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The interfacial order parameter profile near the critical point is studied using the renor­

malization group method. The equation for the order parameter profile is derived up to 

first order in e=4-d where d is the spatial dimensionality of the system. This equation 

consists of two parts. One is related to the equation of state with a slight modification. 

The other comes from the spatial inhomogeneity of the order parameter. Our result is 

compared with that of Fisk and Widom in which the form of the equation of state has been 

postulated. An explicit solution of the equation which describes the order parameter profile 

is obtained. The universal amplitude of the surface tension is also evaluated using the e­

expansion technique. 

§ 1. Introduction 

Several years ago Fisk and Widom1al generalized the theory of Cahn and 

Hilliard2l for the structure and free energy of the interface between fluid phases by 

using the equation of state which is based on the scaling hypothesis. Although 

the main features of the interface have been clarified by their theory, the deter­

mination of the order parameter profile requires the explicit form of the free 

energy density in the nonuniform fluid. In their theory the profile and the associ­

ated quantities, such as the surface tension, have been obtained by assuming a 

simple form of the equation of state. The theory was then criticized by Widom 

himsel£. 1bl The main issues besides the fundamental question of the proper defini­

tion of the profile are: (1) What is the proper equation of state or the free 

energy to use for homogeneous states with the values of the order parameter 

lying between those of the coexisting phases below the critical point Tc ? In 

particular, can one use the free energy analytically continued from that of the 

coexisting phases? (2) Is the square gradient form of the local free energy ade­

quate? Although indirect evidences support affirmative answers to these questions, 

the situation clearly leaves a plenty of room for further theoretical study. 

In this paper we apply the renormalization group theory3l. 4l to investigate the 

structure of the interface. The order parameter profile through the interface is 

derived by the technique of the c ( = 4- d) expansion, d being the dimensionality 

of space. In § 2 the free energy functional for given spatially nonuniform average 

order parameter M(x) is formally obtained in terms of the Ginzburg-Landau-Wilson 

(G-L-W) Hamiltonian for the local order parameter S(x). For simplicity we 
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468 T. Ohta and K. Kawasaki 

regard the interface as flat. (Suppose a sufficiently large droplet.) In § 3 the 
equilibrium state of the system is found by the extremal condition on the free 
energy functional. After eliminating the divergent integrals characteristic of the 
G-L W Hamiltonian we obtain the equation for the order parameter profile, which 
is correct up to first order in 8. This equation is compared with that of Fisk 
and Widom and is solved exactly in § 4. The surface tension is also evaluated 
up to first order in 8 and is compared with the experiments. The final section 
is devoted to a short summary and discussion. 

§ 2. Local free energy in the nonuniform fluid 

The earlier theories of the interface between two coexisting phases have made 
use of the properly chosen local Helmholtz free energy in the inhomogeneous 
system. Cahn and Hilliard used the classical Van der Waals free energy in their 
theory of interfaces.2l Fisk and Widom have extended the theory of Cahn and 
Hilliard by assuming a non-classical free energy.v 

Here we derive the free energy functional in the two-phase region starting 
with the G-L-W Hamiltonian for the renormalized local order parameter S(x) :4l. 5l 

where Z, Z 2 , z. and or are the renormalization constants. Here r is chosen to 
be negative and g is the renormalized coupling constant. *l The local order param­
eter is chosen so that it vanishes at the critical point. For example, for a simple 
fluid, 

S(x) =p(x) ~pc, (2· 2) 

where p (x) and Pc are the local density and its critical value, respectively. The 
formalism we use is the field theoretical formulation due to Brezin et al.4l. 5l where 
we start with the free energy functional 1V{h} in the presence of an arbitrary 
external field h(x) defined by (we choose a normalization slightly different than 
that of Ref. 4) 

1V {h} =ln J d{S}exp[ ~LW {S} + J S(x)h(x)dx]. (2 ·3) 

The vertex functional r { m} is defined through the following Legendre transfor­
mation: 

F{m}= Sdxm(x)h(x)~1V{h} (2·4) 

with 

*l Here in fact g is the dimensionless renormalized coupling constant where the reference 
wavenumber was chosen to be unity. See below. 
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Interfacial Order Parameter Profile near the Critical Point 469 

m(x) =oW{h}joh(x). (2·5) 

Consequently, we also have 

h(x) =oT{m}/om(x). (2· 6) 

In the absence of an external field, the order parameter profile M(x) is determined 

by 

oT{M}joM(x) =0 (2·7) 

and the free energy 1JI by 

1fi=T{M}. (2·8) 

Let us now expand !Jl in powers of </J(x) =S(x) -m(x) as 

where 

!/{[n] (xl . . . X ) = ~- on!/{ @L__ I 
' ' n oS(xi) ···oS(xn) 1 l 8 l~lml. 

(2·10) 

Explicitly the !J{CnJ• s are given by 

(2 ·12) 

(2·13) 

etc. ··· 

The vertex functional r {m} is calculated in the loop expansion.41 It should 

be noted that the equation !J[CIJ(x) =h(x) with Z=Z2 =Z.=1 and or=O is nothing 

but the equation for the classical order parameter profile in the presence of a field 

h(x). Hence the contributions from !J{CIJ to the vertex functional T{m} are at 

most of second order in g. Note that gm2 (x) should be taken to be of the order 

unity in general. By taking these into account, the vertex functional is given in 

the one loop approximation by 

+ 2_ Tr ln !J{C2J 
2 ' 

(2·14) 

where !JlC2J is an operator with matrix elements !J{C2J (x~> x 2 ) m the coordinate 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

8
/2

/4
6
7
/1

8
6
6
2
8
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



470 T. Ohta and K. Kawasaki 

representation, and we have used the operator formula: 

Det A=exp(Tr In A). (2·15) 

The explicit form of the last term in (2·14) will be derived 111 the next section 

1vhere divergences will be also eliminated. 

§ 3. Equation for the order parameter profile 

Minimization of the free energy functional with respect to {M} giVes the 

equilibrium value for Jo,f(r). By (2 · 7) and (2 ·14) we obtain the equation 

Z d',M(r) = rZ,M(r) + orl'vf(r) + 2_z4M(r)3 

dr- 6 

+-1- Tr {[.3{C'J]- 1o (r-s) }s~rgM(r), 
2Vd-! 

(3 ·1) 

where r Is the coordinate in the direction perpendicular to the interface and 

x=(x,r), (3·2) 

x being the d -1 dimensional vector, and Va_ 1 - J dd- 1x. The equation (3 ·1) Is 

to be solved under the following boundary condition: 

for 

for 

r~oo 

r-~- oo 
' 

(3·3) 

where .Z\Ie is the finite uniform solution of (3 · 1), that is, the equilibrium value 

of the order parameter in one of the coexisting phases. The renormalization con­

stants have been evaluated as 5l 

a-c= _JL 1 ~ 
2 2 ' q q 

(3 ·4) 

INhere 

(3·5) 

and 

(3· 6) 

2nd!' 1 

sd = !-'(d/2) (2n)d 
(3. 7) 
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Interfacial Order Parameter Profile near the Critical Point 471 

In (3 · 4) the reference wavenumber in the normalization conditions for the Z's 

has been equated to unity. 

The method of the spectral decomposition can be used in order to evaluate 

the last term in (3 ·1) explicitly. Namely, let us consider the Schrodinger 

equation 

( _-.!!.___ + r + !LM(s)2) f(s) = Af(s), 
ds 2 2 

(3·8) 

where M(s) is the lowest order solution of (3·1), i.e., the classical order parameter 

profile given by 

M(s) = (6lrl/g) 112tanh(!Cs/2) (3· 9) 

with 

JC= -/2Jrj. (3 ·10) 

The solution of (3 · 8) is easily obtained. The normalized eigenfunctions fo ( s) 

and j; ( s) for the two bound states with the eigenvalues A0 = 0 and A1 = 3lr l/2, 

respectively, are given by 

fo ( s) = (3JC/8r12sech2 (!Cs/2) (3 ·11) 

and 

j; ( s) = (3JC/ 4) 112sech (Ks/2) tanh (!Cs/2). (3 ·12) 

The eigenfunction with the continuum spectrum 

(3 ·13) 

1s given by 

JP(s) =l_eiP'{2P2+ JrJ-3JrJtanh2 (1Cs/2) +3tCpitanh(ICs/2)}, 
CiJp 

(3 ·14) 

where 

(3·15) 

The normalization of (3 ·14) has been chosen as 

(3 ·16) 

Expression (3 ·14) is essentially equivalent to the one derived by Rajaraman. 6J 

By the use of these eigenfunctions the delta function can be expressed as 

(3 ·17) 

Thus the last term of (3 ·1) becomes 
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472 T. Ohta and K. Kawasaki 

(3 ·18) 

where the integration on ij is performed in the d -1 = 3- e dimensional vector 

space parallel to the interface. Substitution of (3 · 4) and (3 ·18) into (3 ·1) yields 

d 2M(r) =rM(r) +.!LM(rY+.!LM(r) (r+.!LM(rY)J+.!LM(r)Q(r), (3·19) 
dr 2 6 2 2 2 

where Q(r) is a function free of divergences for d<4 and is given by 

Q(r) = -2lrl f 1 _ f I:: l.nlfnCrW 
Jq q 2 (q2 + 21 rl) Jq n it (it+ l.n) 

_ f (P2 +2Iri)CifirW-1). 

Jq. p l12 Cit + P2 + 2 I r I) 
(3. 20) 

In deriving (3 · 20) we have again used the identity (3 ·17). After performing 

the integrations which will be described in Appendix A, Q(r) is given for small 

e by 

Q (r) = (21r[)-ef2 84-S {lrl -3lr/ tanh2 (1Cr/2)} 
e 

+1../r/84 sech2 (1Cr/2)-.; 3 Jr/ sech2 (/\;r/2)tanh2 (1Cr/2). (3·21) 
2 16n 

From (3 ·19) and (3 · 21) we have 

d 2M(r) =rM(r) +.!LM(r) 3 +.!...M(r) ('r+.!LM(r)2) (ln(2/rl) -1) 
dr 2 6 6 2 

-.!...rM(r) {3--g-(3+ ../3n)M(r)2 + ../3n(-g-)
2
M(r)4}, (3·22) 

6 6/r/ 6/r/ 

where we have used the fixed point value of g:4> 

(3 ·23) 

In (3·22) we have used (3·9) in terms of O(e), which is allowed in the spirit 

of the e-expansion. 

The equation (3 · 22) without the term in curly bracket*> should be compared 

with the equation of state with the uniform external field H:4> 

(3·24) 

*> Note that the quantity in the curly bracket vanishes for M(r)-'>±M. with M.=C6Irl/!7) 112 

in the lowest order. Hence this term arises from the spatial inhomogeneity of M(r). 
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Interfacial Order Parameter Profile near the Critical Point 473 

Of course (3 · 24) cannot be applicable in the unstable region inside the mean field 

spinodal curve where r + (g/2) M 2 becomes negative. It should be noted that 

(3 · 22) is free from this difficulty.*) 

§ 4. Order parameter profile and surface free energy 

Before solving Eq. (3 · 22) we compare it with the work of Fisk and Widom. 1a) 

First, let us introduce the scaled quantity by 

/!. (r)fl = (!!___) 112 [M(r) I . 
6 [r[ 13 

(4 ·1) 

Then (3 · 22) is written as 

(4· 2) 

where 

(4·3) 

Next we normalize 11 (r) by**) 

fJ.(r)"=cz(r) 2 (4·4) 

so that the right-hand side of (4·2) vanishes for z(r) 2 =1. The constant c 1s 

then given by 

(4·5) 

Thus Eq. ( 4 · 2) takes the following scaling form postulated by Fisk and Wid om :1) 

d 2 ~~r) = -j(1)[r[ 7M(r) (1-z(r))~~~~, (4·6) 

where, however, 

(4·7) 

( 4. 7') 

*1 Since we have used the solution of the Schrodinger equation (3 · 8) with (3 · 9), Eq. (3 · 22) 

does not reduce to the equation of state even in the spatially uniform limit. 

**1 The variable z is equal to (T,-r(p))/(T,-T) of Fisk and Widom,1• 1 and to (1) of Sarkies 

and Frankel.'1 
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474 T. Ohta and K. Kawasaki 

with 

(4·8) 

The value j (1) 1s given by 

(4·9) 

Furthermore, j(z) is positive for O<z<1 andj'(1)/j(1)=(1+2a)/1-1/2 which 

is also finite. Thus our function j satisfies the requirements of Fisk and Widomn 

(see Appendix B also). 

Expression (4·7) should be compared with that adopted by Fisk and Widom1a> 

(1-z)j(z)/j(l) =~(l-z 4 1 3 ). (4·10) 
4 

If we put a= 1 and !1 = 1/3 in ( 4 · 7') it coincides with ( 4 ·10). On the other 

hand, the choice a= 1 in ( 4 · 7') yields 

(1- z)j(z) /j(1) = (1- z 4P) /4/1, ( 4-10') 

which is the form used by Sarkies and Frankel.n It should be noted, however, 

that the z4P term in ( 4 · 7) originated from the nonuniformity of the order parameter, 

which does not exist in the equation of state in the one phase region.*' In Appen­

dix B we discuss the properties of the function j(z) and the function h(z) which 

corresponds to the equation of state (3 · 24). In particular, we will see that j (1) 

and h(1) differ by a small amount contradicting the continuity assumption of Fisk 

and Widom1' up to O(c). 

Following Fisk and Widom,1a> we obtain the solution of Eq. (4·6) in the form 

where 

8 ( S) lS defined through 

where 

[M(r) [ =A[r[P[B([r[/L)]P, 

A= (6/g)u"cP/2' 

L= (j1[r[-r/j(1))112. 

lO(s) 

S = Jo t/3-! [ w (t) ]- 112dt , 

w(t) =2 fz 213 - 1(1-z)j(z)/j(1)dz. 

Substitution of ( 4 · 7) into ( 4 · 15) yields 

*' See the footnote after Eq. (3 · 23). 

(4·11) 

(4·12) 

( 4·13) 

(4·14) 

(4 ·15) 
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Interfacial Order Parameter Profile near the Critical Point 475 

w(t) =__l_a(1-a) (1-t2.e)2 (t28 +~+ _!_). (4-16) 
6{32 2a 2 

From (4·11), (4-14) and (4-16) we easily obtain the following result for the 

order parameter profile: 

M(r) =AJrl.e-~- ~ tanh(r/(2L)) ___ -~---
{1 + 2a/ (3 +a) sech2 (r/ (2L))}1/ 2 

(4-17) 

If we take the limit c~O ( d~4) in ( 4 -17), it reduces to the classical order 

parameter profile: 

Next we evaluate the surface free energy density 6'. In our nonlocal theory 

we must start with the definition of 6': 

6'= Jdr(T{M(r)}-T{Me}). (4-19) 

By the procedure similar to that in § 3 (see Appendix C) we obtain 

( 4. 20) 

where the universal constant C0 [ ={32c of Ref. la)] is found to be given by 

C 0 =! {1+s(~ _v'9
3 n)+O(s 2)}- (4-21)*l 

In ( 4 · 20) the constant A of Fisk and Widom'al (which should not be confused 

with our A) has been equated to unity up to O(g). The surface tension critical 

Table I. The universal constant Co of the surface tension. 

Classical theory 0.167 (Ref. 2)) 

Fisk and Widom 0.142 (Ref. 1a)) 

First order E-expansion 0.149 

SF. 0. 093±0. Oll (Ref. 8)) l 0.110 
(Ref. 8), 9)) a) 

Experimental values co. 0.123 (Ref. 10)) a) 

0.146 (Ref. lO))al 

Xe 0. 100±0. 012 (Ref. ll)) al 

a) The original values quoted in these references are O.ll5, 0.129 and 0.153 for CO, and 0.105 
±0.012 for Xe, which are obtained by equating L with~. the correlation range of critical fluctuations 
deduced from light scattering. However, in view of (B·7) we should have L/~= [j(1)/h(1)]'1'. 
Hence the values of Co obtained in these references ought to be multiplied by [j(1)/h(1)]'1':::::1 
-0.047E, although the corrections appear to be very small. 

*l If we used the expression Co=({3'/2)f!t~- 1 (w(t))'l'dt which is derived under the square 
gradient approximation of the free energy density,lal we would obtain Co=(1/6)(1-(2v'3/45)nt+ O(E')), 
which gives, Co=0.126 in three dimensions. 
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476 T. Ohta and K. Kawasaki 

exponent 11.* = 2(3 + r /2 is equal to r + 2(3- v by the scaling law.n Incidentally, 

note that the first order value of the surface tension critical exponent fl.* =1.5 

- s/ 4 = 1.25 for s = 1 is close to the experimental values 1.28~ 1.29. n From 

(4·21) we have C0 =0.149 in three dimensions. This value is a bit smaller than 

the classical value C0 = 0.167 and is comparable to Fisk and Widom's value Co 

= 0.142. In Table I we summarize the values Co obtained by various theories 

and experiments. 8 l~w Our first order result definitely improves agreement with 

experiments over the classical value, but is not better than that of Fisk and 

Widom. It seems that the second order calculation is necessary for further im­

provement. 

§ 5. Summary and discussion 

In the preceding sections we have obtained the order parameter profile in 

equilibrium ( 4 ·17) by the s expansion technique without any ad hoc assumptions. 

The equation for s = 1 which describes the order parameter profile in three dimen­

sions is found to be very close numerically to that found by Fisk and Widom. 1al 

It should be noted, however, that the equation (3 · 22) cannot be obtained by 

continuing the equation of state (3 · 24) into the thermodynamically metastable 

or unstable regions. In particular, the compressibility (or the susceptibility) on 

the two sides of the coexistence curve differ by a small amount. *l 
A typical difference with the classical order parameter profile is found in the 

maximum value of the gradient L1111= (dA1jdr)max in the interface, which is given 

from ( 4 · 17) by 

The ratio of this with its classical one (i.JJ\.1) c = (3/ g) 112 lrl 1s giVen by 

(iJll/f) / (iJM)c = I r l- 8fl 2 {1- ; 6 (6 + 3 ln 2- ~3 n)} 

= (1- 0.073e) I r 1-8112 • 

(5 ·1) 

(5·2) 

The surface tension has been also calculated and compared with the experi­

ments. 
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Appendix A 

Here the derivation of (3 · 21) is described. The first term of (3 · 20) Is 

*J See note added (1). 
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Interfacial Order Parameter Profile near the Critical Point 477 

easily integrated to give 

(A·1) 

By the use of the discrete eigenvalues with their associated eigenfunctions obtained 

in § 3 the second term of (3 · 20) is obtained after carrying out three-dimensional 

integration 

_ [ ~ l,.lf,.(r)l 2 =- 3 v' 3 1rlsech2 (1Cr/2)tanh2 (1Cr/2). 
J;z n 7:/ (7;/ + An) 16n 

(A·2) 

In order to evaluate the third term of (3 · 20) we note the following formulae: 

=a-ef2S T(e/2)T(1/2-e/2) 
S-e 4T (1/2) 

=a-812S4-e"l- CU2) r(1-~)r(~) 
1-e 2 2 

=a-81284-e! (1+ ~ +0(e 2
)) 

and 

for a>O. With (3 ·14) the third term of (3 · 20) is written as 

_ [ (P2 +2Irl) (lfp(r) 12 -1) 

J;z,p ztczt+P2 +2Irl) 

=~lrl sech2 (1Cr/2) [ 1 
2 J;z,p ztczt+P2 +2Irl) 

(A·3) 

(A·4) 

+~I r 12 sech2 (!Cr /2) tanh2 (!Cr /2) [ 1 . (A. 5) 
2 J;z,p ii(it+P2 +2Iri)(2P2 + lrl) 

Using the formulae (A·3) and (A·4) we obtain 

(A· 5) = 31 riS4-s (21 rl)-812_!_ (1 + ~ + 0 (e 2)) sech2 (!Cr/2) 
e 2 . 

+ .J 3 I r I sech2 (!Cr /2) tanh2 (!Cr /2). 
Sn 

(A·6) 

Putting together (A ·1), (A· 2) and (A· 6) we find (3 · 21). 
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478 T. Ohta and K. Kawasaki 

Appendix B 

Widom12l postulated the scaling form of the equation of state as*l 

(B·1) 

with 

z= [Tc -T.(M) ]/ (Tc- T) (B·2) 

which coincides with z introduced through ( 4 ·1) and ( 4 · 4) near the critical 

point where the coexistence curve is written as T=T,(M). Then, for the equation 

of state (3 · 24) we obtain using ( 4 · 3) and ( 4 · 5) the following which is correct 

to O(e): 

(1-z) h(z) =- (cfl- ~) (z2fl-1)- ~ { (3z2fl-1) ln (3z2fJ -1) -2ln 2}. (B· 3) 

From a general consideration Widom11l assumed for h(z) the following properties: 

(a) h(z)/zr-I is regular in 1/z at z=oo (critical isotherm), 

(b) (1-z)h(z) is regular in z 2P at z=O (critical isochore), 

(c) limH1 (1 - z) h' ( z) = 0 (coexistence curve) . 

The result (B·3) satisfies the properties (b) and (c). On the other hand, for 

large z (B·3) yields h(z)/zr-'=(ce-(e/2))z2H(1+(e/2)lnz)+O(e2
). Using 

(4·3) we have z 2P-r(l+(e/2)lnz)=z- 812 (1+(e/2)lnz)=z0• Hence h(z) is ex­

pected to satisfy (a) as well. See also Ref. 4) in this regard. 

One can also consider the properties (a'), (b') and (c') corresponding to 

(a), (b) and (c), respectively, for the function j(z), for which we can write 

by ( 4· 7) as 

with 

B=j(1)/2~(1+a) =1-~e+_£ ln 2+0(e 2). 

3 6 

(B·4) 

(B·5) 

This function j(z) does satisfy (b') and (c'), but not (a') which is not relevant 

here. 

On the other hand, we obtain from (B · 3) 

h(1)/~=2+ _£ (2+ ln 2). 
3 

(B·6) 

Thus, on the contrary to the assumption of Fisk and Wid om, 1l j (1) and h (1) are 

different to first order in e: 

(B·7) 

*l This function h(z) should not be confused with the external field h introduced in § 2. 
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Interfacial Order Parameter Profile near the Critical Point 479 

where X- and X* are the compressibilities (or the susceptibilities) on the coexistence 

curve in the equilibrium and metastable states, respectively. 

Appendix C 

By making use of the spectral decomposition of § 3 the surface free energy 

is written up to O(g) as 

where 

g(J= s dr {! ( d~~r) r + ! r (m (r)2-m/) + ~! (m (r)4- m.4) 

+or (m(rY-m/) +_!._(z2-1)r(m(rY-m/) 
2 2 

+_!._(z4-1) (m(r)4-m/)} +grJb+g.drJ, 
4! 

After some manipulations we have 

grJb+gM.= -3v.2Tflg f 2 1 3(2iri)3J2g f 1 
Jqq +2lrl 2 Jq Cl+2lri)2 

- (2iriY12gS4.,; 3 rr. 
12 

m(r) 1s given from (4·17) by 

m(r) =A tanh(;L) {1- ~ sech2 (;L)}, 

where 

A 2 =6c~lrl 2 ~. 

Substitution of (C · 5) into the first three terms in (C ·1) yields 

_!._ Jdr(dm (r)) 2 = 2A2 (_!.__~a) 
2 dr 3L 2 15 ' 

r J 2A2 
( 2 ) - dr(m(rY-m/) =--3VIrl 1+-a , 

2 3L 9 

(C ·1) 

(C·2) 

(C·3) 

(C·4) 

(C·5) 

(C·6) 

(C·7) 

(C·8) 

(C·9) 
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480 T. Ohta and K. Kawasaki 

The remaining terms 111 (C ·1) are of first order in g. Hence we can use the 
lowest order expressions for m (r), A and L. Thus we have 

or Sdr(m(rY-m/) =3)2Tflg r],.' 
2 Jq q" 

~ (Z2-1) Jdr(m (rY- m/) =~ (2lrl) 312gJ, 
2 2 

1:_ (Z4 -1) Sdr(m (rY- m/) = -3 (21 rl) 312gJ, 
4! 

(C ·10) 

(C·ll) 

(C ·12) 

where J has been defined in (3 · 6). With (C ·10) ~ (C ·12) and (C · 4) all the 
divergences that emerge as c-c>O can be eliminated. Namely ~we have 

(C·4) + (C·10) + (C-11) + (C-12) 

= 2A2 c {-1:_ ln(2lrl) +1:_- v 3 n} +0(c 2). 

3L 4 2 36 
(C ·13) 

From (C-7)~(C·9) and (C-13) we finally obtain (4-20) with (4-21). 
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Note added: 

(1) The fact that (Cl· 24) extrapolated within the coexistence region does not sho\\' any singu­
larity until the mean field spinodal cur\'e r-:- (g/2)2\11 2 =0 is reached seems to imply the continuity 
of the ,quation of state (3·24) into the metastable phase. 'vVe tbus tend to ascribe tbe discrepancy 
l1ctween j (1) and h (1) found here to the nonlocal nature of the free energy functional r {Jf}. 
In order to verify this let us replace (3 ·18) by its local form: 

u1\-t(r)S (-'- d' .c.~ .J..2... 71,;1( )')~-1 '( ---- ) = uJf(r)S ( '-"-~+2...Mc -)')-1 ') _q d'"'?" r 01 s 2 q,. 2 11 _. q S ....., s=r q 

smce the differential operator has only plane wave eigenfunctions. Adding to this the counter term 
involving or this expression becomes R(lvi(r)) where 
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Interfacial Order Parameter Profile near the Critical Point 481 

Here 

For small <=4-d, we can show that 

F(x)~+ S,_, [ 1-tlnlxl 1- 0(<') J. 
In this way we obtain the following equation for M(r) in the local approximation which replaces 

(3·22): 

d'}\4- '1' , g '1'' gS, ~1( ' g 7\1') [1 g M' 1] ~-rm "'G"v' + 4 " r-,-2"' n-r+:z - . 

The right-hand side also follows from the equation of state (3 · 24) by analytical continuation into 

the unstable region. The change of the variable from 1'>1 to z as given by (4·1), (4·4) and (4·5) 

is still valid here with the right-hand side of the above equation vanishing at z=1, and we finally 

obtain 

d'!t1 
d~' = -klrM(r) [1-z(r)]j,(z(r)), 

where 

E 
(1- z) j, (z) = 1-c''z'-'- G(3z-1) [lnl3z-1l-1] -,· 0(< 2). 

This yields 

j, (1) /;3=2 +t (2-i-ln 2) =h (1) / (3. 

Thus, as is anticipated, validity of the use of the analytically continued equation of stale is vcriiied 

only in the local approximation up to O(c). 

(2) lf we extrapolate the calculation to three dimensions, <=1, we cncount<ccr the following 

infrared divergence in the first term of (3 ·18) associated with n =0: 

[d'M(r)J =2__7t1(-)i+( )i'I_l (~"") 
dT 2 n 2 )., 1 .I 0 r 2rr n /<, l ' 

( L) 

where k, and km are the lower and upper cutoffs, respectively (tlw ultraviolet divergence at k,, o. 

cancels out vvith the counter terms and need not be considered). The interpretation that the eigcn-­

mocle n=O corresponds to a displacement of the interface a:; a whole suggest,; that the infrared 

divergence in (1) is caused by capillary waves. 111 This can be e;tudied by consiclc,ing a model of 

the interface with the rigid profile 111o(r') = (6lrl/g) 112tanh(r'!2L), but with fluctuating po.oitionc:c, 

r'=r-iJr(x). \Ve take the actual profile toLe the average M(r) =<l'vfo(r')) over the cli:;trihution 

of i}r. \Ve then obtain 

d'JT/l(r) - (j , . - (j q. . [dlYfo(r)]' , " 
-~= r M(r) +G<Mo [r-or(x)] '):::-cd\11 (r) -1- 6 1\-1o (1') 3 -i· 2 2\.to (r) -----;;;:--- <or(:£)'). 

Using <or(x)')=(~;-ru)-'ln(l<mik,) 111 with a=~'2ii: 3 /g and (dNio/dr)/.fo(r)=(2/g) 112 tc 312 we inclcerl Yerily 

that the last term of (2) coincides with (1) with AI(r) =A1o(r). If we adopt the view thctt Lhce 

capillary 'Mrvc contributions are not intrinsic to the properties of the intc rfac<c and should he 

excluded (see Ref. 1b) of the text), we should add the counter term 

2+ ( ) 'l ''"' JO r "nk; (;3) 

to the right-hand side of (3·19) or (3·2~) where l<m=a/L (we expect a to be suff-iciently smaller 

than 1). The effects of the counter term arc (i) a of (4·8) is changed to a=({3;6h<-6a (ii) Co 

of the surface free energy (4 · 20) has a small temperature-dependent additional conlrilllltiun 

(41 9)a3E Ct-ln (a/ L)) which is, however, negligible for sufficiently small values of a. 

(1) E. P. Buff, R. A. Lovett and F. H. Stillinger, Phys. Rev. Letters 15 (1965), G21. 
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