
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Department of Physics Papers Department of Physics 

12-23-1974 

Renormalization-Group Approach to the Critical Behavior of Renormalization-Group Approach to the Critical Behavior of 

Random-Spin Models Random-Spin Models 

A. Brooks Harris 
University of Pennsylvania, harris@sas.upenn.edu 

Tom C. Lubensky 
University of Pennsylvania, tom@physics.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/physics_papers 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Harris, A., & Lubensky, T. C. (1974). Renormalization-Group Approach to the Critical Behavior of Random-
Spin Models. Physical Review Letters, 33 (26), 1540-1543. http://dx.doi.org/10.1103/
PhysRevLett.33.1540 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/442 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/physics_papers
https://repository.upenn.edu/physics
https://repository.upenn.edu/physics_papers?utm_source=repository.upenn.edu%2Fphysics_papers%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=repository.upenn.edu%2Fphysics_papers%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevLett.33.1540
http://dx.doi.org/10.1103/PhysRevLett.33.1540
https://repository.upenn.edu/physics_papers/442
mailto:repository@pobox.upenn.edu


Renormalization-Group Approach to the Critical Behavior of Random-Spin Models Renormalization-Group Approach to the Critical Behavior of Random-Spin Models 

Abstract Abstract 
A renormalization-group technique is used to study the critical behavior of spin models in which each 
interaction has a small independent random width about its average value. The cluster approximation of 
Niemeyer and Van Leeuwen indicates that the two-dimensional Ising model has the same critical behavior 
as the homogeneous system. The ε expansion for n-component continuous spins shows that this 
behavior holds to first order in ε for n>4. For n<4, there is a new stable fixed point with 
2ν=1+[3n/16(n−1)]ε. 

Disciplines Disciplines 
Physics 

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/physics_papers/442 

https://repository.upenn.edu/physics_papers/442


VOLUME 33, NUMBER 26 PHYSICAL REVIEW LETTERS 23 DECEMBER 1974

roe, T. Watanabe, and K. Husimi, J. Phys. Soc. Jpn.
31, 265 (1971); T. Sato, S. Miyake, T. Watari, Y. Ku-
bota, and K. Takayama, J. Phys. Soc. Jpn. 28, 808
(1970).

3T. Watari, Ph. D. dissertation, Department of Nu-
clear Engineering, Tokyo University, 1973 (unpub-
lished); T. Watari, S. Hiroe, T. Sato, and S. Ichimaru,
to be published.

4T. Hatori, S. Hiroe, A. Miyahara, T. Sato, K. Taka-
yama, T. Watanabe, and T. Watari, in Proceedings of

the First Topical Meeting on the Technology of Con-
trolled Nuclear Fusion, San Diego, California, April
1974 (to be published).

'D. G. Dow and R. C. Knechtli, J. Electron. Contr. 7,
316 (1959); T. Consoli, in ThA"d EmoPean Conference
on Controlled Pusion and Plasma Physics, Utxeeht,
The Netherlands, tune 1969 (Wolters-Noordhof Pub-
lishing, Groningen, The Netherlands, 1969), Vol. 2,
p. 361.

6B. L. Schram, Physica (Utrecht) 32, 197 (1966).

Re&«maiization-Group Approach to the Critical Behavior of Random-Spin Models

A. Brooks Harris and T. C. Lubensky
Department of Physics and Labaxatowy fox Research in the Structure cf Matter,

University of Pennsylvania, Philadelphia, Pennsylvania l9174
(Received 9 September 1974)

A renormalization-group technique is used to study the critical behavior of spin models
in which each interaction has a small independent random width about its average value.
The cluster approximation of Niemeyer and Van Leeuwen indicates that the two-dimen-
sional Ising model has the same critical behavior as the homogeneous system. The ~
expansion for n-component continuous spins shows that this behavior holds to first order
in e for n & 4. For n & 4, there is a new stable fixed point with 2 v = 1+[3n /16(n —1) )e.

The critical behavior of randomly diluted mag-
netic systems has been the object of some inter-
est for many years. ' ' Until recently, except for
special models, ' phase transitions in such sys-
tems could only be studied via series expansions. "
This technique is riot entirely satisfactory since
it does not indicate whether the phase transition
remains sharp with possibly different exponents
or whether it washes out upon randomization of
the interactions. A simple heuristic argument'
indicates that the former behavior occurs when
the specific heat exponent n is negative and the
latter when n is positive. However, the validity
of this argument is uncertain, and in any event,
it gives no prediction for two-dimensional Ising
models where n =0.

In this paper, we will discuss the application of
the renormalization group, ' which has been used
so successfully in the calculation of critical expo-
nents in pure systems, to phase transition in ran-
dom systems. We introduce additional variables
describing the randomization of the potential.
These variables can be either irrelevant or rele-
vant' in the vicinity of the pure-system fixed
point. In the former case, we argue that the tran-
sition will be sharp with expoments of the pure
system. In the latter case, either the system
goes to a new stable fixed point, indicating a
sharp phase transition with new critical. expo-

nents, or the renormalized randomization vari-
ables become infinite and the transition is prob-
ably smeared. We have applied two versions of
the renormalization group to the random problem:
the Niemeyer-Van Leeuwen (NL) cluster expan-
sion for the two-dimensional Ising model, and the
Wilson-Fisher c expansion for n-component con-
tinuous spins with lattice dimensionality d =4

In the first case, we find for the small
clusters we treat here that the randomization
variables are irrelevant. In the second case, we
find the same to be true for n &4 to first order in

For n &4, we find a new stable fixed point
(i.e., a sharp transition) in which fluctuations in
the local transition temperature have a nonvan-
ishing value. Since space is limited, we will pre-
sent in detail the calculations for the two-dirnen-
sional Ising model and only outline the results
from the e expansion. A detailed presentation of
the ~ expansion will follow shortly.

We consider Ising models described by the
Hamiltonian

—PX=g J,, s,. s,
&i j&

Here P =1/hT, the sum is over nearest neighbor-
ing pairs of sites, s,. =+1, and each J is an inde-
pendent random variable governed by a probabil-
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ity distribution p(J) having the properties

fp(J)dJ=1,

fp(j)(j j,)"dJ ((fjo)',

(2a)

(2b)

with g «1. Thus, p(J) has a narrow width fj,
about its mean value J,. The free energy is then

calculated as the average over all the p's of the
free energy as a function of all the J's. This is
the so-called "quenched-bond" dilution problem.
Since the main issue is whether randomness
alters the critical behavior, we will carry out
the calculation only to lowest order in the width
fJo.

The recursion relations may be written as

&'"'"({ I)=l (T { „p[&'"'({),-,)))

=I (T {)„e p[&' '({ )„{h))])

(3a)

After the Nth stage of renormalization a Hamiltonian, X~"), is obtained which depends on the site
{s}»,. These are classified into cell variables {sj»and internal variables {)j», which are traced
over to yield a new site Hamiltonian, K&»", according to Eq. (3). Following NL we consider a two-di-
mensional triangular lattice and with a triangular cell, A, we associate a cell variable s„=sgn[Y', . s,. j,
where the sum is over the three sites (i =1, 2, 3) in A. The internal variables may be taken to be ]»
=s,s, and )~=s,s,. In general K(»~ will be of the form

X'»&=+ j s

where

s„=II s, ,
j60.'

where the sum over n in Eq. (4) is over all subsets of sites. Then Eq. (3) is of the form

j„'=q.({j)),
where the prime indicates a renormalized value. For the random system the recursion relations in-
volve, not the J's, but rather their probability distribution, P({J)). Thus, for the random system we

write

P'({J9)= fP({JMI.«j.' ~.({A))d& (6)

where df —=IIdJ . One can easily verify that Eq. (6) does indeed correspond to the quenched bond prob-
lem where the free energy, and not the partition function, is configurationally averaged. We wish to
study Eq. (6) in the vicinity of the fixed point of the homogeneous system. It is clear that P({j))=II 6(j„
—J„*), where J„*is the fixed-point value of J„for the homogeneous system, is a fixed point of Eq. (6).
We now ask whether this fixed point is stable with respect to a small width in P({j)). To do this we re-
place the renormalization equation for the functional P by the recursion relations for the cumulants of
P. These recursion relations are generated by multiplying Eq. (6) by the desired powers of J„and
evaluating the right-hand side using a Taylor series expansion about the average value of {j}.We de-
fine

(J JB.. . Jp)= fP({Jj)JJs. . .JpdJ,

(j„'ja'. . . J' ')= f P({ j)) „j' j'a. . . Jp'dJ'.
(7a)

(7b)

In terms of moments Eq. (6) is

(8)

where g= y„({j))ys({J)).. . cp~({J)), and 5j„=j„—(j„).
To determine the flow near the critical point we linearize these relations for {j)near {j+j. Further-

more, for narrow width it suffices to consider only terms of order (5J„6j,). Thus we obtain the lin-
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earized recursion relations

(9a)

(9b)

he two-cell cluster approximation we re-
tain only the correlations (5J„5JB)if J„and J&
are two spin interactions involving a common
site. Thus in Eq. (10) there are five variables,

, =J-J*, =(6J 5J ), , =(5J 5J ),
= (5J»6J»), and x, = (5J~~6J~), and the matrix
M of Eq. (10}has the numerical value given in
Table I. (The labeling of the J's is shown in Fig.
1.) We know that if P(J) is initially a 5 function,
it will remain so after renormalization. There-
fore, one eigenvalue of M must be gT, where gT
is the eigenvalue for the homogeneous system. '
The left eigenvectors of M define new coordi-
nates, u, The variable u T corresponding to gT
is a "relevant" variable since gT=1.54&1, and
ur=0 defines criticality. Since the next largest
eigenvalue, g, =0.764, is less than I the other
u,.'s involving only (5J„5J&) are "irrelevant" vari-
ables and we say that P(J) is therefore an "irrel-
evant" function. Thus the pure-system fixed
point is stable with respect to an infinitesimal
amount of randomness in J, and the critical ex-
ponents are those of the homogeneous system.
For a small initial width we can calculate the
shift in J' (i.e., in T,) by the condition ur ——0, for
which we use the eigenvector corresponding to
0T ~

x =Q, ~;)x, .

Equations (9a) and (9b) are the linearized recur-
sion relations valid very near the fixed point.
Nonlinear corrections have been studied but with
inconclusive results. These corrections would
bear on the possible existence of other fixed
points accessible from large initial values of the
(5J„6J&). Our aim is to see whether these quan-
tities increase or decrease as the renormaliza-
tion is repeated. In the latter case the system
evolves towards the pure-system fixed point and
the critical indices are those of the pure system.
In the former case the transition is qualitatively
modified by even an infinitesimal amount of ran-
do Dines s.

We now use the cluster approximation suggest-
ed by NL to treat Eq. (9). The additional compli-
cation introduced by randomness is that in gener-
al all (5J 5J&)'s will be generated by repeated
use of Eq. (9). This, of course, would also hap-
pen for J if the infinite lattice were used. In the
spirit of the cluster approximation we will only
allow (5J„6J&)to be nonzero when o. and P are
sufficiently near to one another. As NL have
shown, J becomes rapidly less important as
either the separation between sites in n or the
number of sites in e becomes large. It is hard
to see why (5J„5J&)should be long ranged if J„
itself is not.

QT:gz 0 546@2 0 055@3+ 0.605+4 + 0.32Ix,

=0

This gives (=—J*dJ*/d(5J»6J»)= J*dJ*/dx,
=0.199 compared to the exact result' )=0.183.

For the three-cell approximation we retain only
correlations (6J„'5J„')which involve overlap-
ping clusters. We therefore consider the vari-
ables x, -x, above and also x, = (5J»5J~~), x,

/i /X
/ X /

X/
/i

/ /
/ x A / i /

x/ / x/
/~

/

/
/

/
/

TABLE I. Matrix M of Eq. (10) for the pair cluster
approximation.

0.625
0.390
0.106
0.121
0.051

0.302
0.785
0.452
0.098
0.021

1.108
0.491
0.367
0.121
0.123

1.542
0
0
0
0

-0.554
0.541
0.047
0.012
0.010

FIG. 1. Section of the triangular lattice divided into
cells A. , B, C, . . . , each consisting of three sites. The
full lines represent intracell interactions; the dashed
lines, interceII interactions.

(J~') —J„*=Q ' ((J~)—Jg*}+~Q " (5J~5J ),

(5J f 6J' f) Q P(x(f. f} Pg(I )}(5J 5J )CQQJgJ$6
where all the derivatives are evaluated at (J)

These equations are of the form For t
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=(5g„5Z, ), x, =(u„,5, ), and x, =(5J, 5J, )
If yABc is the renormalization function obtained
using the cluster of cells A, B, and C, and cpAB

that using the two-cell cluster A, 8, then follow-
ing NL we set

ABC ABE AB
+AB +AB +AB +AB (12)

Such a prescription is necessary inasmuch as any
interaction can be considered as a part of two
different triangular clusters. Apart from g ~
which is again the same as for the homogeneous
system (qr =1.500), the largest eigenvalue is q,
=0.758, again showing P(J)to 'be "irrelevant. "
The more widely separated correlations x,-x,
have only a minor effect on g,: Ignoring them
gives g =0.768. The shift in T, is found, using
the left eigenvector of qr, to be )=0.124. It ap-
pears, then, that while our estimates of g are
accurate, those of the left eigenvectors are some-
what unreliable and an accurate value of $ could
only be obtained from a rather large cluster. A
similar poor result for the critical eigenvector
was also obtained by NL. As is we11 known, ei-
genvectors are harder to approximate than are
eigenvalue s.

In the e expansion, recursion relations for po-
tentials in spatially inhomogeneous systems are
developed. From these, recursion relations for
translationally invariant average potentials and
higher cumulants can be obtained as in Eq. (8).
We find that, in addition to the quadratic poten-
tial r and the quartic potential u, only the zero-
wave-number part of the variance, 6, of the qua-
dratic potential is relevant. The recursion rela-
tions for r, u, and a are similar to the recur-
sion relations for a spin model with cubic sym-
metry' with 6 playing the role of the hypercubic
potential. As in that model, the recursion rela-
tions for the random model have four fixed points
within the ~ expansion. In this model, these are
the Gaussian fixed points with u* = A~ = 0, the
Heisenberg fixed point for the pure system with
u* = a[8K~(n —1)] ', 6*=0, an unphysical fixed
point with u* =0, 6*=- @[4K~] ', and a random-
ness-dominated fixed point with u* = a[16K„(n
—1)] ' and g*= a[4-n][8K, (n -1)] ', where K, '

= 2" 'm' "I'(d/2). The unphysical fixed point is al-
ways stable but inaccessible since 6 must be pos-
itive. For n &4, the pure-system fixed point is
stable with the h exponent given by A~= e(4 —n)/
(n+ 8) = 2o.. For 1 &n & 4, the new fixed point is
stable with exponents A, = 4e(n —4)/(n —1), A.,

2 v = 1 + [3n/16(n —1)] e., and o. = ~ e(n —4)/
(n —1). Thus, the heuristic argument seems to
apply for n &4, possibly because the variable A

is linearly proportional to the variance in the lo-
cal transition temperature (5T,(x)6T,(x)) at point
x. For 1 &n &4, there is a sharp transition. How-
ever, n has a renormalized value less than zero.
The status of the result for n near or equal to 1
is uncertain and is currently under investigation.
Preliminary calculations to second order in ~ in-
dicate that for the pure system fixed point A. ~ is
equal" to o/v to this order in e, again in agree-
ment with the heuristic argument.
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