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1 Introduction

Time-dependent perturbation theory is often plagued by secular terms. While suppressed

by the expansion parameter, secular terms grow with time. They invalidate the näıve

perturbation theory at time scales that are typically proportional to some inverse power of

the expansion parameter. In order to extend the validity of perturbation theory to larger

times, secular terms need to be resummed.

To set the stage, consider the anharmonic oscillator [1, 2]

ẍ+ x+ ǫx3 = 0 (1.1)

with small positive ǫ, and construct a perturbative solution x(t) = x0(t)+ ǫx1(t)+ · · · . For

initial conditions x(0) = 1, ẋ(0) = 0, the zeroth order solution is x0(t) = cos t. At first

order, we find

ẍ1 + x1 = −
1

4
cos 3t−

3

4
cos t. (1.2)

The last term is a resonant source term, giving rise to a secular term proportional to t sin t:

x(t) = cos(t) + ǫ

[
1

32
(cos 3t− cos t)−

3

8
t sin t

]

+ · · · (1.3)
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According to the Poincaré-Lindstedt method, the secular term can be absorbed in a small

frequency shift, leading to a generalized asymptotic expansion that provides more accurate

approximations for longer time intervals,

x(t) = cos

[(

1 +
3ǫ

8
+ · · ·

)

t

]

+
ǫ

32
cos

[

3

(

1 +
3ǫ

8
+ · · ·

)

t

]

+ · · · (1.4)

For a single oscillator described by a Hamiltonian, this is all that is needed. When deal-

ing with dissipative systems, or with multiple oscillators exhibiting resonances, one needs

more elaborate resummation techniques, known as multiple scale methods. A particularly

elegant such method was proposed by Chen, Goldenfeld and Oono [3], and is based on the

renormalization group (RG). We will review it in section 2 and rely on it in the remainder

of this paper.

Our focus will be on Hamiltonian systems. Historically, the study of perturbation

theory was driven by celestial mechanics, in particular the question whether the solar

system is stable on very long time scales (given that interactions between planets perturb

the Keplerian orbits). These studies culminated in the Kolmogorov-Arnol’d-Moser (KAM)

theory [4], which showed with mathematical rigor that both stable and unstable orbits exist,

depending on whether unperturbed frequencies are resonant. The stable orbits occur for

non-resonant frequencies, and correspond to small perturbations of the unperturbed orbits.

In recent years, secular terms have appeared quite prominently in studies of non-linear

stability of anti-de Sitter (AdS) space and closely related spacetimes. In [7], Bizoń and

Rostworowski provided numerical evidence that arbitrarily weak spherically symmetric

perturbations can cause global AdS to collapse into a black hole (possibly after multiple

scatterings from the AdS boundary). In addition, they showed that in weakly nonlinear

perturbation theory secular terms appear that cannot be removed by frequency shifts,

and suggested that these secular terms signal a turbulent flow of energy to higher and

higher frequencies. These additional secular terms (beyond those that can be removed via

the Poincaré-Lindstedt method) arise from resonances in the spectrum of a scalar field in

global AdS, as we will review in section 3. Many papers have further investigated this

and related systems, mostly using numerical general relativity supplemented with weakly

nonlinear perturbation theory (see, for instance, [8–14]). After quite a few surprises, a rich

phenomenology has been uncovered, with the space of initial conditions exhibiting islands

of stability within a sea of instability.

These results raise several conceptual questions: can the additional terms be removed

by multiple scale/RG techniques? What is the precise relation between AdS instability and

secular terms? Does the weakly nonlinear perturbation theory exhibit additional structure

that can be uncovered by analytical means?

Some of these questions were also addressed in the recent paper [14], in which a multiple

scale method (referred to as “Two Time Framework” and valid to first non-trivial order in

the perturbation) was applied to the system of [7] truncated to a finite set of modes. The

resulting equations were studied numerically, and the output was compared with results

from numerical general relativity. One point that was emphasized in [14] is that secular

terms that cannot be absorbed in frequency shifts do not necessarily imply AdS instability.

– 2 –
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Due to the finite time range of numerical simulations and/or the required resolution, it is

not always straightforward, however, to reach firm conclusions on the long-time behavior of

given initial conditions; for instance, the fate of certain “two-mode” initial data discussed

in [7] and [14] is still being debated.1 This illustrates the fact that a more systematic

understanding would be very welcome.

The purpose of the present work is to resum systematically the secular terms of [7]

using the RG method of [3].2 Our RG setup agrees to lowest non-trivial order with the Two

Time Framework of [14], but the focus is different. Our work will be analytic rather than

numerical, leading to explicit results at first order that are valid for all modes. In particular,

we will show analytically that a majority of secular terms that could be present on the basis

of frequency relations among the linearized AdS perturbations are in fact absent, and will

provide explicit analytic expressions for all nonvanishing secular terms. Note that deriving

all-mode expressions for the secular term coefficients is not a matter of pure pedantry. In a

system prone to turbulence, one expects that high frequency modes typically get involved

in the evolution. Having all-mode expressions for the secular term coefficients (and the

corresponding energy drift), and in particular their ultraviolet asymptotics, is likely to be

crucial for any analytic considerations of the turbulent behavior.

It is interesting that weakly nonlinear perturbation theory in global AdS exhibits a fully

resonant spectrum (which drives instability), but at the same time a majority of secular

terms allowed for such a spectrum are in fact absent (which weakens the instability). This

interplay of conflicting factors may underlie the apparent complexity of the AdS stability

domain that has been observed numerically [7–14]. We provide some comments on relations

between the absence of some classes of secular terms and the abundance of quasi-periodic

solutions in section 3.5.

The general stucture of the paper is as follows: section 2 contains a systematic dis-

cussion of the RG method introduced in [3]. In section 3 this method is applied to weakly

nonlinear perturbation theory in AdS. Two appendices contain technical details on our

computations.

2 Renormalization group resummation

2.1 Ubiquity of secular terms

When dealing with a system subject to a small perturbation, it is natural to describe its

evolution by an asymptotic series in the perturbation magnitude, an approach familar under

the name of perturbation theory. This strategy is equally applicable when one perturbs

the initial conditions rather than the definition of the system proper. Solutions are then

presented as an asymptotic series in the magnitude of the deviation from the specific chosen

initial conditions, for which an exact solution is know.

The nature and accuracy of such an asymptotic series approximation is necessarily

subtle, except for the rare cases when the asymptotic series happens to converge. Nonethe-

less, the usual practical wisdom tells us that, as long as the subsequent terms in the series

1We thank P. Bizoń, A. Buchel and L. Lehner for correspondence on this issue.
2In the context of the AdS/CFT correspondence, the RGmethod of [3] has recently also appeared in [5, 6].
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are smaller than the preceding ones, the expansion is usable and sound. In fact, some of

the most precise predictions in physics have been made using such truncated asymptotic

expansions (a very slippery step from a purely mathematical perspective).

If one fixes the time interval whereupon the evolution is considered, and diminishes

the magnitude of the perturbation, the higher-order terms in the asymptotic expansion

diminish relatively to the lower-order terms (being weighted by higher powers of the per-

turbation magnitude). One is then in a regime when the asymptotic series is expected to

approximate the exact evolution on the said fixed time interval more and more accurately.

Unfortunately, evolution due to a small perturbation on a fixed time interval is usually

not what a physicist wants to consider. A problem of much greater phenomenological

significance is to be able to trace the effect of a small perturbation over large times, when

its impact on the evolution becomes appreciable despite its smallness. This is precisely the

regime when the so-called secular terms in perturbation theory come into play.

Prototype examples of this sort come from celestial mechanics. The solar system is,

to a high degree of accuracy, an integrable system described by the planets moving in

the central potential of the Sun, whose position is fixed at the origin. Yet, interplanetary

interactions and other physical processes (including processes of non-gravitational nature),

introduce small perturbations to the idealized integrable picture. Jupiter, in particular,

exerts a relatively strong influence on the motion of the Earth. The physical question is

not in the minuscule corrections such perturbations induce over, say, one revolution of the

Earth around the Sun, but rather how such minuscule corrections accumulate over a large

time to produce substantial effects. This is precisely the question that näıve perturbation

theory fails to answer.

Indeed, as described above, the magnitude of higher-order terms in näıve perturbation

theory is guaranteed to decrease on a fixed time interval when the magnitude of the per-

turbation is decreased, but nothing prevents a growth of the coefficients of higher orders in

näıve perturbation theory. This growth, if present, will make the asymptotic series unusable

at large times, as higher-order terms will be comparable in magnitude to lower-order terms.

In fact, the growing terms at higher orders in the näıve perturbation theory typically ap-

pear in realistic situations, and they have become known as ‘secular’ terms (from the Latin

word for ‘century’, referring to terms that become significant when considering planetary

perturbations over the course of centuries). Such terms need to be restructured by means of

resummation, if one is aiming at a perturbative description of the large-time dynamics at all.

Perhaps the easiest way to appreciate the ubiquity of secular terms is to examine them

in a quantum-mechanical setting. The linearity of the Schrödinger equation allows one to

write an explicit result for all orders of the perturbative expansion. Since each classical

system is a limit of the corresponding quantum system, the presence of secular terms in

the quantum formalism sheds some light on classical Hamiltonian systems as well.

Consider for a moment a general perturbed quantum system described by the Hamil-

tonian, H = H0(t) + λV (t) and the corresponding evolution operator U(t) satisfying

i
dU

dt
= HU, U(0) = 1. (2.1)

– 4 –
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Converting to the interaction picture, we introduce u(t) = U †
0(t)U(t), where U0(t) satisfies

i
dU0

dt
= H0U0, U0(0) = 1. (2.2)

Then,

i
du

dt
= λυ(t)u, u(0) = 1, (2.3)

with υ(t) = U †
0(t)V (t)U0(t). For (2.3), one obtains the standard näıve perturbative expan-

sion

u(t) = 1− iλ

t∫

0

dt1υ(t1) + (−iλ)2
t∫

0

dt1

t1∫

0

dt2υ(t1)υ(t2) + · · · (2.4)

This expansion is generically plagued by secular terms at large t, except for special sit-

uations like scattering, when (perhaps for a subset of matrix elements) υ(t) effectively

vanishes outside a finite time interval. Indeed, unless the interactions are effectively cut

off in this fashion, the natural scale of the nth order term in (2.4) is λntn rather than

simply λn, which means that the näıve perturbative expansion becomes completely useless

at t ∼ 1/λ. (The details, of course, depend on the particular time dependences involved.)

For the familiar case of time-independent H0 and V , it is well-known from textbooks

that (2.4) is not the right way to expand. Indeed, in the standard approach (which occa-

sionally goes under the name of Rayleigh-Schrödinger perturbation theory) one expands the

eigenstates and their energies in a power series in λ, rather than expanding the evolution

operator. Since the energies enter the evolution operator through exp(−iEnt), correcting

the unperturbed energies by a power series in λ is analogous to shifting the oscillator fre-

quencies in (1.4). In fact, the Rayleigh-Schrödinger perturbation theory can be derived

from (2.4) by a resummation analogous to the one leading from (1.3) to (1.4).

Our purpose for the rest of this section will be to review some approaches to secular

term resummation in a general setting, before returning to the case of non-linear gravita-

tional perturbation theory in the AdS background in section 3.

2.2 Frequency adjustment and multi-scale resummation

We shall now examine the question of what kind of secular terms may arise when a par-

ticular perturbation is applied in the context of classical Hamiltonian systems. It will be

sufficient for us to focus on linear unperturbed systems with perturbations polynomial in

the canonical variables. For one thing, our main goal in this paper is to shed some light on

the dynamics of weakly non-linear gravitational perturbations in the AdS background. In

this context, the unperturbed system is linearized gravity in the AdS background. Similar

set-ups will be produced by other weakly non-linear perturbative expansions. (More gener-

ally, when dealing with the effect of an explicit dynamical perturbation on a given solution

of a non-linear system, one can always treat non-linearities, expanded in the vicinity of

that given solution, as merely an additional contribution to the perturbation.) As to the

restriction to polynomial perturbations, it is also natural in the context of studying small

– 5 –
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deviations from a given exact solution, since, at any given order of the perturbation the-

ory, a non-polynomial pertubation can be identically replaced by its truncated polynomial

expansion up to this order.

If the unperturbed system is linear, one can always switch to the normal coordinates

ci, for which the unperturbed solutions are simply

c
(0)
i (t) = ai cos θi(t), θi(t) = ωit+ bi. (2.5)

The exact solutions satisfy

c̈i + ω2
i ci = Si, ci(t) = c

(0)
i (t) + ǫc

(1)
i (t) + ǫ2c

(2)
i (t) + · · · , (2.6)

where Si collectively represents all the non-linear terms contributing to the equation for ci.

We can now solve (2.6) iteratively, determining each c
(n)
i in terms of lower order cor-

rections,

c̈
(n)
i + ω2

i c
(n)
i = S

(n)
i (c(0), c(1), · · · , c(n−1)). (2.7)

What kind of terms can emerge on the right-hand side of (2.7)? We may examine this

question starting from the lowest order and working all the way up. c(0) is a pure cosine.

Multiplication of c(0) is governed by the formula

cos θi cos θj =
1

2
[cos(θi + θj) + cos(θi − θj)]. (2.8)

Then, in a general polynomial expression made of c(0), all the terms will be of the form

cos(θi1 ± θi2 ± θi3 ± · · · ) = cos((ωi1 ± ωi2 ± ωi3 ± · · · )t+ bi1 ± bi2 ± bi3 ± · · · ), (2.9)

where (i1, i2, i3, · · · ) can be any set of mode numbers, and all the choices of plus and minus

signs on the left hand side of (2.9) are independent of each other. The right-hand side

of (2.7) is a sum of such terms. What does one get for c(1)?

If there is a contribution to S
(1)
i of the form (2.9) with a particular set of (i1, i2, i3, · · · ),

a particular assignment for each ±, and ±ωi 6= ωi1 ± ωi2 ± ωi3 ± · · · , then this term will

simply give a contribution to c(1) that is itself proportional to (2.9). One can then safely

proceed to the next order, multiplying the different contributions to c(0) and c(1) using (2.8)

to obtain the different terms in S(2), all of which will again be of the form (2.9), and so on

ad infinitum.

The only point where this picture fails is that there may be terms with ±ωi = ωi1 ±

ωi2±ωi3±· · · . For those, substituting them to the right-hand side of (2.7) does not produce

a contribution to c(n) of the form (2.9), but rather of the form

t sin(θi1 ± θi2 ± θi3 ± · · · ). (2.10)

This is a secular term that grows with time and invalidates perturbation theory at suffi-

ciently large t. Such terms must be eliminated by restructuring the perturbative expansion

along the lines of the frequency shift we employed in going from (1.3) to (1.4).

The kind of secular terms that may arise as we develop the ǫ-expansion iteratively

depends crucially on whether the spectrum of mode frequencies is resonant. ‘Resonant’ in

– 6 –
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this context means that there exist sets of integers mi such that
∑

imiωi = 0. If no such

relations with non-zero mi exist, then the spectrum is called non-resonant.

For a non-resonant spectrum, there is only one way ±ωi = ωi1 ± ωi2 ± ωi3 ± · · · can

be satisfied. Namely, the number of times ωi is present in the sum on the right-hand

side with a plus sign should be one greater (or one smaller) than the number of times it

is present with a minus sign, whereas for all other modes (ik 6= i), the number of times

they are present with a plus sign should be exactly the same as with a minus sign. Any

other combination of ωik cannot equal ωi since that would have implied a resonant relation

between the frequencies. Hence, if ±ωi = ωi1 ± ωi2 ± ωi3 ± · · · , then (2.9) becomes simply

cos(ωit+ bi), (2.11)

and the corresponding secular term, i.e., the contribution to c
(n)
i resulting from a term of

the form (2.11) in S
(n)
i of (2.7), becomes

εnA
(n)
i (a) t sin(ωit+ bi), (2.12)

where A
(n)
i (a) is a certain polynomial made of the amplitudes ak of (2.5), which depends

on the precise form of the non-linearities in S.

A key observation regarding the case of a fully non-resonant frequency spectrum is that

any contribution to c
(n)
i of the form (2.12) can be absorbed into an (amplitude-dependent)

shift of the frequency ωi since

cos((ωi + α)t+ bi) = cos(ωit+ bi)− αt sin(ωit+ bi) + · · · (2.13)

After the secular terms of the form (2.12) have been absorbed in this fashion, all the

remaining terms in c
(n)
i are of the form (2.9), and one can proceed to order ǫn+1, where

the entire argument can be repeated verbatim.

We hence conclude that, for a fully non-resonant case, all secular terms can be iter-

atively removed from perturbation theory by perturbatively adjusting the frequencies ωi.

This procedure is know as the Poincaré-Lindstedt method. After the frequencies have been

corrected, the perturbed motion is described by small corrections to the unperturbed one

for longer and longer time intervals depending on the order of accuracy in the perturba-

tive frequency shift. (Note that the picture we have outlined is something of a pedestrian

pre-requisite for the KAM theory [4], which takes the argument much further and develops

stability arguments for the non-resonant case at finite small ǫ, rather than in an unreliable

framework of asymptotic expansions.)

The situation becomes more complicated when resonant relations between unperturbed

frequencies are present. In that case, there may be many different addition-subtraction

patterns that satisfy ±ωi = ωi1 ±ωi2 ±ωi3 ±· · · . One then cannot specify the form of (2.9)

for the resonant terms beyond

cos(ωit± bi1 ± bi2 ± bi3 ± · · · ) (2.14)

with a (generally complicated) combination of phases. The corresponding secular term

resulting from the contribution of (2.14) to S
(n)
i of (2.7) is

εnA
(n)
i (a) t sin(ωit± bi1 ± bi2 ± bi3 ± · · · ), (2.15)

– 7 –
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where A
(n)
i (a) is a certain polynomial made of the amplitudes ak of (2.5), which depends

on the precise form of the non-linearities in S.

Since the phase of the sine in (2.15) does not have to equal bi, it cannot be in general

absorbed into a shift of ωi by means of (2.13). Of course, this term could always be absorbed

into a shift of both ωi and ai. However, the shift of ai would have to grow linearly with

time, so that one generates t sin(ωit + bi) from the shift of ωi and t cos(ωit + bi) from the

shift of ai, and a combination of such terms can always match (2.15). By itself, a linearly

growing ai is no better and no worse than the original secular term, and more powerful

resummation methods are needed. We shall turn to such methods shortly.

Physically, the fact that a frequency adjustment is not sufficient for the resonant case,

but one also obtains terms that look like amplitude drifts, simply means that, over large

times, significant energy transfer occurs between different modes, even when the pertur-

bation is small. This is in contrast to the non-resonant case, where a small perturbation

can only induce small amplitude oscillations of the energy back and forth between different

modes, without significant energy transfer occurring even over large time scales.

The long-term fate of a resonant system under the impact of a dynamical perturbation

can only be determined after a resummation of secular terms has been performed. The

failure of the Poincaré-Lindstedt frequency shift by itself should by no means be interpreted

as a sign of instability. A complete resummation can produce long-period oscillations of

energy between the modes, or perhaps transfer of energy to high-frequency modes (turbu-

lence), etc. Many scenarios are possible.

There is a number of resummation methods described in the literature (see, e.g., [15]).

One encounters descriptions of the multi-scale method particularly often. We shall very

quickly review this method here, only stating the general idea and referring the reader

to [15] for further details. The lowest-order multi-scale method (under the name of ‘Two-

Time Framework’) has been applied to the problem of AdS stability in [14].

We have already alluded above that a general secular term can be absorbed into per-

turbatively small frequency adjustments and a slow drift of the amplitudes. Note that the

frequency adjustment can be thought of as a slow drift of the phases. One thus arrives at

the concept of absorbing secular terms into a slow variation of the integration constants in

the zeroth order solution c
(0)
i . This general idea is shared by both the multiscale method

and the renormalization group method we shall describe further below. Note that the

Poincaré-Lindstedt method is a special case of this set-up, for which the phases aquire a

slow linear drift, whereas the amplitudes do not evolve.

The ‘slow variation of the integration constants’ we mentioned above is a rather vague

concept and one needs to decide in practice how this dependence is distributed between dif-

ferent orders of perturbation theory. In the multiscale method, one introduces dependences

with explicit powers of ǫ in the form

ai = ai(ǫt, ǫ
2t, ǫ3t, · · · ), bi = bi(ǫt, ǫ

2t, ǫ3t, · · · ). (2.16)

When the functions are specified in this form, one knows, for example, that a term quadratic

in ǫ can arise from differentiating two times with respect to the first argument or one time

– 8 –
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with respect to the second argument, etc. The term ‘multiscale’ comes precisely from the

multiple scales (ǫt, ǫ2t, ǫ3t, etc) involved in this construction. (At first non-trivial order,

only t and ǫt are involved, hence the ‘Two-Time Framework’ of [14].)

One then substitutes (2.16) to (2.5) and then to the equations of motion (2.7), and

demands that the terms resulting from differentiating (2.16) conspire in precisely such a

way as to remove the resonant terms in Si (the terms whose frequency is ωi). At nth order,

this results in a differential equation that fixes the dependence of ai and bi on ǫ
nt, which is

then fed to the next order. To address the issue of non-linear stability, one should examine

the behavior of the amplitudes after the resummation has been performed.

The multiscale method is a powerful resummation scheme applicable in a general set-

ting and including the Poincaré-Lindstedt method as a simple special case. (Whether the

result of the resummation is free from pathological growth depends, of course, on the par-

ticular system at hand.) However, the need to explicitly prescribe how the slow dependence

of the (unperturbed) integration constants on time is distributed between different orders

of perturbation theory, as in (2.16), may create complications in more subtle cases. For

example, the case of stability analysis for Mathieu equation is mentioned in [3], where an

unusual scale ǫ3/2t appears through resummations, and that would have to be guessed in

the initial ansatz (2.16) for the multiscale method. Even if that does not happen, the

method becomes rather convoluted at higher orders, since new ‘slow’ secular terms depen-

dent on the slow time variables develop in (2.16) and those ‘slow’ secular terms have to

be removed by adjusting the dependence of (2.16) on even slower time scales. Detailed

explanations can be found in [15]. As one aspect of this highly convoluted procedure, it

may turn out inconvenient, depending on the circumstances, that the multiscale method

does not take as its input the näıve perturbative expansion, but rather requires re-deriving

an alternative expansion order-by-order from scratch. The renormalization group method

we shall present below is an alternative formulation with many appealing features.

2.3 Renormalization group method

In the preceding exposition, we have reviewed the general problem of secular terms in

non-linear perturbation theory, the types of secular terms arising when the unperturbed

system is linear (or, more generally, integrable) and Hamiltonian, and a general multiscale

method for resumming such secular terms.

One could in principle rest content with this state of affairs and proceed applying the

resummation techniques to our particular problem (AdS instability). However, we believe

it is useful to review another resummation strategy [3], modelled on the renormalization

group treatment of ultraviolet divergences in quantum field theory. This method is as

powerful as multiscale resummation we have briefly reviewed above, but has the advantage

in that its sole input is the näıve perturbative expansion (without the need to re-solve

the perturbation theory equations). The method also has the appeal of being intuitive,

especially for people with high energy theory backgrounds.

The renormalization method (just like the multiscale method we reviewed above) aims

at constructing slow time dependences of the integration constants of unperturbed solutions

in a way that eliminates secular terms from perturbative expansions. We shall start by
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a simple matter-of-fact statement of the method and applying it to secular terms of the

form (2.14), and then give some qualifying explanatory remarks. The recipe [3] is as follows:

1) Choose a moment of time τ and introduce a perturbative ǫ-dependence to the inte-

gration constants of the unperturbed problem in such a way that the secular terms3

are exactly cancelled at the moment τ . In the language of (2.5), one writes:

a = a(τ, ǫ) = aR(τ) + ǫa(1)(aR, bR; τ) + ǫ2a(2)(aR, bR; τ) + · · · ,

b = b(τ, ǫ) = bR(τ) + ǫb(1)(aR, bR; τ) + ǫ2b(2)(aR, bR; τ) + · · · ,
(2.17)

where aR(τ) and bR(τ) denote ‘renormalized integration constants’ and we have omit-

ted the mode number index. Note that the cancellation of secular terms at a given

moment τ can always be arranged, simply because adjusting the initial conditions

permits one to give the unperturbed trajectory absolutely any value at τ . (2.17)

have to be substituted to the näıve perturbative expansion and everything should be

expressed through aR and bR.

2) One demands that the resulting perturbative expansion in terms of aR and bR should

be independent of τ . Note that, once we introduce an ǫ-dependence in the unper-

turbed solution in (2.17), we are no longer dealing with a single solution to the

underlying problem, but with a family of asymptotic expansions. Demanding that

the entire expansion is independent of τ simply amounts to forcing this family of

asymptotic expansion to represent a single solution to the underlying problem (merely

expanded in different ways), which is what we ultimately want to construct, rather

than a family of solutions. Requiring the τ -derivative of the expansion to vanish gen-

erates a first order differential equation for the renormalized integration constants,

aR(τ) and bR(τ) for (2.17). This equation defines their renormalization flow.

3) After solving the renormalization flow equation obtained in 2), one substitutes the

result in the expansion in terms of aR(τ) and bR(τ), and finally sets τ to t (this cor-

responds to working with a running coupling in perturbative quantum field theory).

The result is free from secular terms by construction.

In application to secular terms of the form (2.14) at first non-trivial order it is easy to

see how the renormalization group method works. One may write the expansion as

ai cos(ωit+ bi) + · · ·+ εnA
(n)
i (a) t sin(ωit+

∑

kmkbk) + · · · (2.18)

where we focus on the contribution of just one such term and the dots represent other

terms, and mk is a certain set of integers. One first represents the secular term as

εnA
(n)
i (a) t cos(

∑

kmkbk−bi) sin(ωit+bi)+ε
nA

(n)
i (a) t sin(

∑

kmkbk−bi) cos(ωit+bi). (2.19)

3There is some ambiguity in identifying secular terms. Indeed, one can always add some regular terms

to what one calls a secular term. This will result in a somewhat different renormalization flow equation. It

may be important to make use of this freedom advantageously.
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Then one can absorb the secular term at moment τ by introducing

ai = aR,i − εnA
(n)
i (aR) τ sin(

∑

kmkbR,k − bR,i),

bi = bR,i +
εn

ai
A

(n)
i (aR) τ cos(

∑

kmkbR,k − bR,i).
(2.20)

As a result of re-expressing the expansion (2.18) in terms of aR and bR, one gets

aR,i cos(ωit+ bR,i) + · · ·+ εnA
(n)
i (aR) (t− τ) cos(

∑

kmkbR,k − bR,i) sin(ωit+ bR,i)

+ εnA
(n)
i (aR) (t− τ) sin(

∑

kmkbR,k − bR,i) cos(ωit+ bR,i) + · · ·
(2.21)

Equating to zero the τ -derivative of this expression, on obtains the following renormaliza-

tion flow equations:

daR,i

dτ
= −εnA

(n)
i (aR) sin(bR,i −

∑

kmkbR,k) + · · · ,

aR,i
dbR,i

dτ
= −εnA

(n)
i (aR) cos(bR,i −

∑

kmkbR,k) + · · · ,

(2.22)

where the dots represent contributions from other secular terms. Note that the same

equations would have resulted from formally differentiating (2.20) with respect to τ . In

this way, one formally bypasses some of the steps in our above description of the method

following [3]. (This is analogous to deriving the running of the renormalized coupling by

differentiating the bare coupling with respect to the renormalization scale.)

For N degrees of freedom, (2.22) are 2N first order differential equations, a system

of the same type4 as our starting point (2.6). Of course, (2.22) contains less information

than (2.6) as it is entirely derived from a truncated perturbative expansion, whereas (2.6)

is exact. Nonetheless, one should generally not expect miraculous analytic solutions com-

ing out of perturbative resummation under general circumstances. Equations (2.22) are

advantageous in that they explicitly describe very slow long-time energy flow between the

different modes. They can thus be useful for analytic considerations of qualitative issues.

Having given a practical statement of the renormalization method in application to

secular terms, we would like to zoom out for a moment and re-examine why and how

the method works. When constructing näıve perturbation theory, one encounters grow-

ing terms at higher orders, which invalidate the perturbative expansion at large times.

Nonetheless, one expects that the perturbative expansion is accurate for evolution over

short times, before secular terms develop significant values. Logically, there is an obvious

4Note, however, that if a particular mode does not enter any frequency resonance relations
∑

i
miωi = 0,

then this particular mode effectively decouples in (2.22). The rank of the system is thereby reduced. The

decoupling happens in the following way: for a completely non-resonant mode, the only secular terms

allowed are (2.12). Such terms, according to (2.22), induce an amplitude-dependent phase drift, but no

amplitude drift. Similarly, the way a non-resonant mode enters the secular terms for the other modes is

only through its (constant) amplitude, but not through its phase. Therefore, one can solve the equations

for the entire set of resonant modes first, and then the result will simply contribute a slow phase drift to

non-resonant modes. The Poincaré-Lindstedt method relies on an extreme version of this picture, when all

the modes are non-resonant. Our main interest in this article is in non-linear AdS perturbations, a fully

resonant system where none of such simplifications occur.
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strategy here: to take the initial data at t, evolve them to t+∆t using the näıve perturbation

theory, build a new unperturbed solution starting from the values at t+∆t, develop a näıve

perturbative expansion using this new solution, use it to evolve from t + 2∆t, and so on,

until one reaches the desired final time, which can be large. In this approach, one never uses

the näıve perturbation theory outside its range of validity, and secular terms do not arise.

There is, in fact, more freedom than we have displayed in the construction from the

previous passage. Indeed, when reaching t+∆t, we did not have to take the exact value of

our variables as the initial value for the unperturbed solution on the interval [t+∆t, t+2∆t].

Rather, we could distribute this value in a convenient way between the initial value for the

new unperturbed solution and the initial value for the perturbation. For example, we could

only absorb the would-be secular terms into the new unperturbed solution on the interval

[t + ∆t, t + 2∆t], continuing the regular perturbative terms on the interval [t, t + ∆t] to

the perturbation on the interval [t + ∆t, t + 2∆t]. We could also take ∆t to zero and

implement these rearrangements in the perturbation series continuously on-the-go. This

is precisely the picture underlying the renormalization group method. (Note that a slow

running of the integration constants of the unperturbed solution emerges automatically in

this perspective.)

The situation is directly analogous to what one encounters while dealing with ultravio-

let divergences in perturbative field theory, with dependence on energy logarithm replacing

the dependence on time. The näıve perturbative expansion for a quantity involving mo-

menta of order k regularized with a cut-off scale Λ, involves terms of the type ln(Λ2/k2).

These terms become huge when the cut-off is sent to infinity and invalidate the perturbation

theory (despite being suppressed by positive powers of the coupling). They are thus anal-

ogous to secular terms. One can formally introduce renormalized couplings at momentum

scale µ related to the bare couplings by ill-behaved asymptotic series involving coefficients

of the sort ln(Λ2/µ2), so that the giant logarithms of the original perturbative expansion

are replaced by ln(µ2/k2) when physical quantities are re-expressed through renormalized

couplings. The new perturbation series is well-behaved for k2 close to µ2, but ill-behaved

elsewhere, when ln(µ2/k2) (which is roughly analogous to ∆t of the previous passages)

becomes large. Finally, one can demand that the whole construction should be indepen-

dent of µ, derive the corresponding renormalization group equation for the renormalized

coupling dependence on µ, solve them, and thereafer do all expansions at µ2 = k2 using the

value of the renormalized coupling at k2, thereby eliminating the (‘secular’) logarithms.

In fact, the renormalization method in application to secular term resummation oper-

ates in a mathematically much better defined setting than what quantum field theory may

offer. One may hope to develop more transparent and tightly controlled derivations. We

believe that starting from the time-stepping procedure described above, one should be able

to derive the prescriptions of [3] in a way that never involves ill-behaved asymptotic ex-

pansions with large coefficients at the intermediate steps. We shall nonetheless not pursue

this program here.
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3 AdS (in)stability

Having reviewed some possible strategies to deal with the problem of secular terms in

näıve perturbation theory, we shall now turn to the issue of non-linear stability of the AdS

space-time, in which such secular terms play a central role.

We shall work with the renormalization-based resummation of [3] at lowest non-trivial

order. In principle, this approach is identical to the multiscale treatment of the same prob-

lem (at the same order) in [14]. Our perspective is quite different from [14], however. There,

the main focus was on numerical studies of the ‘energy flow’ equations of the type (2.22),

truncated to a finite set of low-lying modes. Our main goal is to develop a neat analytic

representation of these equations for all modes, with a view of future analytic studies of

qualitative properties of this system. The main practical result we shall present here is the

vanishing of an inifinite number of terms of a particular type in the flow equations, which

are allowed on general grounds by the spectrum of frequencies of linear AdS perturbations.

3.1 Setup of the system

The equations of motion that we consider are Einstein’s equations with a negative cosmo-

logical constant which are minimally coupled to a scalar field:

Gµν −
d(d− 1)

2L2
gµν = 8πG

(

∂µφ∂νφ−
1

2
gµν(∂φ)

2

)

and �φ = 0. (3.1)

Following the conventions of [10], we will parameterize the geometry by two functions

A(x, t) and δ(x, t) as

ds2 =
L2

cos2 x

(
dx2

A
−Ae−2δdt2 + sin2 x dΩ2

d−1

)

. (3.2)

The coordinates take values in t ∈] − ∞,∞[ and x ∈ [0, π/2[. The scalar field is also

considered to be isotropic, φ = φ(x, t). We introduce the notation Φ ≡ φ′ and Π ≡

A−1eδφ̇ (where overdots and primes denote derivatives with respect to t and x, respectively)

together with the convention 8πG = d− 1. Furthermore, it is convenient to define

µ(x) ≡ (tanx)d−1 and ν(x) ≡
(d− 1)

µ′(x)
=

sinx cosx

(tanx)d−1
. (3.3)

The equations of motion then reduce to

Φ̇ =
(

Ae−δΠ
)′

, Π̇ =
1

µ

(

µAe−δΦ
)′

, (3.4a)

A′ =
ν ′

ν
(A− 1)− µν

(
Φ2 +Π2

)
A, δ′ = −µν

(
Φ2 +Π2

)
, (3.4b)

Ȧ = −2µνA2e−δΦΠ. (3.4c)

A static solution of these equations is the AdS-Schwarzschild black hole A(x, t) = 1 −

Mν(x), δ(x, t) = 0 and φ(x, t) = 0. The unperturbed AdS space itself corresponds to

A = 1, δ = φ = 0.
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3.2 Weakly non-linear perturbation theory

We will look for an approximate solution of the equations of motion (3.4) with initial con-

ditions φ(0, x) = ǫf(x) and φ̇(0, x) = ǫg(x). Therefore, we expand the unknown functions

in the amplitude of the initial conditions:

φ(x, t) =
∞∑

k=0

ǫ2k+1φ2k+1(x, t), A(x, t) = 1 +
∞∑

k=1

ǫ2kA2k(x, t), δ(x, t) =
∞∑

k=1

ǫ2kδ2k(x, t).

(3.5)

At first order in the ǫ-expansion, the equations of motion (3.4) are linearized and result in

the homogeneous partial differential equation

φ̈1 + L̂φ1 = 0 with L̂ ≡ −
1

µ(x)
∂x (µ(x)∂x) . (3.6)

The operator L̂ is self-adjoint with respect to the inner product

〈ψ, χ〉 ≡

∫ π/2

0
ψ̄(x)χ(x)µ(x)dx. (3.7)

The eigenvalues and eigenfunctions for L̂ are ω2
j = (d + 2j)2 (with indices j = 0, 1, 2, . . .)

and

ej(x) = kj(cosx)
dP

( d
2
−1, d

2 )
j (cos(2x)) with kj =

2
√

j!(j + d− 1)!

Γ
(
j + d

2

) . (3.8)

The function P
(a,b)
n (x) is a Jacobi polynomial5 of order n. These eigenfunctions are defined

such that L̂ej = ω2
j ej and 〈ei, ej〉 = δij . Note that all the mode frequencies ωj are integer

and the spectrum is fully resonant, suggesting a large number of secular terms in non-linear

perturbation theory.

We expand the unknown functions in the basis (3.8):

φ2k+1(x, t) =

∞∑

j=0

c
(2k+1)
j (t)ej(x) with c

(2k+1)
j (t) = 〈φ2k+1(x, t), ej(x)〉. (3.9)

The solution of the linearized equation for φ1 is then given by

φ1(x, t) =
∞∑

k=0

cj(t)ej(x). (3.10)

The coefficients cj ≡ c
(1)
j satisfy c̈j + ω2

j cj = 0 and are thus given by

cj(t) = aj cos(ωjt+ bj), (3.11)

where the amplitudes aj and phases bj are determined by the initial profiles f(x) and g(x).

The backreaction on the metric appears at second order. It is determined by the equations

A′
2 =

ν ′

ν
A2 − µν

(

(φ̇1)
2 + (φ′1)

2
)

, (3.12a)

5Jacobi polynomials P
(a,b)
n (x) are a system of orthogonal polynomials with respect to the measure

(1−x)a(1+x)b on the interval (−1, 1). A good summary of their properties with derivations is given in [16].
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δ′2 = −µν
(

(φ̇1)
2 + (φ′1)

2
)

, (3.12b)

Ȧ2 = −2µνφ̇1φ
′
1. (3.12c)

These equations can be directly integrated to give

A2(x, t) = −ν(x)

∫ x

0

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)dy, (3.13)

δ2(x, t) = −

∫ x

0

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)ν(y)dy. (3.14)

At third order in the ǫ-expansion, the equations of motion (3.4) lead to the inhomogeneous

equation

φ̈3 + Lφ3 = S ≡ 2 (A2 − δ2) φ̈1 +
(

Ȧ2 − δ̇2

)

φ̇1 +
(
A′

2 − δ′2
)
φ′1. (3.15)

We can project this equation on to the eigenbasis {ej}, such that

c̈
(3)
j + ω2

j c
(3)
j = Sj with Sj = 〈S, ej〉. (3.16)

After a tedious but straightforward calculation (more details are explained in appendix A),

one finds the source term

Sl = 〈
(
A′

2 − δ′2
)
φ′1, el〉+ 2〈A2φ̈1, el〉+ 〈Ȧ2φ̇1, el〉 − 2〈δ2φ̈1, el〉 − 〈δ̇2φ̇1, el〉

=
1

2

∞∑

i=0

∞∑

j = 0

j 6= i

∞∑

k=0

aiajakωj(Hijkl−2Xijklω
2
k)

[
1

ωi−ωj
(cos(θi−θj−θk)+cos(θi−θj+θk))

−
1

ωj+ωi
(cos(θi+θj−θk)+cos(θi+θj+θk))

]

−
1

4

∞∑

i=0

∞∑

k=0

aka
2
i (Hiikl − 2ω2

kXiikl)(cos(2θi − θk) + cos(2θi + θk))

−
1

2

∞∑

i=0

∞∑

k=0

aka
2
i (Hiikl + 2ω2

iMkli − 2ω2
kXiikl − 4ω2

kω
2
iWkli) cos(θk)

−
1

2

∞∑

i=0

∞∑

j=0

∞∑

k=0

Xijklaiajakωjωk [cos(θk − θj − θi) + cos(θk − θj + θi)

− cos(θk + θj − θi)− cos(θk + θj + θi)]

+
1

4

∞∑

k = 0

k 6= l

∞∑

i=0

∞∑

j=0

aiajakωk

(ω2
l − ω2

k)

{

Z+
ijkl(2ωk + ωj − ωi) cos(θi − θj − θk)

+Z+
ijkl(2ωk − ωj + ωi) cos(θi − θj + θk)

+Z−
ijkl(ωi + ωj − 2ωk) cos(θi + θj − θk)

−Z−
ijkl(2ωk + ωj + ωi) cos(θi + θj + θk)

}

−
1

4

∞∑

i=0

∞∑

j=0

aiajalωl {[ωiωjPijl +Bijl](2ωl + ωj − ωi) cos(θi − θj − θl)
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+[ωiωjPijl +Bijl](2ωl − ωj − ωi) cos(θi − θj + θl)

+[ωiωjPijl −Bijl](ωj + ωi − 2ωl) cos(θi + θj − θl)

−[ωiωjPijl −Bijl](2ωl + ωj + ωi) cos(θi + θj + θl)} , (3.17)

where we used the shorthand notation θi(t) = ωit + bi. The coefficients that appear in

these expressions are certain integrals of products of eigenfunctions:

Hijkl =

∫ π
2

0
dx e′i(x)ej(x)e

′
k(x)el(x)(µ(x))

2ν ′(x), (3.18a)

Xijkl =

∫ π
2

0
dx e′i(x)ej(x)ek(x)el(x)(µ(x))

2ν(x), (3.18b)

Yijkl =

∫ π
2

0
dx e′i(x)ej(x)e

′
k(x)e

′
l(x)(µ(x))

2ν(x), (3.18c)

Z±
ijkl = ωiωj(Xklij −Xlkij)± (Yklij − Ylkij), (3.18d)

Mijk =

∫ π
2

0
dx e′i(x)ej(x)µ(x)ν

′(x)

∫ x

0
dy(ek(y))

2µ(y), (3.18e)

Wijk =

∫ π
2

0
dx ei(x)ej(x)µ(x)ν(x)

∫ x

0
dy(ek(y))

2µ(y), (3.18f)

Pijk =

∫ π
2

0
dx ei(x)ej(x)µ(x)ν(x)

(

1−

∫ x

0
dy(ek(y))

2µ(y)

)

, (3.18g)

Bijk =

∫ π
2

0
dx e′i(x)e

′
j(x)µ(x)ν(x)

(

1−

∫ x

0
dy(ek(y))

2µ(y)

)

. (3.18h)

3.3 Vanishing secular terms

As already discussed above (2.10), secular terms appear when the set of frequencies

{ωi, ωj , ωk} satisfies the resonance condition ωi ± ωj ± ωk = ±ωl. In this case, a reso-

nant term should (generally) arise in the source Sl of the mode c
(3)
l . Equation (3.16) will

then have a solution that involves a secular term,

c̈
(3)
l (t)+ω2

l c
(3)
l (t) = A cos(ωlt+B)+(. . .) ⇒ c

(3)
l (t) =

A

2ωl
t sin(ωlt+B)+(. . .). (3.19)

There are eight choices of the signs in ωi±ωj±ωk = ±ωl. First, one can have ωi+ωj+ωk =

ωl. We shall call the corresponding terms ‘+++ terms’. ωi + ωj + ωk = −ωl cannot be

satisfied due to frequency positivity. Of the remaining six choices, three can be brought

to the form ωi + ωj − ωk = ωl by permuting i, j and k. We shall call these ‘++ - terms’.

After that, the three remaining choices can be brought to the form ωi − ωj − ωk = ωl by

permuting i, j and k. We shall call these ‘+ - - terms’.

Our goal in this section is to prove that the +++ and + - - terms vanish due to

properties of the AdS mode functions, despite being allowed by the frequency spectrum.

We shall give explicit expressions for the ++ - terms in section 3.4.
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We shall first focus on the +++ terms in (3.17), for which ωi + ωj + ωk = ωl. One

finds that

Sl = (. . .) +
∑

i

∑

j

∑

k
︸ ︷︷ ︸

i+j+k+d=l

Qijklaiajak cos(θi + θj + θk), (3.20)

where (. . .) represents the non-resonant terms as well as resonant terms of other types.

The coefficients Qijkl are given by

Qijkl = −
1

12
Hijkl

ωj(2ωj + ωi + ωk)

(ωj + ωi)(ωj + ωk)
−

1

12
Hjkil

ωk(2ωk + ωi + ωj)

(ωk + ωi)(ωk + ωj)

−
1

12
Hkijl

ωi(2ωi+ωj+ωk)

(ωi+ωj)(ωi+ωk)
+
1

6
Xijkl ωjωk

(

1+
ωk

(ωj+ωi)
+

ωj

(ωk+ωi)

)

+
1

6
Xjkil ωiωk

(

1+
ωk

(ωi+ωj)
+

ωi

(ωk+ωj)

)

+
1

6
Xkijl ωiωj

(

1+
ωi

(ωj+ωk)
+

ωj

(ωi+ωk)

)

−
1

12
Z−
ijkl

ωk

(ωi + ωj)
−

1

12
Z−
jkil

ωi

(ωj + ωk)
−

1

12
Z−
kijl

ωj

(ωi + ωk)
. (3.21)

We will now show that all coefficients Qijkl vanish whenever i + j + k + d = l, i.e., when

the resonance condition is satisfied. This is a non-trivial statement (though it may well

have a more straightforward and elegant proof based on the symmetries of AdS), since the

structure of the linearized frequency spectrum allows such terms.

To analyze (3.21) we employ the following transformations:

1) We notice that

Hijkl = ω2
kXijkl − Yijkl + ω2

iXklij − Yklij . (3.22)

This identity is proved by integration by parts removing the derivative from ν

in (3.18a). Antisymmetrizing (3.22) with respect to i and j, one gets:

Yijkl − Yjikl = (ω2
i − ω2

j )Xklij + ω2
k(Xijkl −Xjikl)− (Hijkl −Hjikl). (3.23)

This relation is used to eliminate Y from Z+ of (3.18d), and hence from (3.21).

2) After the above manipulation, (3.21) only contains H and X of (3.18). H and X

are integrals of products of mode functions ei, ej , ek, el and their derivatives. An

important distinction among the different terms is whether el (in the integrand of H

orX) is differentiated. (el is the mode function of the mode receiving the secular term

contribution.) If it is, we remove the derivative from it using integration by parts:

Hlijk = −(Hikjl +Hkijl) + ω2
jDijkl + 4Xjikl,

Xlijk = −(Xijkl +Xjikl +Xkijl)− Eijkl,
(3.24)

with

Dijkl =

∫ π
2

0
dx eiejekelµ

2ν ′,

Eijkl =

∫ π
2

0
dx eiejekel(µ

2ν)′.

(3.25)
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(We have used the identity (µν ′)′ = −4µν.) At this point,6 (3.21) takes the form

Qijkl ∼

∫ π
2

0
dx el(x)qijk(x), (3.26)

where qijk(x) can only receive the following contributions: from H-terms, a product

of ei, ej , ek, two of which are differentiated, times µ2ν ′; from X-terms, a product of

ei, ej , ek, one of which is differentiated, times µ2ν; from D-terms, eiejekelµ
2ν ′; from

E-terms, eiejekel(µ
2ν)′.

3) From (3.26) and the expression for mode functions in terms of Jacobi polynomi-

als (3.8), one can bring (3.21) to the form7

Qijkl ∼

∫ 1

−1
P
( d
2
−1, d

2 )
l (ξ)Qijk(ξ)(1− ξ)

d
2
−1(1 + ξ)

d
2 dξ (3.27)

with ξ = cos 2x. Here, Qijk(ξ) is a polynomial of degree i+ j+k+d+1 = l+1 made

of P
( d
2
−1, d

2 )
i , P

( d
2
−1, d

2 )
j , P

( d
2
−1, d

2 )
k , their first derivatives and various trigonometric

functions appearing in (3.26), re-expressed through cos 2x. Note that the integration

measure appearing in (3.27) is precisely the same as the one used for defining the

Jacobi polynomials.

4) Finally, to prove that (3.27) vanishes, it suffices to show that the expansion of Qijk(ξ)

in terms of Jacobi polynomials P
( d
2
−1, d

2 )
n does not contain P

( d
2
−1, d

2 )
l . Since Qijk(ξ)

is a polynomial of degree l + 1, whether that happens or not can be decided on the

basis of considering the coefficients of its two highest powers. More specifically, the

coefficients of the two highest powers in Jacobi polynomials (which we need only up

to the overall normalization) can be extracted from known formulas (see, e.g., [16]) as

P (d/2−1,d/2)
n (ξ) ∼ (1 + ξ)n −

n(d+ 2n)

d+ 2n− 1
(1 + ξ)n−1 + · · · (3.28)

If one uses this representation for P
( d
2
−1, d

2 )
i , P

( d
2
−1, d

2 )
j , P

( d
2
−1, d

2 )
k to recover the

coefficients of the two highest powers in Qijk, one finds

Qijk ∼ (1 + ξ)i+j+k+d+1 − (d+i+j+k+1)(3d+2i+2j+2k+2)
3d+2i+2j+2k+1 (1 + ξ)i+j+k+d + · · · , (3.29)

which exactly matches (3.28) with n = l + 1 = i + j + k + d + 1. Therefore, if one

subtracts from Qijk its projection on P
(d/2−1,d/2)
l+1 , the remaining polynomial is of

degree l−1 and cannot have a non-zero projection on P
(d/2−1,d/2)
l . Then, from (3.27),

Qijkl = 0. (3.30)

6One could have skipped directly from (3.21) to (3.26), though the integrands would have involved more

derivatives than what we get after having performed the integrations by parts and are less convenient to

handle. For the case of + - - terms we consider below, the integrations by parts we have described are

necessary to establish the analog of (3.26).
7Each of the types of terms listed under (3.26) is individually of this form.
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We have thus proved that all secular terms resulting from addition of three mode

frequencies vanish for non-linear perturbation theory in the AdS background, even if the

said combination of frequencies resonates with another perturbation mode. In relation to

our proof sketched above, it remains only to comment on how one in practice computes

the polynomial Qijk(ξ) in (3.27), and thus establishes (3.29).

The computation reconstructing Qijk(ξ) in (3.27) is, in principle, a completely

straightforward polynomial manipulation, but it is the forbiddingly large size of the

polynomial expressions that makes the manipulations demanding. For the special case

i = j = k, we have been able to do the entire computation by hand and derive (3.29).

However, for arbitrary i, j and k one has to either invent powerful analytic tricks, perform

pages upon pages of completely mechanical polynomial manipulations, or resort to (fully

analytic) computer algebra. For the purposes of this article, we have chosen the latter

and employed FORM, a powerful script-based symbolic manipulation system particularly

suited for working with long polynomial expressions [17]. Our FORM script, essentially

retracing the steps presented above in this section, is given in appendix B. (3.29) can be

read off from the output of that script, thereby completing our proof.

We now turn to the + - - terms with ωi − ωj − ωk = ωl. These terms vanish in a

way very similar to what we have just observed for the +++ terms. The corresponding

contribution to the source Sl is given by

Sl = (. . .) +
∑

j

∑

k

U(j+k+l+d)jklaj+k+l+dajak cos(θj+k+l+d − θj − θk) (3.31)

with the following coefficients:

Uijkl =
1

4
Hijkl

ωj(2ωj − ωi + ωk)

(ωi − ωj)(ωj + ωk)
+

1

4
Hjkil

ωk(2ωk − ωi + ωj)

(ωi − ωk)(ωk + ωj)
+

1

4
Hkijl

ωi(ωj + ωk − 2ωi)

(ωi − ωj)(ωi − ωk)

−
1

2
Xijkl ωjωk

(
ωk

(ωi−ωj)
+

ωj

(ωi−ωk)
−1

)

+
1

2
Xjkil ωiωk

(
ωk

(ωi−ωj)
+

ωi

(ωk+ωj)
−1

)

+
1

2
Xkijl ωiωj

(
ωi

(ωj + ωk)
+

ωj

(ωi − ωk)
− 1

)

−
1

4
Z+
ijkl

ωk

(ωi − ωj)
+

1

4
Z−
jkil

ωi

(ωj + ωk)
−

1

4
Z+
kijl

ωj

(ωi − ωk)
. (3.32)

One can show that Uijkl = 0 whenever the resonance condition is satisfied, i.e., i = j+ k+

l + d, in other words, the + - - terms do not arise.

One can construct a proof that Uijkl = 0 essentially repeating the procedure we em-

ployed above for the +++ terms, except that the roles of i and l become interchanged.

Performing appropriate integrations by parts using (3.23)–(3.24), one arrives at the follow-

ing representation:

Uijkl ∼

∫ 1

−1
P
( d
2
−1, d

2 )
i (ξ)Ujkl(ξ)(1− ξ)

d
2
−1(1 + ξ)

d
2 dξ, (3.33)

where Ujkl(ξ) is a polynomial of degree j + l + k + d + 1 = i + 1. Substituting explicit

expressions for the mode functions, one finds that the coefficients of the two highest powers
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in Ujkl(ξ) are in the same ratio as in P
( d
2
−1, d

2 )
i+1 (in practice, we have used a FORM script

to perform this polynomial evaluation, and the output of the script is given at the end of

appendix B). Ujkl(ξ) is then orthogonal to P
( d
2
−1, d

2 )
i (ξ) and (3.33) vanishes, which completes

our proof of the absense of the + - - secular terms.

It would be desirable to develop a more elegant and less computationally intensive

proof of the vanishing of the +++ and + - - terms, and indeed understand the qualitative

reason for these terms to vanish. In section 3.5 we make some preliminary comments

on the relation between the absence of these classes of secular terms and abundance of

quasiperiodic solutions to the full non-linear system.

3.4 Non-vanishing secular terms and renormalization flow

The non-vanishing (++ -) resonant terms in the source Sl arise from resonances that have

the form ωi + ωj − ωk = ωl and are given by

Sl = (. . .) + Tla
3
l cos(θl + θl − θl) +

∑

i,(i 6=l)

Rila
2
i al cos(θi + θl − θi)

+
∑

i,(i 6=l)

∑

j,(j 6=l)
︸ ︷︷ ︸

l6i+j

Sij(i+j−l)laiajai+j−l cos(θi + θj − θi+j−l), (3.34)

where (. . .) represents the non-resonant terms. The coefficients Sijkl, Ril and Tl are given by

Sijkl =−
1

4
Hijklωj

(
1

ωj + ωi
+

1

ωj − ωk

)

−
1

4
Hjkilωk

(
1

ωk − ωi
+

1

ωk − ωj

)

−
1

4
Hkijlωi

(
1

ωi + ωj
+

1

ωi − ωk

)

+
1

2
Xkijlωiωj

(
ωj

ωi − ωk
+

ωi

ωj − ωk
+ 1

)

+
1

2
Xijklωjωk

(
ωk

ωj+ωi
+

ωj

ωk−ωi
−1

)

+
1

2
Xjkilωkωi

(
ωk

ωi+ωj
+

ωi

ωk−ωj
−1

)

+
1

4

(
ωk

ωi + ωj

)

Z−
ijkl +

1

4

(
ωi

ωj − ωk

)

Z+
jkil +

1

4

(
ωj

ωi − ωk

)

Z+
kijl, (3.35)

Ril =

(
ω2
i

ω2
l − ω2

i

)
(
Hliil − 2ω2

iXliil

)
−

(
ω2
l

ω2
l − ω2

i

)
(
Hilil − 2ω2

iXilil

)
− ω2

iXliil

−
1

2

(
Hiill + 2ω2

iMlli

)
+ ω2

l

(
Xiill + 2ω2

iWlli

)
− ω2

l

(
ω2
i Piil +Biil

)

+

(
ω2
i

ω2
l − ω2

i

)
(
Yilli − Ylili + ω2

l (Xilli −Xlili)
)
, (3.36)

Tl =−
3

4
Hllll + ω2

lXllll − ω2
lMlll − ω2

l Blll + 2ω4
lWlll − ω4

l Plll. (3.37)

As per (3.19), to convert these source terms to secular terms in the solution for c
(3)
l ,

one simply needs to replace all cosines by sines, and multiply by t/(2ωl). From such an

expression for the secular terms, retracing the steps between (2.18) and (2.22), one obtains

the following renormalization flow equations for non-linear perturbation theory in the AdS
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background at first non-trivial order:

2ωl

ǫ2
dAl

dt
= −

∑

i,(i 6=l)

∑

j,(j 6=l)
︸ ︷︷ ︸

l6i+j

Sij(i+j−l)lAiAjAi+j−l sin(Bl +Bi+j−l −Bi −Bj), (3.38)

2ωlAl

ǫ2
dBl

dt
= −TlA

3
l −

∑

i,(i 6=l)

RilA
2
iAl

−
∑

i,(i 6=l)

∑

j,(j 6=l)
︸ ︷︷ ︸

l6i+j

Sij(i+j−l)lAiAjAi+j−l cos(Bl +Bi+j−l −Bi −Bj), (3.39)

where Al and Bl are the (slowly) running renormalized amplitudes and phases, and the

numerical coefficients T , R and S can be read off (3.3), (3.8), (3.18), (3.35)–(3.37).

3.5 Renormalization flow and quasi-periodic solutions

Numerical investigations of [7–14] have revealed a complex interplay between stability and

instability depending on the shape of the initial AdS perturbation. We feel that this

feature finds a reflection in the weakly non-linear perturbation theory, since, despite the

fact that the frequency spectrum is fully resonant (and thus, for example, no orbits at

all are protected from instability by the KAM theorem), only a subset of possible secular

terms (an correspondingly, energy transfer channels in the renormalization flow equations)

actually appear.

To make this more precise, we revisit the perturbative analysis of quasiperiodic solu-

tions in [14]. In that article, ‘Two-Time Framework’ equations identical to our (3.38)–(3.39)

were derived. The coefficients were not given analytic expressions, but rather evaluated

explicitly using a computer for a system truncated to low-lying modes. The vanishing of

the +++ and + - - secular term, for which we have given an analytic proof in section 3.3,

was of course observed (for a particular set of low-lying modes) in the results of those

direct evaluations. The authors then asked whether their ‘Two-Time Framework’ equation

predict solutions that remain quasi-periodic for times of order 1/ǫ2 (which is the validity

range of the resummed perturbation theory).

We can ask the same quasi-periodicity question in the context of our system (3.38)–

(3.39), and also contemplate how the presence of more general terms in (3.38)–(3.39) would

have affected the abundance of quasi-periodic solutions. More general terms in (3.38)–

(3.39) could be there given the frequency spectrum of AdS perturbation but are in fact

absent due to the vanishing of some classes of secular terms specific to the AdS background,

which we have analyzed in section 3.3.

Quasiperiodicity in the language of (3.38)–(3.39) simply means that the renormalized

amplitudes Al are constant. In that case, there is no significant energy transfer between

the modes (small energy oscillations are produced by non-secular terms in perturbation

theory), and the only significant effect of non-linearities on the evolution is the linear drift

of the renormalized phases Bl due to (3.39) which is nothing but a Poincaré-Lindstedt fre-

quency shift. (This picture of quasi-periodic motion in a non-linear non-integrable system
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is familiar from the KAM theory, though the fully resonant frequency spectrum we are

dealing with is exactly the opposite of the KAM theory asumptions.)

Al in (3.38) will vanish if

Bl +Bi+j−l −Bi −Bj = 0 (3.40)

for all l, i, j. As observed already in [14], this is solved by

Bj = B0 + j(B1 −B0), (3.41)

where B0 and B1 can be arbitrary. One then substitutes this relation into (3.39) and

obtains a system of algebraic equations for B0, B1 and Al. As pointed out in [14], if one

truncates this system to a finite subset of low-lying modes up to j = jmax, one obtains

jmax + 1 equations for jmax + 3 equations, giving a 2-parameter family of solutions, which

actually becomes a 1-parameter family of essentially different quasi-periodic solutions after

the obvious scaling symmetry Al(t) → ξAl(t/ξ
2), Bl(t) → Bl(t/ξ

2) present in (3.38)–(3.39)

is taken into account. (Removing the mode cut-off is subtle and we shall not attempt to

do it carefully at present.)

What we would like to emphasize in the context of our study is that the situa-

tion would have changed if more general terms (that vanish specifically for the AdS

case) were present on the right-hand side of (3.38). Such terms would have differ-

ent dependences on phases. For example, the +++ terms of section 3.3 would have

produced sin(Bl − Bi − Bj − Bl−d−i−j) and the + - - terms would have produced

sin(Bl + Bi + Bj − Bl+i+j+d). Demanding these terms to vanish would produce more

equations, in addition to (3.40), which can in general only be solved by

Bj =
ωj

ω0
B0 =

(

1 +
2j

d

)

B0. (3.42)

This equation contains only one free parameter, B0, whereas (3.41) contains two, B0

and B1. Consequently, based on this simple counting we observe that the number of

free parameters labelling different quasiperiodic solutions diminishes by one when general

secular terms are present, compared to the AdS case, where the +++ and + - - term

vanish. This observation gives some non-perturbative meaning to the restrictions on the

type of secular terms appearing in the AdS perturbation theory. It would be good to

make these ideas more precise.
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A Calculation of Sl

In this section, we give details on the computation of Sl = 〈S, el〉. Before we start, we list

some useful identities and definitions. From the equation c̈j +ω2
j cj = 0 for the modes cj(t)

it follows that d
dt(ω

2
i c

2
i + ċ2i ) = 0. Therefore, we can define the constants

Ci = ω2
i c

2
i + ċ2i . (A.1)

The equation for the modes also implies the identity

d

dt
(ω2

j cicj + ċiċj) = (ω2
j − ω2

i )ċjci. (A.2)

From the eigenfunction equation L̂ej = ω2
j ej , we have that −(µe′j)

′ = ω2
jµej such that

(µe′iej)
′ = (µe′i)

′ej + µe′ie
′
j = µ(−ω2

i eiej + e′ie
′
j). (A.3)

We can take the permutation i↔ j of this expression and take proper linear combinations

of these two expressions to obtain the identities

(ω2
j − ω2

i )µejei = (µ(e′iej − e′jei))
′ (A.4)

and

(ω2
j − ω2

i )µe
′
je

′
i = (µ(ω2

j e
′
iej − ω2

i e
′
jei))

′. (A.5)

Subtracting (3.12a) and (3.12b), we find that

A′
2(x, t)− δ′2(x, t) =

ν ′(x)

ν(x)
A2(x, t) = −ν ′(x)

∫ x

0

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)dy. (A.6)

Therefore

〈
(
A′

2 − δ′2
)
φ′1, el〉 = −

∫ π
2

0
dxφ′1(x, t)el(x)µ(x)ν

′(x)

∫ x

0
dy

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)

= −
∞∑

i=0

∞∑

j=0

∞∑

k=0

ck(t)

∫ π
2

0
dx e′k(x)el(x)µ(x)ν

′(x)

∫ x

0
dy

{
ċi(t)ċj(t)ei(y)ej(y) + ci(t)cj(t)e

′
i(y)e

′
j(y)

}
µ(y)

= −
∞∑

i=0

∞∑

j = 0

j 6= i

∞∑

k=0

ck(t)

(ω2
j − ω2

i )

∫ π
2

0
dx e′k(x)el(x)(µ(x))

2ν ′(x)

{
(ċi(t)ċj(t) + ω2

j ci(t)cj(t))e
′
i(x)ej(x)− (ċi(t)ċj(t) + ω2

i ci(t)cj(t))e
′
j(x)ei(x)

}

−
∞∑

i=0

∞∑

k=0

ck(t)

∫ π
2

0
dx e′k(x)el(x)µ(x)ν

′(x)

{

c2i (t)e
′
i(x)ei(x)µ(x)+Ci

∫ x

0
dy(ei(y))

2µ(y)

}

=−2
∞∑

i=0

∞∑

j = 0

j 6= i

∞∑

k=0

ck(t)Hijkl

(ω2
j−ω

2
i )

(ċi(t)ċj(t)+ω
2
j ci(t)cj(t))−

∞∑

i=0

∞∑

k=0

ck(t)
{
c2i (t)Hiikl+CiMkli

}
.
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The integrals of the form
∫ x
0 dy have been performed using the identities (A.3), (A.4), (A.5).

Using (3.13), we can proceed in a similar fashion to obtain

〈A2φ̈1, el〉 = −

∫ π
2

0
dx φ̈1(x, t)el(x)µ(x)ν(x)

∫ x

0
dy

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)

= −

∞∑

i=0

∞∑

j=0

∞∑

k=0

c̈k(t)

∫ π
2

0
dx ek(x)el(x)µ(x)ν(x)

∫ x

0
dy

{
ċi(t)ċj(t)ei(y)ej(y) + ci(t)cj(t)e

′
i(y)e

′
j(y)

}
µ(y)

= −
∞∑

i=0

∞∑

j = 0

j 6= i

∞∑

k=0

c̈k(t)

(ω2
j − ω2

i )

∫ π
2

0
dx ek(x)el(x)(µ(x))

2ν(x)

{
(ċi(t)ċj(t) + ω2

j ci(t)cj(t))e
′
i(x)ej(x)− (ċi(t)ċj(t) + ω2

i ci(t)cj(t))e
′
j(x)ei(x)

}

−
∞∑

i=0

∞∑

k=0

c̈k(t)

∫ π
2

0
dx ek(x)el(x)µ(x)ν(x)

{

c2i (t)e
′
i(x)ei(x)µ(x) + Ci

∫ x

0
dy(ei(y))

2µ(y)

}

=2
∞∑

i=0

∞∑

j = 0

j 6= i

∞∑

k=0

ω2
kck(t)Xijkl

(ω2
j−ω

2
i )

(ċi(t)ċj(t)+ω
2
j ci(t)cj(t))+

∞∑

i=0

∞∑

k=0

ω2
kck(t)

{
c2i (t)Xiikl+CiWkli

}
.

and

〈Ȧ2φ̇1, el〉 = −

∫ π
2

0
dx φ̇1(x, t)el(x)µ(x)ν(x)

∫ x

0
dy

∂

∂t

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)

= −
∞∑

i=0

∞∑

j=0

∞∑

k=0

ċk(t)

∫ π
2

0
dx ek(x)el(x)µ(x)ν(x)

∫ x

0
dy

∂

∂t

{
ċi(t)ċj(t)ei(y)ej(y) + ci(t)cj(t)e

′
i(y)e

′
j(y)

}
µ(y)

= −
∞∑

i=0

∞∑

j = 0

j 6= i

∞∑

k=0

ċk(t)

(ω2
j − ω2

i )

∫ π
2

0
dx ek(x)el(x)(µ(x))

2ν(x)

∂

∂t

{
(ċi(t)ċj(t) + ω2

j ci(t)cj(t))e
′
i(x)ej(x)− (ċi(t)ċj(t) + ω2

i ci(t)cj(t))e
′
j(x)ei(x)

}

−
∞∑

i=0

∞∑

k=0

ċk(t)

∫ π
2

0
dx ek(x)el(x)µ(x)ν(x)

∂

∂t

{

c2i (t)e
′
i(x)ei(x)µ(x)+Ci

∫ x

0
dy(ei(y))

2µ(y)

}

= −2
∞∑

i=0

∞∑

j=0

∞∑

k=0

ċk(t)ci(t)ċj(t)Xijkl.

In the last step, we have used the identity (A.2).

From (3.14), we can deduce that

〈δ2φ̈1, el〉 = −

∫ π
2

0
dx φ̈1(x, t)el(x)µ(x)

∫ x

0
dy

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)ν(y)
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= −

∫ π
2

0
dy

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)ν(y)

∫ π
2

y
dx φ̈1(x, t)el(x)µ(x)

= −
∞∑

k=0

c̈k(t)

∫ π
2

0
dy

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)ν(y)

(

δkl −

∫ y

0
dx ek(x)el(x)µ(x)

)

=
∞∑

k = 0

k 6= l

c̈k(t)

(ω2
l − ω2

k)

∫ π
2

0
dy

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

(µ(y))2ν(y)(e′k(y)el(y)− e′l(y)ek(y))

− c̈l(t)

∫ π
2

0
dy

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)ν(y)

(

1−

∫ y

0
dx(el(x))

2µ(x)

)

=
∞∑

k = 0

k 6= l

∞∑

i=0

∞∑

j=0

c̈k(t)

(ω2
l − ω2

k)

∫ π
2

0
dy

{
ċi(t)ċj(t)ei(y)ej(y) + ci(t)cj(t)e

′
i(y)e

′
j(y)

}

(µ(y))2ν(y)(e′k(y)el(y)− e′l(y)ek(y))

−
∞∑

i=0

∞∑

j=0

c̈l(t)

∫ π
2

0
dy

{
ċi(t)ċj(t)ei(y)ej(y) + ci(t)cj(t)e

′
i(y)e

′
j(y)

}

µ(y)ν(y)

(

1−

∫ y

0
dx(el(x))

2µ(x)

)

= −
∞∑

k = 0

k 6= l

∞∑

i=0

∞∑

j=0

ω2
kck(t)

(ω2
l − ω2

k)
{ċi(t)ċj(t)(Xklij −Xlkij) + ci(t)cj(t)(Yklij − Ylkij)}

+
∞∑

i=0

∞∑

j=0

ω2
l cl(t) {ċi(t)ċj(t)Pijl + ci(t)cj(t)Bijl} .

We have interchanged the integration
∫
dx

∫
dy →

∫
dy

∫
dx and then separated the inte-

gral
∫ π

2
y dx =

∫ π
2
0 dx−

∫ y
0 dx.

In a similar way, we finally obtain

〈δ̇2φ̇1, el〉 = −

∫ π
2

0
dx φ̇1(x, t)el(x)µ(x)

∫ x

0
dy

∂

∂t

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)ν(y)

= −

∫ π
2

0
dy

∂

∂t

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)ν(y)

∫ π
2

y
dx φ̇1(x, t)el(x)µ(x)

= −
∞∑

k=0

ċk(t)

∫ π
2

0
dy

∂

∂t

∂

∂t

(

φ̇1(y, t)
2+φ′1(y, t)

2
)

µ(y)ν(y)

(

δkl−

∫ y

0
dx ek(x)el(x)µ(x)

)

=
∞∑

k = 0

k 6= l

ċk(t)

(ω2
l − ω2

k)

∫ π
2

0
dy

∂

∂t

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

(µ(y))2ν(y)(e′k(y)el(y)− e′l(y)ek(y))

− ċl(t)

∫ π
2

0
dy

∂

∂t

(

φ̇1(y, t)
2 + φ′1(y, t)

2
)

µ(y)ν(y)

(

1−

∫ y

0
dx(el(x))

2µ(x)

)
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=
∞∑

k = 0

k 6= l

∞∑

i=0

∞∑

j=0

ċk(t)

(ω2
l − ω2

k)

∫ π
2

0
dy

∂

∂t

{
ċi(t)ċj(t)ei(y)ej(y) + ci(t)cj(t)e

′
i(y)e

′
j(y)

}

(µ(y))2ν(y)(e′k(y)el(y)− e′l(y)ek(y))

−
∞∑

i=0

∞∑

j=0

ċl(t)

∫ π
2

0
dy

∂

∂t

{
ċi(t)ċj(t)ei(y)ej(y) + ci(t)cj(t)e

′
i(y)e

′
j(y)

}

µ(y)ν(y)

(

1−

∫ y

0
dx(el(x))

2µ(x)

)

=
∞∑

k = 0

k 6= l

∞∑

i=0

∞∑

j=0

ċk(t)

(ω2
l − ω2

k)

∂

∂t
{ċi(t)ċj(t)(Xklij −Xlkij) + ci(t)cj(t)(Yklij − Ylkij)}

−
∞∑

i=0

∞∑

j=0

ċl(t)
∂

∂t
{ċi(t)ċj(t)Pijl + ci(t)cj(t)Bijl} .

Using all these expressions, we deduce from (3.15) the equation (3.17).

B FORM-based analysis of secular term coefficients

In this section we present our FORM script dealing with the +++ secular terms, which

retraces the derivation steps given in section 3.3 and produces the following output, which

should be matched to (3.29):

Secular =

+ Pl*[3d+2i+2j+2k]*[(d+2i)(d+2j)(d+2k)]*[(3d+2i+2j+2k+1)eta^7-(d+i+j+k+\

1)(3d+2i+2j+2k+2)eta^6] * ( 1 + [d+2i]^-1*[d+2j] + [d+2j]^-1*[d+2k] +

[d+2i]*[d+2k]^-1 );

The script, given below, is extremely straightforward, and should be reasonably easy to

interpret even for readers completely unfamiliar with FORM programming. It starts with

declaring an expression matching (3.21) up to normalization, and then applying a sequence

of symbolic substitutions that implement integration by parts, re-expression through Ja-

cobi polynomials, substituting the two highest order terms from each Jacobi polynomial,

extracting the two highest-order terms of the entire (polynomial) expression, and finally,

simplifying and factorizing the result. The lines starting with * are comments that do not

affect the execution of the script.

Symbols d, Pl, eta, [eta^7], [eta^6];

Symbols i,j,k,l,any1,any2,any3;

Symbols [d+2i],[d+2j],[d+2k], [3d+2i+2j+2k], [3d+2i+2j+2k+1], [3d+2i+2j+2k+2],

[d+2i-1], [d+2j-1], [d+2k-1],[d+i+j+k+1],[(d+2i)(d+2j)(d+2k)];

Symbols [eta^7(3d+2i+2j+2k+1)],[eta^6(d+i+j+k+1)(3d+2i+2j+2k+2)],

[(3d+2i+2j+2k+1)eta^7-(d+i+j+k+1)(3d+2i+2j+2k+2)eta^6];
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CFunctions om, H, X, Ydiff, Z, E, D, e, epr, munu, tanx, P, Ppr;

* Secular = Qijkl multiplied with (omi+omj)(omj+omk)(omi+omk)

Local Secular=

-1/2*H(i,j,k,l)*om(j)*(om(i)+om(k))*(2*om(j)+om(i)+om(k))

-1/2*H(j,k,i,l)*om(k)*(om(i)+om(j))*(2*om(k)+om(i)+om(j))

-1/2*H(k,i,j,l)*om(i)*(om(j)+om(k))*(2*om(i)+om(j)+om(k))

+X(i,j,k,l)*om(j)*om(k)*(om(j)+om(k))*

((om(i)+om(j))*(om(i)+om(k))+om(k)*(om(i)+om(k))+om(j)*(om(i)+om(j)))

+X(j,k,i,l)*om(i)*om(k)*(om(i)+om(k))*

((om(i)+om(j))*(om(j)+om(k))+om(k)*(om(j)+om(k))+om(i)*(om(i)+om(j)))

+X(k,i,j,l)*om(i)*om(j)*(om(i)+om(j))*

((om(i)+om(k))*(om(j)+om(k))+om(i)*(om(i)+om(k))+om(j)*(om(j)+om(k)))

-1/2*Z(i,j,k,l)*om(k)*(om(i)+om(k))*(om(j)+om(k))

-1/2*Z(j,k,i,l)*om(i)*(om(i)+om(j))*(om(i)+om(k))

-1/2*Z(k,i,j,l)*om(j)*(om(i)+om(j))*(om(j)+om(k));

id Z(i?,j?,k?,l?)=om(i)*om(j)*(X(k,l,i,j)-X(l,k,i,j))-Ydiff(k,l,i,j);

* eliminating Y

id Ydiff(i?,j?,k?,l?)=(om(i)^2-om(j)^2)*X(k,l,i,j)+om(k)^2*(X(i,j,k,l)-X(j,i,k,l))

-(H(i,j,k,l)-H(j,i,k,l));

id om(l)=om(i)+om(j)+om(k);

.sort

* integrating by parts to remove the derivatives from e_l

id X(l,i?,j?,k?)=-(X(i,j,k,l)+X(j,i,k,l)+X(k,i,j,l))-E(i,j,k,l);

id H(l,i?,j?,k?)=-(H(i,k,j,l)+H(k,i,j,l))+om(j)^2*D(i,j,k,l)+4*X(j,i,k,l);

* eta=1+cos2x

id H(i?,j?,k?,l?)=epr(i)*e(j)*epr(k)*e(l)*(-d+eta);

id X(i?,j?,k?,l?)=epr(i)*e(j)*e(k)*e(l)*munu(eta);

id E(i?,j?,k?,l?)=e(i)*e(j)*e(k)*e(l)*(d-2+eta);

id D(i?,j?,k?,l?)=e(i)*e(j)*e(k)*e(l)*(-d+eta);

.sort

* substituting the mode functions with the overall normalization stripped

* and divided by (cos x)^d

id e(i?)=P(i);

id epr(i?)=-d*tanx(eta)*P(i)-4*munu(eta)*Ppr(i);

id P(l)=Pl;
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id munu(eta)^2= eta*(2-eta)/4;

id tanx(eta)^2 = (2-eta)/eta;

id tanx(eta)*munu(eta)=1-(eta/2);

* 2 leading terms for each Jacobi polynomial, divided by

* eta^(i-2), eta^(j-2), eta^(k-2), respectively

* overall normalization stripped

id P(i)=eta^2-i*([d+2i-1]+1)*[d+2i-1]^(-1)*eta;

id P(j)=eta^2-j*([d+2j-1]+1)*[d+2j-1]^(-1)*eta;

id P(k)=eta^2-k*([d+2k-1]+1)*[d+2k-1]^(-1)*eta;

id Ppr(i)=i*eta-i*(i-1)*([d+2i-1]+1)*[d+2i-1]^(-1);

id Ppr(j)=j*eta-j*(j-1)*([d+2j-1]+1)*[d+2j-1]^(-1);

id Ppr(k)=k*eta-k*(k-1)*([d+2k-1]+1)*[d+2k-1]^(-1);

* remove low powers

id eta^i?{<6}=0;

id eta^7=[eta^7];

id eta^6=[eta^6];

.sort

id om(i)=[d+2i-1]+1;

id om(j)=[d+2j-1]+1;

id om(k)=[d+2k-1]+1;

id i=([d+2i-1]+1-d)/2;

id j=([d+2j-1]+1-d)/2;

id k=([d+2k-1]+1-d)/2;

.sort

* inverse powers of [d+2i-1], [d+2j-1], [d+2k-1] have cancelled out

id [d+2i-1]=[d+2i]-1;

id [d+2j-1]=[d+2j]-1;

id [d+2k-1]=[d+2k]-1;

.sort

* proceed with factorizations

id [eta^7]*[d+2i]^any1?=[eta^7]*([3d+2i+2j+2k+1]-1-[d+2j]-[d+2k])^any1;

id [3d+2i+2j+2k+1]^any1?{>1}=[3d+2i+2j+2k+1]*([d+2i]+[d+2j]+[d+2k]+1)^(any1-1);

.sort

id [eta^6]*[d+2i]^any1?=[eta^6]*([3d+2i+2j+2k+2]-2-[d+2j]-[d+2k])^any1;

id [3d+2i+2j+2k+2]^any1?{>1}=[3d+2i+2j+2k+2]*([d+2i]+[d+2j]+[d+2k]+2)^(any1-1);

.sort
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id [eta^6]*[d+2i]^any1?=[eta^6]*(2*[d+i+j+k+1]-2+d-[d+2j]-[d+2k])^any1;

id [d+i+j+k+1]^any1?{>1}=[d+i+j+k+1]*(([d+2i]+[d+2j]+[d+2k]+2-d)/2)^(any1-1);

.sort

id [eta^6]*[d+i+j+k+1]*[3d+2i+2j+2k+2]=[eta^6(d+i+j+k+1)(3d+2i+2j+2k+2)];

id [eta^7]*[3d+2i+2j+2k+1]=[eta^7(3d+2i+2j+2k+1)];

.sort

id [eta^7(3d+2i+2j+2k+1)]=[(3d+2i+2j+2k+1)eta^7-(d+i+j+k+1)(3d+2i+2j+2k+2)eta^6]

+[eta^6(d+i+j+k+1)(3d+2i+2j+2k+2)];

.sort

id [d+2k]=[3d+2i+2j+2k]-[d+2i]-[d+2j];

id [3d+2i+2j+2k]^any1?{>1}=[3d+2i+2j+2k]*([d+2i]+[d+2j]+[d+2k])^(any1-1);

.sort

id Pl=Pl*[(d+2i)(d+2j)(d+2k)]*[d+2i]^(-1)*[d+2j]^(-1)*[d+2k]^(-1);

Bracket Pl,[(3d+2i+2j+2k+1)eta^7-(d+i+j+k+1)(3d+2i+2j+2k+2)eta^6],

[3d+2i+2j+2k],[(d+2i)(d+2j)(d+2k)];

Print;

.end

(It may appear surprising that the output of our script is not manifestly symmetric

under all permutations of i, j and k, even if the starting expression is. There is no

contradiction here, however, since the integration by parts (3.23) we employ only preserves

the permutation symmetry of the total integral expressions, but upsets some of the

permutation symmetries of the integrands. In our case, since the end result of the

integration is 0, it is trivially fully permutation-symmetric, even if an explicit formula for

the integrand we give is not.)

We have also employed a very similar script, with the roles played by i and l inter-

changed and starting with (3.32) rather than (3.21), to analyze the + - - secular terms and

derive the coefficients of the two highest powers in Ujkl(ξ) of (3.33), which can be read off

from the following output (what matters for us is the ratio of the two coefficients, hence

only the expression in the square brackets of the first line of the output is relevant):

Secular =

+ Pi*[(3d+2l+2j+2k+1)eta^7-(d+l+j+k+1)(3d+2l+2j+2k+2)eta^6] * ( 2*

[d+2j]*[d+2k]^3 + 2*[d+2j]^2*[d+2k]^2 + 2*[d+2j]^3*[d+2k] + [d+2l]*

[d+2k]^3 + [d+2l]*[d+2j]*[d+2k]^2 + 2*[d+2l]*[d+2j]^2*[d+2k] + [d+2l]

*[d+2j]^3 - [d+2l]^2*[d+2k]^2 - [d+2l]^2*[d+2j]*[d+2k] + 2*[d+2l]^2*

[d+2j]^2 + [d+2l]^3*[d+2j] );

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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