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A renormalization group flow of Hamiltonians for two-dimensional classical partition functions is

constructed using tensor networks. Similar to tensor network renormalization [G. Evenbly and G. Vidal,

Phys. Rev. Lett. 115, 180405 (2015); S. Yang, Z.-C. Gu, and X.-G. Wen, Phys. Rev. Lett. 118, 110504

(2017)], we obtain approximate fixed point tensor networks at criticality. Our formalism, however, preserves

positivity of the tensors at every step and hence yields an interpretation in terms of Hamiltonian flows. We

emphasize that the key difference between tensor network approaches and Kadanoff’s spin blocking method

can be understood in terms of a change of the local basis at every decimation step, a property which is crucial

to overcome the area law of mutual information. We derive algebraic relations for fixed point tensors,

calculate critical exponents, and benchmark our method on the Ising model and the six-vertex model.

DOI: 10.1103/PhysRevLett.118.250602

Introduction.—The study of phase transitions and critical

properties of lattice models has long been at the center of

statistical physics. Universal properties of critical systems

can be captured by conformal field theories (CFTs), which

act as low-energy effective descriptions of critical models

and whose scaling dimensions can be related to the critical

exponents of asymptotic correlation functions. One way to

gain insight into these phenomena is through real-space

renormalization group (RG) methods, which predate the

development of the modern renormalization group and can

be traced back to Kadanoff’s block-spin procedure [1]. In

his treatment of block-spin methods on the lattice, Wilson

emphasized that one should be able to do precise numerical

calculations using pure RG methods combined with

approximations based only on locality [2]. For real-space

RG to work, the effective Hamiltonian at every step should

be dominated by short-range interactions as interactions of

arbitrary complexity are generated in subsequent iterations.

Additionally, the calculation of any particular term in the

coarse-grained Hamiltonian should involve but a small

number of fine-grained spins.

Tensor networks are efficient, local, real-space varia-

tional ansätze for many-body wave functions, which are

constructed by mimicking the spatial distribution of entan-

glement and correlations. Renormalization group methods

based on tensor networks satisfy Wilson’s requirements

insofar as their inherent real-space locality and finite bond

dimension restrict the range of newly generated effective

interactions and provide a controlled approximation that

can be systematically improved.

For two-dimensional lattice systems, the tensor renorm-

alization group (TRG) algorithm [3,4] puts the idea of

tensor network renormalization (TNR) into practice in a

most explicit way. Wholly based on truncation using

singular value decomposition (SVD), this algorithm works

extremely well for gapped systems because of the same

entanglement reasons that explain the success of the density

matrix renormalization group for quantum spin chains [3].

Despite remarkable accuracy in determining critical expo-

nents for finite systems, none of the methods based on the

TRG [5–7] is sustainable in the sense that it is capable of

yielding true (approximate) fixed points tensors at critical-

ity [8]. Recently, novel TNR algorithms respectively based

on the multiscale entanglement renormalization ansatz

(MERA-TNR) [8–11] and matrix product states (Loop-

TNR) [12] have been developed which do manage to flow

to approximate fixed point tensors, even at criticality. Our

work has been inspired by the latter proposal which

formulates TNR in terms of periodic matrix product states

(MPSs). For the 2D classical Ising model, impressive

numerical results have been obtained that seem to defy

the breakdown of the TRG at criticality.

In this Letter, we demonstrate how tensor networks can

be used to achieve explicit real-space RG flows in the space

of classical Hamiltonians. To this end, we have developed a

sustainable and manifestly non-negative TNR method

(TNRþ) to coarse-grain classical partition functions. By

virtue of the elementwise non-negativity of all tensors

involved, we can explicitly associate a Hamiltonian to the

fixed point tensors of the RG flow generated by our

algorithm. We thus believe our work opens up the pos-

sibility to begin to address one of the main concerns raised

by the traditional real-space RG community about all TNR

schemes: the lack of an insightful RG interpretation of what

are essentially supposed to be real-space RG methods [13].

Tensor network renormalization.—The salient features

shared by all TNR algorithms developed up to now are

twofold. First, the breaking apart of the tensor product

structure, which was introduced in the TRG by splitting

tensors using SVD, is crucial to the construction of new
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effective degrees of freedom and the removal of correla-

tions. The reason why Kadanoff’s spin blocking fails can

be traced back to the bounds on correlations imposed by the

mutual information between a block and its environment.

In order to overcome this barrier, it is essential to reorganize

degrees of freedom by doing a local basis transformation.

Second, both MERA-TNR and Loop-TNR address the

additional need to extend the domain of the coarse-graining

step to act on a block of sites in order to remove intrablock

correlations. The disentangling power of both MERA-TNR

and Loop-TNR can be found in surrounding a block of sites

with a coarse-graining operator. This explains, for instance,

why there is no way for the TRG, which acts locally on

each site, to detect the short-range correlations that it sets

out to remove at criticality.

Coarse-graining nonnegative tensor networks.—

Consider a two-dimensional bipartite square lattice of N
classical spins fsig described by an energy functional

Hðs1; s2;…Þ. The classical statistical partition function is

then given by

Z ¼ eβF ¼ Trfs1;s2;…ge
βHðs1;s2;…Þ; ð1Þ

where F ¼ E − TS denotes the free energy. If we imagine

the spins living on the vertices of the lattice, the Boltzmann

weight of a site depends on the configuration of the bonds

connected to the site. We can write these probabilities as a

rank-four tensor Aijkl, so that the sum over all configura-

tions in the partition function boils down to contracting a

non-negative tensor network,

Z½A� ¼ tTr ⨂ Aijkl: ð2Þ

By coarse-graining tensor networks, we then refer to a real-

space RG procedure constructing a sequence of partition

functions Z½A0� → Z½A1� → � � � → Z½As�, where each

effective partition function is defined on a coarser lattice

than the one before, until we are left with a single effective

site after s ≈ log2ðNÞ iterations. If we now want to addi-

tionally retain elementwise non-negativity of all involved

tensors at every step, we cannot resort to using SVD, which

is the backbone of all other TNR approaches. Instead, we

are led to non-negative matrix factorization algorithms [15]

to approximate the following matrix factorization problem:

Given an elementwise non-negative matrix A ∈ R
m×n
þ and a

rank k ≤ minðm; nÞ, find the matrices X ∈ R
m×k
þ and Y ∈

R
k×n
þ minimizing ∥A − XY∥2F [27].

Now let us focus on a block of four adjacent sites

[Fig. 1(a)], which we, following Yang, Gu, and Wen [12],

interpret as a periodic four-site MPS with respective

physical and virtual dimensions. The local coarse-graining

procedure then proceeds according to the canonical real-

space RG steps by (i) introducing new effective degrees of

freedom, which here involves approximating the local

block with an ansatz that has a different tensor product

structure in order to remove short-range correlations

[Fig. 1(b)], and (ii) summing over old degrees of freedom

by recombining the optimized tensors into new coarse-

grained tensors C1 and C2 [Fig. 1(d)]. The virtual dimen-

sion in step (i) can be increased at will, which in turn

determines the local dimension of the degrees of freedom

living on the new lattice. While step (ii) explicitly sums

over the old outer (physical) degrees of freedom to

construct the coarse-grained tensors, step (i) also contains

an implicit summation over the old inner (virtual) degrees

of freedom. After a single RG step, the roles of the physical

and virtual MPS dimensions have interchanged and the

linear dimension of the lattice is reduced by
ffiffiffi

2
p

. The

tensors in Fig. 1(e) then serve as input to the next step,

where we take into account that we have to break up the

tensor product structure again. Notice that in Fig. 1(c) we

identify the coarse-grained lattice with the “vertex” con-

figuration inside the dashed bounding box and not the

“plaquette” configuration inside the dotted one. Even

though a priori they look similar, the latter configuration

leads to worse numerics which can be understood by it not

being able to remove short-range correlations of the corner

double-line form [15].

(a)

(b)

(c)
(d)

(e)
(f)

FIG. 1. (a)–(e) Illustration of a single step of the TNRþ
algorithm. (a) Starting from a bipartite square lattice, (b) we

approximate the periodic MPS representing a block of four sites

by a rotated version (c) with a different tensor product structure and

(d) contract thesenumericallyoptimized tensors exactly to (e) arrive

at a coarse-grained tilted lattice. (f) Iterating theTNRþ procedure in

the presence of an open boundary generates a stochastic MERA.
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Renormalization group flow.—In Fig. 1(f), we have

depicted the tensor network generated by the action of

TNRþ on an open boundary of the lattice. In much the same

way as the TRG produces a tree tensor network andMERA-

TNR a multiscale entanglement renormalization ansatz [9],

our TNRþ algorithm builds up a non-negative tensor net-

work approximation to the leading eigenvector of the

transfer matrix. Given the non-negativity and the alternating

pattern of one iteration “disentangling” (blue tensors) and

the next one reducing the degrees of freedom (green tensors),

TNRþ can be said to generate a stochasticMERA [28]. If we

instead track the action of TNRþ around an open impurity,

we end up with the followingMPO after two iterations [15]:

In the scale-invariant regime of the RG flow, this MPO is

identified with the radial transfer matrix [9], which can be

diagonalized to give R ¼ P

α2
−Δα jαihαj. Here, the scaling

dimensions Δα and approximate lattice representations jαi
of the primary fields and descendants of the underlying CFT

description are found only if the relative gauge freedom of

the coarse-grained partition functions has been fixed, i.e., if

the degrees of freedom we deem equivalent after two

iterations do indeed match [15]. For critical systems, we

thus end up with a window of an approximately invariant

alternating sequence of partition functions Z½C�
1;A; C

�
2;A� →

Z½C�
1;B; C

�
2;B� after the initial part of the flow has sufficiently

suppressed irrelevant lattice details and up until the accu-

mulated truncation errors eventually prevail.

We can furthermore consider the fixed point equations of

TNRþ as an algebraic set of equations in their own right by

finding tensors which (approximately) satisfy

ð4Þ

Exact solutions of these equations include trivial product

states and Greenberger-Horne-Zeilinger states correspond-

ing to gapped infrared fixed points, potentially with sym-

metry breaking. Including additional symmetry constraints,

there might exist nontrivial solutions which approximately

yet accurately satisfy the RG fixed point equations. The sets

of these solutions and their stability under perturbations

could then point towards the conditions required for a

classification of all possible (approximate) RG fixed points

of TNR schemes [30,31].

Application to classical partition functions.—We have

benchmarked our algorithm on the classical Ising model

and the six-vertex model. The partition function of the

ferromagnetic Ising model can be encoded by associating a

tensor Aijkl ¼
P

sð
ffiffiffi

a
p Þisð

ffiffiffi

a
p Þjsð

ffiffiffi

a
p Þksð

ffiffiffi

a
p Þls to each ver-

tex, where amn ¼ ½eβ1þ e−βX�mn denotes the contribution

of the interaction between spins m and n. The Ising model

exhibits a phase transition at the critical temperature Tc ¼
2= lnð1þ

ffiffiffi

2
p

Þ described by a free fermion c ¼ 1=2 CFT,

separating the Z2 symmetry-breaking phase for T < Tc

from a trivial disordered phase for T > Tc. The partition

function of the zero-field six-vertex model can be written in

terms of the nonvanishing tensor elements A1111¼A2222¼a,
A2112 ¼ A1222 ¼ b, and A2121 ¼ A1212 ¼ c, where a, b, c
denote the Boltzmann weights of the allowed bond configu-

rations. In terms of the parameter Δ¼ða2þb2−c2Þ=ð2abÞ,
the six-vertex model has a phase boundary determined by

jΔj ¼ 1

which separates four phases: two ferroelectric phases for

Δ > 1, an antiferroelectric phase for Δ < −1, and a gapless

disordered phase for −1 < Δ < 1. The six-vertex model

belongs to special classes of Hamiltonians which violate

the universality hypothesis in that its phase diagram

contains a continuum of critical points with continuously

varying critical exponents captured by a free boson c ¼ 1

CFT. In what follows, we will consider the example of spin

ice, i.e., a ¼ b ¼ c ¼ 1 and Δ ¼ 0.5.

In Fig. 2(a), the relative error of the free energy per site

f ¼ − logðZÞ=N is plotted at criticality in function of the

bond dimension. We observe very accurate free energies,

with the difference in accuracy between the simulations of

the two models reflecting the less trivial nature of the six-

vertex model. To study the implicit approximate scale

invariance of the RG flow, we calculate the smallest scaling

dimensions from the linear transfer matrix MPO con-

structed from 4 × 2 effective partition function tensors,

ð5Þ

(a) (b) (c)

FIG. 2. TNRþ simulations for the critical Ising model and spin

ice. (a) Relative error of the free energy per site in function of the

TNRþ bond dimension (N ¼ 2
32 sites). (b),(c) Scaling dimen-

sions extracted from the linear transfer matrix MPO Eq. (5) in

function of the RG step (Ising D ¼ 16, spin ice D ¼ 12).
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in a function of the system size (or, equivalently, iteration

step) in Figs. 2(c) and 2(d) [15]. We observe that the

numerically obtained implicit fixed point is stable under

subsequent coarse-graining and remains so for a prolonged

number of steps, in agreement with other TNR approaches

[8,12,32]. To verify that the implicitly scale-invariant

tensors are also explicitly approximately scale invariant

after gauge fixing, we have constructed the radial transfer

matrix MPO Eq. (3) and calculated its smallest scaling

dimensions (see Table I). Together with the coarse-graining

procedure described in Fig. 1, Eq. (3) can be used to study

the fusion of primary fields and to calculate the operator

product expansion coefficients of the underlying CFT, as

has previously been done only using MERA-TNR for the

Ising model [11]. More importantly, our results suggest that

the characteristic information of the underlying CFT can

also be obtained from the fixed point MPS tensors Eq. (4),

which in our formalism act as transparent building blocks

for both the linear and radial transfer matrix MPOs.

Effective Hamiltonians.—In Fig. 3, we have plotted non-

negative fixed point tensors [33] for the Ising model at

T < Tc, T ¼ Tc, and T > Tc. Because of the elementwise

non-negativity, it is possible to equivalently consider the

elementwise logarithm, so that we can interpret the tensor

elements as energies of the configurations of the bonds

connected to the site. The trivial tensor Ctriv for T > Tc has

one dominant element, and all other arbitrarily small

elements can be regarded as penalty terms in the effective

Hamiltonian, signifying the use of a superfluous bond

dimension in the description of the numerical fixed point.

Similarly, for T < Tc, the Z2 symmetry-breaking tensor

CZ2 ¼ Ctriv ⊕ Ctriv is given by two equal dominant values

with all other elements effectively zero. Both of these fixed

points satisfy the algebraic relations Eq. (4), since they are

exact fixed points of the RG flow. Off-criticality we thus

recover the fixed points previously found by Gu and Wen

[34]. The critical fixed point tensor for T ¼ Tc, however, is

highly nontrivial, implying that the MPS optimization

explores the full parameter space to approximate the

exact fixed point which has an infinite bond dimension.

Because of the lattice geometry and the choice of the local

coarse-graining transformation, the effective Hamiltonian

encoded in the critical fixed point is given by local

interactions between at most four effective D-dimensional

degrees of freedom [35,36]. Note that the MPS tensors

encoded in the critical fixed point, part of which is shown

in Fig. 3(b), provide an explicit and nontrivial example of

numerically optimized solutions which approximately

satisfy the algebraic fixed point equations Eq. (4) of the

TNRþ flow.

Conclusion and outlook.—We have proposed a mani-

festly non-negative tensor network renormalization algo-

rithm to coarse-grain classical partition functions in real

space and provided additional evidence that tensor net-

work renormalization techniques provide an approxima-

tion that behaves in a controlled way, introducing the

required freedom to approximate the relevant physics at

larger length scales using effective interactions among

effective degrees of freedom that are determined varia-

tionally. By restricting to non-negative tensors, our work

provides a bridge between heuristic block-spin prescrip-

tions and modern tensor network approaches to coarse-

graining.

Further improvement of the numerical results should be

possible by taking lattice and internal symmetries into

account and by improving the control on the gauge free-

dom. Because of the algorithm’s formulation in terms of

periodic MPS, we expect that the interplay with well-

established theoretical and numerical MPS and MPO

results will be of great importance in this regard. A

generalization of our scheme to the quantum case is

possible by constructing sequences of completely positive

maps acting on projected-entangled pair states wave

functions [37]. Another application would be to incorporate

the formalism of MPO algebras [38] in order to put

topological restrictions on the CFT data extracted from

tensor network renormalization [39,40].

M. B. thanks L. Vanderstraeten, D. Williamson, and S.

Yang for discussions. This work is supported by an

Odysseus grant from the Fonds Wetenschappelijk

Onderzoek (FWO), a PostDoc grant from the FWO

(J. H.), European Research Council (ERC) grants

TABLE I. Smallest scaling dimensions extracted from the

eigenvalues of the radial transfer matrix MPO Eq. (3) for the

critical Ising model (left) and spin ice (right).

Exact Ising TNRþð6Þ Exact Spin ice TNRþð10Þ
0.125 0.125 236 1=6 0.163 117

1 0.999 282 1=6 0.167 204

1.125 1.123 883 2=3 0.659 684

1.125 1.123 883 2=3 0.662 008

2 1.998 575 1 0.997 413

2 1.992 823 1 0.997 286

2 1.996 882 7=6 1.163 503

2 1.994 090 7=6 1.163 503

FIG. 3. Non-negative tensor elements of normalized fixed point

tensors C�
1;A obtained from D ¼ 6 TNRþ simulations of the Ising

model at (a) T < Tc, (b) T ¼ Tc, and (c) T > Tc.
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