an
improved truncation within our framework.

On the other hand, starting with small enoughẽL , one
will observe chiral symmetry breaking as we have alrea
argued in Sec. III. Quantitative accuracy should include
least the flow of the scalar wave function renormalization
this case. Near the boundary between the two phases
infrared physics is described by a renormalizable theory
QED with a neutral scalar coupled to the fermion.

VI. MODIFIED GAUGE FIELDS

The possibility ofk-dependent field redefinitions is no
restricted to composite fields. We demonstrate this here b
transformation of the gauge field, which becomes
k-dependent nonlinear combination according to
1-8
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] tAm~q!52] tgk~ c̄gmc!~q!2] tdk~]nFmn!~q!

2] tzk~]m]nAn!~q!. ~48!

This transformation can absorb the vector channel in
four-fermion interaction. Indeed, we may enlarge our trun
tion ~2! by a term

Gk
(V)5E d4xl̄v,k~ c̄gmc!~c̄gmc! ~49!

~or a corresponding generalization with momentu
dependent couplingl̄v,k!. The flow equation forl̄v reads

] tl̄v,k526k22v4l 1,2
(FB)4~0,0!e4

1
1

2
k22v4

1

Zf,k
2

l 1,2
(FB)4S 0,

m̄k
2

Zf,kk
2D h̄k

41e] tgk

1O~ l̄s,k ,l̄v,k!. ~50!

In the following, we again omit the term;h̄k
4 , whose con-

tributions are subdominant once the scalars have decou
from the flow. Choosinggk according to

] tgk56k22v4l 1,2
(FB)4~0,0!e3, ~51!

we can obtain a vanishing ofl̄v for all k. This procedure
introduces additional terms;s̄k(]nFmn)c̄gmc with s̄k
obeying

] ts̄k52] tgk1e] tdk1•••, ~52!

where the dots correspond to contributions from] tG at fixed
fields. Adjustingdk permits us to enforces̄k50. As a result,
only the gauge field propagator gets modified by higher
rivative terms. We note that the modified gauge field has
same gauge transformation properties as the original fi
only for zk50. In fact, the gauge fixing becomes depend
on the fermions by a terms̄k

(g f)c̄gmc]m]nAn according to

] ts̄k
(g f)5

1

a
] tgk1e] tzk1••• . ~53!

Again, we can enforce a vanishings̄k
(g f) for all k by an

appropriate choice ofzk . The contribution to the evolution
of the gauge field propagator resulting from the field red
nition ~48! is

] tG
(A2)52] tdk~]nFmn!~]rFmr!

1
1

a
] tzk~]m]nAn!~]m]rAr!1••• . ~54!

With ] tgk;e3, ] tdk;e2, ] tzk;e2/a we see that the field
redefinitions lead to a modification of the kinetic term~or a
momentum-dependent wave function renormalization of
gauge field! already in leading order;e2. Depending on the
precise definition of the renormalized gauge coupling t
06500
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can modify theb-function for the ‘‘composite gauge field’
as compared to the original one. This modification is t
counterpart of the elimination of the effective vertic

;s̄k ,s̄k
(g f) . ~We note that no corrections arise ife is defined

by the effective electromagnetic vertex at very small mom
tum.!

VII. CONCLUSIONS

It is an inherent feature of quantum field theory that
system with certain fundamental degrees of freedom a
‘‘microscopic’’ scale can exhibit completely different degre
of freedom at a ‘‘macroscopic’’ scale, which appear to
equivalently ‘‘fundamental’’ in an operational sense.
prominent example are the pions in a low-momentum eff
tive theory for strong interactions. These different faces
one and the same system are related by the action of
renormalization group. In the present work, we realize t
formal concept with the aid of a renormalization group flo
equation for the effective average action whose field va
ables are allowed to change continuously under the fl
from one scale to another. In particular, this generally n
linear transformation of variables is suitable for studying t
renormalization flow of bound states.

We illustrate these ideas by way of example by consid
ing the gauged NJL model at weak gauge coupling. Our fl
equations can clearly identify the phase transition to spo
neous chiral symmetry breaking. In our picture, the inter
tion between the fermions, representing the fundamental
grees of freedom at high momentum scales, gives rise
pairing into scalar degrees of freedom. These so-form
bound states may still appear effectively as composite
jects at lower scales or rather as fundamental degrees of
dom, depending on the strength of the initial interaction.
the criterion that distinguishes between these two cases
classify the renormalization flow of the scalar bound stat
‘‘fundamental behavior’’ is governed by a typical infrare
unstable fixed point with the relevant parameter correspo
ing to the mass of the scalar. Contrary to this, ‘‘bound-st
behavior’’ is related to an infrared attractive~partial! fixed
point that is governed by the relevant and marginal para
eters of the ‘‘fundamental’’ fermion and photon—massle
QED in our case. The flow may show a crossover from o
to the other characteristic behavior. This physical picture
obtained from the continuous transformation of the fie
variables under the flow that translates the fermion inter
tions into the parameters of the scalar sector. In the cas
spontaneous chiral symmetry breaking, the scalars alw
appear as ‘‘fundamental’’ on scales characteristic for
phase transition and the order parameter.

From a different perspective, we propose a technique
performing a bosonization of self-interactions of fundame
tal fermion fields permanently at all scales during the ren
malization flow. Provided that appropriate low-energy d
grees of freedom of a quantum system are known,
modified flow equation for the average effective action
capable of describing the crossover from one set of varia
to another during the flow in a well-controlled manne
1-9
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Thereby, the notions of fundamental particle or bound s
become scale dependent.

For the translation from fermion bilinears to scalars, t
gauge field acts rather as a spectator, permanently cataly
the generation of four-fermion interactions under the flow.
the vector channel, however, the gauge field can also par
pate in the field transformation. Hereby, a four-fermion int
action;(c̄gmc)2 is absorbed at the expense of a modifi
photon kinetic term, which can lead to a change in the b
function be of an appropriately defined effective gauge co
pling. We expect this type of transformation to be partic
larly useful in the strong-gauge-coupling sector of t
gauged NJL model. Here it is known that the four-fermi
interaction can acquire an anomalous scaling dimension
~instead of 6! @11#, so that it mixes with the gauge interactio
~in a renormalization-group sense! anyway. It should be
worthwhile to employ this transformation for a search for t
existence of ultraviolet stable fixed points in thebe function,
to be expected for a large number of fermion speciesNF @9#.

In view of the motivating cases of top quark condensat
in the Higgs sector and color octet condensation in lo
energy QCD, we now have an important tool at our dispo
which allows for a nonperturbative study of the transiti
from the underlying theory to the condensing degrees
freedom. Particularly in the case of ‘‘spontaneous break
of color,’’ a quantitatively reliable calculation of the potenti
for the quark-antiquark degrees of freedom seems poss
Analogously to the gauged NJL model, the effective qu
self-interactions, being induced by the exchange of glu
and instantons, have to be translated into the scalar bo
state sector. The renormalization flow of the latter and
symmetry properties of their corresponding potential sh
finally adjudicate on ‘‘spontaneous breaking of color.’’
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APPENDIX A: DIRAC ALGEBRA AND FIERZ
TRANSFORMATIONS

We work in a chiral basis,c5( cR

cL), c̄5(c̄R,c̄L), where

c andc̄ are anticommuting Grassmann variables and sho
be considered as independent,cL5 1

2 (11g5)c. The Dirac
algebra for 4-dimensional Euclidean spacetime is given
06500
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$gm ,gn%52dmn , gm5~gm!†,

gmgn5dmn2 ismn , smn5
i

2
@gm ,gn#, ~A1!

g55g1g2g3g0 .

Defining OS51, OV5gm , OT5(1/A2)smn , OA5 igmg5 ,
OP5g5, we obtain the Fierz identities in the form

~ c̄aOXcb!~ c̄cOXcd!5(
Y

CXY~ c̄aOYcd!~ c̄cOYcb!,

~A2!

whereX,Y5S,V,T,A,P and

CXY5S 2 1
4 2 1

4 2 1
4 2 1

4 2 1
4

21 1
2 0 2 1

2 1

2 3
2 0 1

2 0 2 3
2

21 2 1
2 0 1

2 1

2 1
4

1
4 2 1

4
1
4 2 1

4

D . ~A3!

The structure (c̄OVc)22(c̄OAc)2 is invariant under Fierz
transformations, and (c̄OVc)21(c̄OAc)2 can be com-
pletely transformed into~pseudo-!scalar channels:

~ c̄OVc!21~ c̄OAc!2522@~ c̄OSc!22~ c̄OPc!2#.
~A4!

Further useful identities are

~ c̄OTg5c!25~ c̄OTc!2,

~ c̄gagbgdc!~c̄gagbgdc!510~ c̄gmc!216~ c̄gmg5c!2,
~A5!

~ c̄gagbgdc!~c̄gdgbgac!510~ c̄gmc!226~ c̄gmg5c!2.

APPENDIX B: DETAILS OF THE FLUCTUATION MATRIX

In Eq. ~9!, we decompose the fluctuation matrix intoP
andF, the latter containing the field dependence. The inve
propagator is diagonal in momentum space,
P5S q2~11r B!

0 Zf,kq
2~11r B!1m̄k

2

Zf,kq
2~11r B!1m̄k

2 0

0 2q” T~11r F!

2q” ~11r F! 0

D . ~B1!
1-10
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It involves the dimensionless cutoff functionsr B and r F ,
being related to the components ofRk by

Rk
A5q2r B , Rk

f5Zf,kq
2r B , Rk

c52q” r F . ~B2!

Of course, these cutoff functions are supposed to satisfy
usual requirements of cutting of the infrared and suppres
the ultraviolet sufficiently strongly. The conventions for th
Fourier transformation employed here can be character
by

c~x!5E d4q

~2p!4
eiqxc~q!, c̄~x!5E d4q

~2p!4
e2 iqxc̄~q!

~B3!

for the fermions. As a consequence, the Fourier modes o
field F and FT in Eq. ~8! are then given byF(q)
5@A(q),f(q),f* (2q),c(q),c̄T(2q)# ~column vector!
and FT(2q)5@AT(2q),f(2q),f* (q),cT(2q),c̄(q)#
~row vector!. Owing to the sign difference in the argumen
of c andc̄, the inverse propagatorP in Eq. ~B1! is symmet-
ric under transpositionT. Concerning the field-dependen
part, the matrixF is also diagonal in momentum space f
constant ‘‘background’’ fields and antisymmetric under tra
position in all fermion-related components:

F5S 0 0 0 2ec̄gm ecTgm
T

0 0 0 h̄kc̄R 2h̄kcL
T

0 0 0 2h̄kc̄L h̄kcR
T

egm
T c̄T 2h̄kc̄R

T h̄kc̄L
T H̄ 2FT

2egmc h̄kcL 2h̄kcR F H

D ,

~B4!

where

H52l̄s,k@ccT2g5ccTg5#, HT52H,

H̄52l̄s,k@c̄Tc̄2g5c̄Tc̄g5#, H̄T52H̄,
~B5!

F5h̄k~PLf2PRf* !1l̄s,k@~ c̄c!2g5~ c̄g5c!

1cc̄2g5cc̄g5#,

and gm
T is understood as transposition in Lorentz and

Dirac space. The projectorsPL and PR are defined asPL,R
5(1/2)(16g5). In Eq. ~B5!, we have dropped theAm de-
pendence of the quantityF which is not needed for our com
putation.

APPENDIX C: EXACT FLOW EQUATION FOR FLOWING
FIELD VARIABLES

In the standard formulation of the flow equation@2#, the
field variables of thek-dependent effective actionGk@f# cor-
respond to the so-called classical field defined via
06500
he
g

ed

he

-

r

f5
dWk@ j #

d j
[fL , ~C1!

where all explicitk dependence is contained in the cuto
dependence ofWk , the generating functional for connecte
Green’s functions. The last identity in Eq.~C1! symbolizes
that no explicitk dependence occurs for this classical fie
and thereby the fieldf at any scale is identical to the one
the ultraviolet cutoffL. ~The functional dependence off on
j contains, of course, an implicitk dependence.!

In the present work, we would like to study the flow o
the effective action, now depending on a field variable tha
allowed to vary during the flow. For an infinitesimal chan
of k, fk also varies infinitesimally:

fk2dk~q!5fk~q!1dak~q!F@fk , . . . #~q!,
~C2!

]kfk52]kakF@fk , . . . #,

wheredak is infinitesimal andF denotes some functional o
possibly all fields of the system. The desired effective act
Gk@fk# is derived from a modified functionalWk :

eWk[ j , . . . ]5E DxD~ . . . !e2S[x] 2DSk[xk] 1* j xk1•••.

~C3!

The dots again indicate the contributions of further field
suppressed in the following, and we assume the quan
field x to be a real scalar for simplicity. In contrast to th
common formulation @2# the source j multiplies a
k-dependent nonlinear field combinationxk which obeys

]kxk52]kakG@xk , . . . #. ~C4!

We also modify the infrared cutoff

DSk@xk#5
1

2E xkRkxk , ~C5!

which ensures that the momentum modes;k of the actual
field xk contribute to the flow at the scalek, regardless of its
different form at other scales. Furthermore, the cutoff fo
of Eq. ~C5! shall lead us to a simple form of the flow equ
tion. Thek-dependent classical field is given by

fkª^xk&5
dWk

d j
, ~C6!

and, as a consequence, the higher derivatives ofWk@ j # are
now related to correlation functions ofxk and no longer of3

xL . The desired effective action is finally defined in th
usual way via a Legendre transformation including a subtr
tion of the cutoff:

3Equation~C6! implies the relationF@fk , . . . #5^G@xk , . . . #&.
However, the definition ofxk is often not needed explicitly. For ou
purposes it suffices to defineF@fk , . . . #.
1-11
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Gk@fk#52Wk@ j @fk##1E j @fk#fk2DSk@fk#. ~C7!

Its flow equation is obtained by taking a derivative with r
spect to the RG scalek,

]kGk@fk#5]kGk@fk#ufk
1E dGk@fk#

dfk
]kfk

5
1

2
Tr

]kRk

Gk
(2)@fk#1Rk

2E dGk@fk#

dfk
F@fk , . . . #]kak . ~C8!

The first term of this flow equation is evaluated for fixedfk
and hence leads to the form of the standard flow equa
with fL replaced byfk ; the second term describes the co
tribution arising from the variation of the field variable und
the flow. Some comments should be made:

~1! The variation~C2! of the field during the flow isa
priori arbitrary; therefore, Eq.~C8! ~together with some
boundary conditions! determinesGk@fk# completely only if
ak is fixed.

~2! This redundancy can be used to arrive at a simple fo
for Gk@fk# adapted to the problem under consideration. F
example, one may determineak ~andF@fk , . . . #) in such a
way that some unwanted coupling vanishes.

~3! This program can be generalized straightforwardly
a whole set of transformationsak

i for different fieldsi. Fur-
thermore, the whole functional dependence may bek depen-
dent by replacing]kfk

i 52]kak
i Fi→2F k

i .
~4! The generating functional offL 1PI Green’s functions

Gk50@fL# can be obtained fromGk50@fk50# by choosing
ak5050. In practice, however, it is often more convenient
use ‘‘macroscopic degrees of freedom’’fk50 different from
the ‘‘microscopic’’ onesfL . Their respective relation the
needs the computation of the flow ofak .

~5! The present definition of the average actionGk@fk# is
different from the effective actionGk@f̂k# that is obtained by
a field transformation of the flow equation with fixed field
as described in Appendix D. More precisely, consider
flow of the effective actionGk@fL# for fixedfL and perform
a finite k-dependent field transformationf̂k5f̂k@f,ak#;
then, even if the transformation was chosen in such a w
that f̂k were identical withfk of the present method, thes
effective actions would not coincide. The cutoff term ac
differently in the two cases. In the case of a field transf
mation, the cutoff involvesfL , which is subsequently ex
pressed in terms of the new variables, whereas, in the pre
case, the cutoff is readjusted at each scale and involvesxk .
Although this does not affect physical results for exact so
tions of the flow, this might lead to differences in approx
mate solutions of the flow, even if the approximation
implemented in the same way in either case.
06500
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APPENDIX D: FERMION-BOSON TRANSLATION BY
FIELD TRANSFORMATIONS WITH FIXED CUTOFF

Here, we shall present a third approach to fermion-bo
translation relying on the standard formulation of the flo
equation in addition to a finite field transformation. We i
tend to identify a field transformation of the type

f̂5f1âkc̄LcR⇔f5f̂2âkc̄LcR,
~D1!

f̂* 5f* 2âkc̄RcL⇔f* 5f̂* 1âkc̄RcL ,

so that an appropriate choice of a finiteâk can transform the
four-fermion coupling to zero. For simplicity, we work in th
limit of a point-like interaction and dispense with an add
tional transformation of the type;bkfk . Within these re-
strictions, we shall not find the physical infrared behav
described in Secs. IV and V. The present study is inten
only for a quantitative comparison of the different a
proaches, which can be done by restricting the field red
nitions in Sec. IV to Eq.~28! with q-independentak .

In contrast to the modified flow equation of Sec. IV an
Appendix C, the source term and the infrared cutoff cons
ered here involve the original fields. This approach theref
corresponds simply to a variable transformation in a giv
differential equation~exact flow equation!. The transformed
effective action for the hatted fields is obtained by simp
insertion, Gk@f̂,c,A#ªGk@f@f̂#,c,A#. Except for addi-
tional derivative terms arising from the scalar kinetic ter
the two actions are formally equivalent, where the new ‘‘h
ted’’ couplings read in terms of the original ones

m̂k
25m̄k

2 ,

ĥk5h̄k1m̄k
2âk , ~D2!

l̂s,k5l̄s,k2h̄kâk2 1
2 m̄k

2âk
2 .

Again, the transformation functionâk is finally fixed by de-
manding that the beta functionb̂ls

for the hatted four-

fermion couplingl̂s,k vanishes,

b̂ls
~m̂k

2 ,ĥk ,l̂s,k ,âk ,] tâk!50, ~D3!

with the boundary conditionsl̄s,k5L50 and āk5L50,
which express complete bosonization atL ~this also implies
l̂s,k5L50). The new beta functions can now be determin
from the standard flow equation, being subject to the fi
1-12
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transformation. Following Appendix A of@5#, the basic equa-
tion is

] tGk@F̂#5] tGkuF2] tf̂*U
F

d

df̂*
Gk@F̂#2] tf̂U

F

d

df̂
Gk@F̂#

5
1

2
STr ]̃ t ln~Gk

(2)1Rk!

2âkF c̄LcR

dGk

df̂
2c̄RcL

dGk

df̂*
G . ~D4!

Although there seems to be a formal resemblance to
~30!, there is an important difference: Eq.~D4! is equivalent
to the standard flow equation, whereas Eq.~30! is not; the
latter is derived with a different cutoff term. Without resor
ing to the calculation of Sec. II, we can evaluate this eq
tion completely from the transformed truncationGk@f̂,c,A#
and the field transformations~D1! according to

~Gk
(2)!ab

T [
dW

dFa
T

Gk

dQ

dFb
5S dW

dFa
T
F̂ i

TD dW

dF̂ i
T

Gk

dQ

dF̂ j

S F̂ j

dQ

dFb
D

1~21!(F̂,FT)S Gk

dQ

dF̂ i
D S dW

dFa
T
F̂ i

dQ

dFb
D , ~D5!

where (F l ,Fm)51 if fermionic components inF l as well
asFm are considered, and (F l ,Fm)50 otherwise; the indi-

cesa,b,i , j label the different field components ofF,F̂.
From Eq.~D4!, or equivalently Eq.~D2!, we deduce that

the desired hatted beta functions are related to the orig
ones by

] tm̂k
2[b̂m5bm ,

] tĥk[b̂h5bh1âkbm1m̂k
2] tâk , ~D6!

] tl̂s,k[b̂ls
5bls

2âkbh2 1
2 âk

2bm2ĥk] tâk ,

where the right-hand sides of Eq.~D6! have to be expresse
in terms of the hatted couplings by means of the relati
~D2!. Now we determineâk by demanding thatb̂ls

vanishes

for vanishingl̂s,k , so that no four-fermion coupling arise
during the flow. Introducing dimensionless quantities for t
hatted couplings, ãk5k2Zf,k

1/2 âk , ek5k22Zf,k
21m̂k

2 , hk

5Zf,k
21/2ĥk , we end up with the flow equations
06500
q.

-

al

s

e

] tek522ek1
1

8p2
~hk2ekãk!

2,

] t~hk2ekãk!5F2
e2

2p2
2

1

4p2
ãk~hk2 1

2 ekãk!G
3~hk2ekãk!, ~D7!

] tãk52ãk2
9

8p2

e4

hk
2

1

2p2
e2ãk

1
1

16p2
S hk22ekãk1

ek
2

2

ãk
2

hk
D ãk

1
1

8p2

21ek

~11ek!
2

1

hk
~hk2 1

2 ekãk!

3~hk2ekãk!
2ãk

1
1

32p2

31ek

~11ek!
3

1

hk
~hk2ekãk!

4,

where we have inserted the threshold-function values
given in Appendix E for illustrative purposes. These equ
tions have to be read side by side with Eqs.~39! and ~46!.
Contrary to the latter, the present flow equations are co
pletely coupled; in particular, the flow forãk is not disen-
tangled as it is in the case of Eqs.~39! and~46!. In the flow
equation for the mass, we again observe a critical mass
Yukawa-coupling ratio at the bosonization scale, correspo
ing to the infrared unstable fixed pointẽ1* mentioned in Eq.

~22!: from a numerical solution, we find thatẽLucrit

5eL /hL
2 ucrit. ẽ1* is hardly influenced by theh̄k

4 term. The
actual initial value of this ratio at the bosonization scale w
respect toẽLucrit hence determines whether the system flo
towards the phase with dynamical symmetry breaking or n

In order to compare the present method with the one e
ployed in Sec. IV, we plot a numerical solution of Eqs.~D7!
in Fig. 3 ~solid lines! and compare it to a solution of th
corresponding equations~39! and~46! ~dashed lines! without
those terms arising from the additional transformati
;] tbk , which is not considered in Eqs.~D7!. In this figure,
it becomes apparent that both methods do not only ag
qualitatively, but also quantitatively to a high degree—
they should. The minor differences in these approaches
be attributed to the different formulation of the cutoff, an
thereby reflect the inherent cutoff dependence for appro
mative solutions to the otherwise exact flow equation.

The same conclusion can be drawn from the flow eq
tion for the dimensionless combinationẽk as defined in Eq.
~20!. Although theẽk flow equation derived from Eqs.~D7!
is comparably extensive~we shall not write it down here!
1-13



s.

HOLGER GIES AND CHRISTOF WETTERICH PHYSICAL REVIEW D65 065001
FIG. 3. Flows ofek , hk andãk in the symmetric phase„hL51, e51, eL51.16@1/(16p2)#…. The solid lines represent a solution to Eq
~D7!; the dashed lines correspond to the analogous flow employing the method of Sec. IV and Appendix C~without the;] tbk trans-
formation!. The plots are representative of a wide range of initial conditions.
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and not identical to Eq.~21!, the fixed-point structure re

mains nevertheless the same, and theẽk flow reduces exactly
to Eq.~21! for k→L, where all our approaches agree. Mor

over, the position of the infrared stable fixed pointẽ2* also
remains the same in the infrared to leading order ine, so that
the different approaches describe the same physics.

To summarize, employing the method of field transform
tion in the flow equation for fixed cutoff, the same propert
of the system can be derived with a similar numerical ac
racy in comparison to the flow equation proposed in Sec.
and Appendix C. However, the structure of the resulting fl
equations derived in this appendix appears to be more
volved, and we expect this to be a generic feature of fi
transformation in the flow equation for fixed cutoff—at lea
within the usual approximation schemes.

APPENDIX E: CUTOFF FUNCTIONS

For concrete computations, we have to specify the cu
functions. Here we shall use optimized cutoff functions
proposed in@14#, which furnish a fast convergence behavi
and provide for simple analytical expressions. Employing
nomenclature of@10#, we use the dimensionless cutoff fun
tions (y5q2/k2)
B

06500
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-

V

n-
d
t

ff
s

e

r B~y!5S 1

y
21D u~12y!,

p~y!5y„11r B~y!…5y1~12y!u~12y!,
~E1!

r F~y!5S 1

Ay
21D u~12y!,

pF~y!5y„11r F~y!…2→p~y!.

Here we have set the normalization constantscB andcF men-
tioned in @14# to the valuescB51/2 andcF51/4, so that
fermionic and bosonic fluctuations are cut off at the sa
momentum scaleq25k2. This is natural in our case in orde
to avoid the situation in which fermionic modes which a
already integrated out are transformed into bosonic mo
which still have to be integrated out or vice versa.

For these cutoff functions, the required threshold fun
tions evaluate to

l n
(F)d~v!5~dn,01n!

2

d

1

~11v!n11
, ~E2!

l n1 ,n2

(FB)d~v1 ,v2!5
2

d

1

~11v1!n1~11v2!n2
F n1

11v1

1
n2

11v2
G . ~E3!
m
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