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1. Introduction 

Supersymmetric theories provide a promising framework for the solution of 

the fine tuning and gauge hierarchy problems. [‘I They are the only known theories 

where elementary scalars are naturally light. The lightness of the Higgs boson 

can be understood if supersymmetry remains unbroken down to the weak scale 

Mw. 

In spite of their enlarged symmetry, supersymmetric theories fail to pro- 

vide any new information on the quark and lepton masses. The only model- 

independent predictions are those that follow from the infrared fixed points of 

the SU(3) x SU(2) x U(1) renormalization group equations. In ordinary unified 

theories, this fixed point structure implies that the masses and mixings of heavy 

quarks are independent of the details of the short-distance physics.[2’31 In this 

letter we extend this analysis to supersymmetric grand unified theories. We find 

bounds on the spectrum of heavy fermions and restrictions on the couplings of 

the charged Higgs scalar. 

Our fundamental hypothesis is that of a SU(3) x SU(2) x U(1) desert 

extending between the weak scale Mw and the unification scale A4x. We re- 

quire all couplings to be small enough for perturbation theory to be valid, and 

we assume that supersymmetry is unbroken all the way down to Mw. These 

hypotheses are valid in most supersymmetric theories that address the gauge 

hierarchy problem. This includes models where supersymmetry is broken in a 

hidden sector at an intermediate scale of about 1011 GeV. In these theories the 

effective scale of supersymmetry breaking in the visible sector is also Mw. 

Supersymmetric theories contain two Higgs doublets, one giving mass to up- 

type quarks, and the other giving mass to their down-type partners. The Yukawa 

couplings are as follows 

LY = uUQ+u -I- dDQ& + e&L&, (1) 

where U, D and & are the Yukawa matrices of the up-, down- and electron-type 
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fermions, Q and L are the quark and lepton isodoublets, and u, d and e are the 

corresponding singlet fields. 

Heavy fermion masses are determined by the infrared fixed point structure of 

the SU(3) x SU(2) x U(1) renormalization group equations. These equations do 

not receive contributions from soft supersymmetry-breaking terms. This follows 

from the fact that the mass splittings within supermultiplets are much smaller 

than the relevant desert momenta. The soft supersymmetry breakings, how- 

ever, induce finite shifts in the fermion masses. These shifts are of magnitude 

(cw/27r)Mw, and we neglect them here. 

In supersymmetric theories, the SU(3) x SU(2) x U(1) gauge couplings 

evolve as follows, 141 

dg3 -= 
dt (9 - 2%) 933 

da. - = 
dt (5 - 2%) g23 (2) 

&l - = 
dt - (; + m)g13 , 

where t = -(1/167r2) log(M/Mx) j and NF d enotes the number of families. The 

requirement of perturbative unification restricts NF to be less than or equal to 

four. To one loop, the evolution of the Yukawa couplings is given byf5’ 

U-l$ = GU - 3Tu - (3Zib.l + DtD), 

dD 
Delz = GD - ~TD - TE - (3 DtD + UtU), 

e-12 = GE - TE - 3To - 3Et& , 

(3) 
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where 

GY = ;g32 -I- 3gz2 + yg12 , 

GD = Tga2 -I- 3g22 + ig12 , 

GE = 3g22 + Zsg12, 

(4 

Ty = Tr Yty , 

with IJ = U, D or &. Equation (3) h as the following fixed points in the t --+ 00 

limit: I31 

1) The quark fixed point, with 

& = 0; (5) 

2) The lepton fixed point, with 

Et& = NG;3) 
F 

U=D=o. (6) 

Here GQ denotes an appropriate average of GU and GD (with gr = 0), and GL 

represents a similar average over GE. 

For physical gauge couplings, the quark fixed point determines the low-energy 

spectrum of quarks and leptons. Because of the fixed point, all quarks have the 

same Yukawa coupling as t --+ 00. All weak mixings and associated CP-violating 

phases vanish as well. This implies that both isospin and family symmetry are 

restored in the infrared limit. 

4 



2. General Results 

In previous work’31 we have shown that infrared fixed points are not necessar- 

ily reached in realistic grand unified theories. This is because the physical range 

oft is rather short, 0 2 t 2 l/5. In realistic theories, fixed points are approached 

only if the Yukawa couplings are sufficiently large. In what follows we restrict 

our attention to fixed- points that are reached in physical time. 

We begin by considering the renormalization of the overall scale of heavy 

quarks, given by Tu and To. From the general equations (3) it is easy to show 

that Tu and TD evolve as follows: 

dTu - = 2(GU - 3Tu)Tu - 
dt 

6Tr (UtU)’ - 2Tr (Lftu DtD) 

dTD - = 
dt 

~(GD - ~TD - TE)TD - 6Tr (oto)2 - 2Tr (DtDtita). 

These equations can be used to bound the scale of the heavy quarks, 

dTu 
dt 5 ~(GJ - 3Tu)Tu 

dTD 
dt 5 ~(GD - ~TD)TD. 

(7) 

(8) 

Equation (8) gives upper bounds on Tu and TD at the weak scale Mw. Using 

‘the gauge couplings corresponding to NF = 4, we find[“’ 

Tu , TD 2 2.7 . (9) 

A similar analysis in the lepton sector gives 

TE 2 3.8 . (10) 

The bounds for NF = 3 are even more stringent, so the limits (9) and (10) are 

valid for any number of families. 
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To convert (9) into bounds on the quark masses, we introduce vacuum ex- 

pectation values 21, and vd for the scalar fields & and ~$d. By using C Mu2 = 

(vu)’ Tu and CUD2 = (~d)~ Ti, we place limits on the quark mass spectrum: 

c Mu2 2 (v~/v)~ (290 GeV)2 

c MD 2 5 (v~/v)~ (290 GeV)2 (11) 

c Mg2 2 (290 GeV)2 , 

where vU2 + vd2 = v2 = (175 GeV)2, and all masses are evaluated at the weak 

scale Mw. In equation (ll), the sum over & runs over both up- and down-type 

quarks. 

Equation (9) can also be used to bound the ratio of the vacuum expectation 

values v, /vd. To see this, suppose there is a fourth family, whose top- and 

bottom-type quarks have masses rnt~ and mbl, respectively. The corresponding 

Yukawa couplings are given by gtl = mtf/v, and gbl = mb,/V,j. The fact that gtl 

and gbl SatiSfy (9) Sets limits on v, and vd: 

wu> 2 2 160 ( or vu 2 14 GeV) (124 

(+d)2 2 16Om ( Or vd 2 14 GeV) . (1 w 

Here we have used the fact that rnp and mbl are greater than 23 GeV. (If there 

are only three families, the limit (12~) still holds.) The bounds on the vacuum 

expectation values are more stringent for heavier quarks. For quarks of mass ??Zbl 

and rntl, we find 

(13) 

The ratio Vd/V, governs the coupling of the charged-Higgs boson to fermions. 
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Therefore, our limits (12) and (13) bound the charged-Higgs couplings in super- 

symmetric theories. They suppress the one-loop charged-Higgs contributions to 
L 

K” - K”, Do - Do and B” - g mixing. 

3. Fourth-Family Results 

Finally, we examine the special case of a fourth family that is decoupled from 

its lighter counterparts. The evolution equations for gtl and gbl become 

1 log gp = Gu - 3% - ( 3 W2 + gbf2) , 

(14 

$log gb’ = GD - ~TD - TE - (3 gb12 + gt12) , 

where Gy and Ty are given in (4). In Figure 1 we plot the evolution of gtl and 

gbl. Figure la indicates that the fixed point is reached in physical time for a wide 

range of initial conditions. Figure lb shows that the fixed point is reached very 

quickly. 

Equation (14) can be used to obtain tighter bounds for the masses of the 

fourth family. A bound on the value of gtl can be obtained by setting Tu = gp2 

and gal = 0 (and likewise for gal). This gives gtf , gbl 2 1.17, which in turn implies 

rntl 2 (vu/v) 205 GeV 

mbt 2 (vd/v) 205 GeV . 
(15) 

The bounds (15) imply that the lightest quark in the fourth family must have a 

mass of less than 150 GeV. This is in accord with the results of Reference [7]. 

The implications of a fourth heavy family have been studied in Reference [8]. 

This work was supported by the Department of Energy, contract DE-AC03- 

76SF00515, and by the National Science Foundation, contracts NSF-PHY-83- 

10654 and NSF-PHY-82-15249. 

7 



REFERENCES 

1. S. Dimopoulos and S. Raby, Nucl. Phys. B192, 353 (1981); E. Witten, 

Nucl. Phys. B188, 513 (1981); M. D ine, W. Fischler and M. Srednicki, 

Nucl. Phys. B189, 575 (1981); S. D imopoulos and H. Georgi, Nucl. Phys. 

B193, 150 (1981); N. Sakai, Zeit. Phys. c11, 153 (1981). 

2. B. Pendleton and G. Ross, Phys. Lett. 98B, 291 (1981); C. Hill, Phys. 

Rev. D24, 691 (1981); E. Paschos, Z. Phys. c26, 235 (1984). 

3. J. Bagger, S. Dimopoulos and E. Masse, Nucl. Phys. B253, 397 (1985); 

SLAC-PUB-3587 and Phys. Lett. I3, in press (1985). 

4. We use the one-loop renormalization group equations given in S. Dimopou- 

los, S. Raby and F. Wilczek, Phys. Rev. m, 1681 (1981). Two-loop 

corrections have been evaluated and shown to be small; see M. Einhorn 

and D. Jones, Nucl. Phys. B196, 475 (1982). 

5. L. Alvarez-Gaume, J. Polchinski and M. Wise, Nucl. Phys. B221, 495 

(1983); N. Falck, Dormunt preprint DO-TH 85/S (1985). 

6. In our numerical analysis we take NF = 4 and Am = 100 MeV. This gives 

MX = 5.7 x 1015 GeV and sin2 8~ = .236. 

7. K. Tabata, I. Umemura and K. Yamamoto, Phys. Lett. 129B, 80 (1983). 

_ 8. M. Cvetic and C. Preitschopf, SLAC-PUB-3685 (1985). 



FIGURE CAPTIONS 

1. (a) The evolution of gp and gbf with energy for various initial conditions. 

We have neglected the contributions of the three light families to Tu and 

To. The arrows indicate the flow of increasing t (decreasing energy). (b) 

The evolution of gp with energy for the same initial conditions. 
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