Progress of Theoretical Physics, Vol. 60, No. 2, August 1978

Renormalization Group Theory of the Interfacial
 Roughening Transition
 Takao OH'lA and Kyozi KAWASAKI
 $$
\text { Department of Physics, Kyushu University, Fukuoka } 812
$$

 discrete Gaussian model in two dimensions are discussed. The interfacial profile is calculated
 found to be given by $\ln \xi$ and $(\ln \xi)^{1 / 2}$, respectively, where ξ is the correlation length of fluctuations. These results are different from those of the mean field theory, the low temperature series expansion and those of Mülher-Krumbhaar. The cross-over to the mean field results is also discussed. The interfacial profle is obtained and is expressed by the error
 tion near the metal-insulator transition and the spin correlation function above the transition point are also calculated.

$$
\S \text { I. Introduction }
$$

sət孔ə

 Hamiltonian have been investigated by renormalization group methods. ${ }^{1 \prime}$ Although many intrinsic properties above three dimensions have been clarified, the results in

interaction, ${ }^{7(2)}$ the $2-\mathrm{D}$ classical $X-Y$ model ${ }^{7,10)}$ and other systems in low dimensions, he results obtained here are directly applicable to those systems. In particular orrelations above the transition point of the $2-\mathrm{D} X-Y$ model.
In $\S 2$ we introduce the model and define the two-point distribution function. In. order to calculate the two-point distribution function we introduce an appropriate haracteristic function which is manipulated by the Chui-Weeks transformation ${ }^{8)}$ and is calculated by a cumulant expansion.
In § 3, following José et al., we construct a set of the renormalization group equations. The interfacial profile is obtained by using the solution of these equations and is compared with the available theoretical results. ${ }^{50,11,12)}$ By using the results obtained in $\S 3$, we discuss the transition of the 2 -D neutral Coulomb gas in $\S 4$, which is an extension of a simple perturbation approach in terms of fugac-
 critical point and the critical exponent η of the $2-D X-Y$ model. In $\$ 5$ we cal
 model. Section 6 is devoted to final remarks and conclusion

§ 2. Surface roughening model

 following interaction energy:

[^0]Renormalization Group Theory of the Interfacial Roughening Transition 367
+1 and $\beta^{-1} \ln y_{0}$ plays the role of a chemical potential.
In order to see the interfacial properties let us introduce the probability $P(z$;

$$
0
$$ equal to z as defined by
$$
(\varepsilon \cdot \zeta)
$$

 the coordinate perpendicular to the interface.

io
 From the definition (2.6) the characteristic function satisfies the following rela tions:
$$
(L \cdot Z)
$$
 Chui and Weeks^{8} with the following result:

$E\left(k ; \boldsymbol{r}_{12}\right)=\exp \left[-\frac{k^{2}}{4 \pi \beta J} G_{0}\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)\right]$

.9)
$\stackrel{\overparen{\square}}{\stackrel{\rightharpoonup}{\omega}}$

$\mathscr{G}_{e}=-\frac{\pi}{2 J} \sum_{r, \boldsymbol{r}^{\prime}} m(\boldsymbol{r}) m\left(\boldsymbol{r}^{\prime}\right) G_{0}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$.

368

. Ohta and K. Kawasaki

 m is for a lattic $m(\boldsymbol{r})$ is the total number of par$(\boldsymbol{r})^{2}$ is the total number of particles. The poten-
ith the lattice constant a_{0} by

\[\)| $1-2 \cos \left(q_{x} a_{0}\right)-2 \cos \left(q_{y} a_{0}\right)$ | $(2 \cdot 11)$ |
| :--- | :--- |
| $\int_{\boldsymbol{q}}=\int \frac{d^{2} \boldsymbol{q}}{(2 \pi)^{2}}$ | |

\]

 $m(\boldsymbol{r})$ on the lattice whose Hamiltonian is $(2 \cdot 10)$. Note, however, that the tem-

 Coulomb gas.

(2-13)

$G(\boldsymbol{r})=G_{0}(\boldsymbol{r})-\frac{\pi}{2 \beta J} \sum_{\boldsymbol{R}, \boldsymbol{r}^{\prime}}\left\langle m(0) m\left(\boldsymbol{r}^{\prime}\right)\right\rangle_{e}\left(G_{0}\left(\boldsymbol{R}+\boldsymbol{r}+\frac{\boldsymbol{r}^{\prime}}{2}\right)-G_{0}\left(\boldsymbol{R}+\frac{\boldsymbol{r}^{\prime}}{\mathbf{2}}\right)\right)$

$$
(2 \cdot 14)
$$

The second term contributes to the screening of the potential by fluctuating charges.
 ing the second term of $(2 \cdot 14)$ as a self-energy, we obtain from (2.14)

$$
\begin{aligned}
& (\mathrm{cI} \cdot Z
\end{aligned}
$$

> $G_{0}(\boldsymbol{q})=2 \pi\left[4-2 \cos \left(q_{x} a_{0}\right)-2 \cos \left(q_{y} a_{0}\right)\right]^{-1}$
The denominator of $(2 \cdot 15)$ is directly related to the dielectric function of the Before applying the renormalization group procedure to $(2 \cdot 15)$, we derive the
expressions of some quantities associated with the interfacial profile. The derivative profile is given from $(2 \cdot 5)$ and $(2 \cdot 13)$ by
Renormalization Group Theory of the Interfacial Roughening Transition 369

Renormalization Group Theory of the Interfacial Roughening Transition 371
$Q(q)=K(q, \infty)^{-1}$,
here we have used a continuum approximation $G_{0}(q)=2 \pi /\left(q a_{0}\right)^{2} . \quad K(l)^{-1}$ given
 Differentiating (3.9) with respect to l, we obtain

$(G I \cdot \varepsilon)$

$$
(3 \cdot 13)
$$

$$
\frac{\partial}{\partial l} K(l)^{-1}=2 \pi^{2} y(l)^{2}
$$

with
$y(l)^{2}=-\frac{1}{2} e^{4 l}\left\langle m(0) m\left(a_{0} e^{l}\right)\right\rangle_{e}$.
Similarly we have from (3.10)

$$
\begin{aligned}
& \text { In order to obtain the equation for } y(l) \text { we construct the ratio } \\
& \qquad \frac{y(l+\delta l)^{2}}{y(l)^{2}}=e^{4 \delta \iota} \frac{\left\langle m(0) m\left(a_{0} e^{l+\delta l}\right)\right\rangle_{e}}{\left\langle m(0) m\left(a_{0} e^{l}\right)\right\rangle_{e}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { By substituting the scaling law result (} 3 \cdot 8 \text {) into the right-hand side of (} 3 \cdot 15 \text {), } \\
& \text { we have }
\end{aligned}
$$

[^1]$(9 \tau \cdot \varepsilon) \quad \quad_{\Sigma}(\eta) \kappa((1) y-च)={ }_{\Sigma}(\eta) \kappa \frac{2 e}{e}$

$(L I \cdot \varepsilon)$
$(6 I \cdot \varepsilon)$
$(8 I \cdot \varepsilon)$
have been analyzed by Kosterlitz ${ }^{6 \text { (}}$ and Wegner. ${ }^{15)}$ The RG trajectory is displayed
in Fig. 1. There is a conserved quantity:
$(07 \cdot \varepsilon)$
where c is some positive constant and t
stands for the reduced temperature $(T$
$\left.-T_{R}\right) / T_{R .}{ }^{*)}$
Above $T_{R}(t>0)^{* *)}$ the variable y is
shown to be irrelevant. Thercfore the
effective potential $G(r)$ behaves in a manner
similar to $G_{0}(r)$, i.e., $G(r) \propto G_{0}(r) \sim \ln \left(r / a_{0}\right)$
for large r. The interface width L defined
by ($2 \cdot 18)$ is thus always infinite. ${ }^{8)}$ The
solutions of $(3 \cdot 17)$ below $T_{R}(t<0)$ are written as $^{6), 15)}$

\[

$$
\begin{aligned}
& \text { (1) фоәs }|7| \wedge \rho=(1) z \\
& \text { (1) ф тет }|7| \wedge \rho=(1) x
\end{aligned}
$$
\]

$\psi(l)=\phi(0)-c \sqrt{|t|} l / 2$,

$(\not \subset Z \cdot \varepsilon)$	$\left\{\left\{\left(\frac{\|7\| \wedge \rho}{(1) x}\right)_{\tau} \text { нет }-\left(\frac{\|7\| \wedge \rho}{(0) x}\right)_{\tau}-\text { шет }\right\} \frac{\|7\| \wedge 0}{\zeta}=2\right.$

 Eqs. (3.17) up to $l=l^{*}$ such that $-2<x\left(l^{*}\right)<0$, , $^{* *}$ we may approximate $(3 \cdot 24)$ for sufficiently small $|t|$ as

$$
\left.\begin{array}{ccc}
0>(1) x & \text { Lof } & * 1 \\
0<(1) x & \text { xof } & 0
\end{array}\right\}=
$$

$(96 \cdot \varepsilon)$

 $Q(q)$ for $t<0$ is then obtained by using the relation $(3 \cdot 11)$ as

with $x=x(0), x^{*}=x\left(l^{*}\right)$. We choose l^{*} such that the correlation length ξ of \qquad
 or $K<2$ obeys exactly the Debye-Hückel form in the low density limit (see §4).
Renormalization Group Theory of the Interfacial Roughening Transition 373
fluctuations which transforms as $\xi(l)=e^{-l \xi}(0)$ is given by $\xi=\xi(0)=a_{0} e^{l *}$. Then we obtain ${ }^{6)}$
$\xi=a_{0} e^{c_{1} / \sqrt{|t|}}$,
where $c_{1} \equiv 2 \pi / c$. The term in $[\quad]$ of $(3 \cdot 26)$ to be denoted as $Q^{*}(q \xi)$ is to be

 a term of $O\left(x^{2} / 64\right)$,

$(3 \cdot 29)$

 $=a_{0}{ }^{2} \int_{\boldsymbol{q}} K G(\boldsymbol{q})\left(1-e^{i \boldsymbol{q} r}\right)$ with the following result:
$(0 \varepsilon \cdot G)$ $\left([\varepsilon \cdot \varepsilon) \quad\left({ }^{0} \mathrm{~V} / \S\right) \mathrm{UI} \approx(.1)\right.$ DY

 interface width $(2 \cdot 18)$ is then obtained by
$L^{2}=\frac{2}{\pi^{2}} \ln \left(\xi / a_{0}\right)=\frac{4}{\pi c}|t|^{-\theta_{2}}$

$(7 \varepsilon \cdot \varepsilon)$

 higher moments are also calculated as

$$
\left\langle z^{2 k}\right\rangle \equiv \int_{-\infty}^{\infty} d z z^{2 k} P(z ; \infty) \propto|t|^{-k / 2}
$$

The gradient of the profile at the center M is similarly obtained from (2.17) by

$(\tau \varepsilon \cdot \varepsilon)$
?quspmovy 'Y puv $\mathfrak{\text { PYO }}$
T.
with $\theta_{M}=1 / 4$. Finally the profile $\rho(z)$ is given choosing $\rho(+\infty)=0$ by
 and the low temperature expansion results ${ }^{12)}$ and those of Müller-Krumbhaar ${ }^{5}$ (see

 results. ${ }^{11}$ The low temperature series expansion results have been criticized be-

 Kosterlitz ${ }^{6)}$ briefly discussed the $Y-X$ model above the transition using the same approximation.
Before concluding this section we wish to make two important observations.
 lation invariance in the direction perpendicular to the interface. The fact that y Table I. The exponents obtained by the various methods.

-
2
1

$$
\begin{aligned}
& \theta_{M} \\
& \stackrel{\infty}{\stackrel{N}{S}} \stackrel{N}{\circ} \underset{\sim}{\circ}
\end{aligned}
$$

by Müller-Krumbhaar ${ }^{5 \text { y }}$
This work

This work
Renormalization Group Theory of the Interfacial Roughening Transition 375
is relevant below T_{R} and is irrelevant above T_{R} implies that the translation invariance which is broken below T_{R} gets restored above $T_{R}{ }^{*}$) The second point is concerned with the relationship of our results with those of the mean field theory. First we note that the critical line $\left(K_{R}, y_{0 R}\right)$ is given by using $(3 \cdot 4),(3 \cdot 18)$,

$$
\begin{aligned}
& (6 T \cdot \varepsilon) \\
& (I F \cdot \varepsilon)
\end{aligned}
$$ $(3 \cdot 19),(3 \cdot 20)$ with $t=0$ and $l=0$ as

with
 says that $x^{2}-y^{2}$ is independent of l. Thus $x(l)^{2}-z(l)^{2}=x(0)^{2}-z(0)^{2}$. In (3.20) we expanded the right-hand side in powers of t and retained only the
first term. We here examine this point more carefully by writing $x(0)^{2}-\approx(0)^{2}$ out using $(3 \cdot 37)$ as

$\left[{ }^{Z} \mathcal{K}-(0) \mathcal{K}\right]^{U} \mathcal{K}_{8}(2,8) \bar{Z}-\left[{ }^{y} Y-(0) Y\right]\left(\forall-{ }^{y} Y\right) \boldsymbol{Z}=$

$$
(0 \eta \cdot \varepsilon)
$$

 for $t<0$. Thus we expect the crossover: The mean field critical exponents for $-t>c^{2} / d^{2}$ and the present critical exponents for $-t<c^{2} / d^{2}$. There is, however,
one difficulty. Namely, (3.40) predicts that there are two critical temperatures
 we have not understood the implication of this peculiar fact.

[^2]
§ 4. Dielectric function of $2-D$ Coulomb gas

The results derived in the previous section are also applicable to the $2-\mathrm{D}$ Coulomb gas system with the Hamiltonian (2.9). Especially the function $K Q(\boldsymbol{q})$ with $Q(\boldsymbol{q})$ given by (3.2) is interpreted as the dielectric function $\varepsilon(\boldsymbol{q}, T)$ of this system provided that β is replaced by β^{-1}. In fact it is readily shown that $(3 \cdot 2)$ is calculated in the low density regime from the formula

$$
(*(I \cdot D)
$$

 model are summarized in Table II.

 to the roughening transition temperature T_{R} of the MDG model.
 $\left(\beta e^{2}\right)^{-1} \varepsilon(T)=1 / 4-c_{2} \sqrt{\mid}|\tau|$
$(乙 \cdot \nabla)$

$$
\left(\beta e^{2}\right)^{-1} \varepsilon(\boldsymbol{q}, T)=\frac{1}{4}+\frac{\left|x^{*}\right|}{4(q \xi)^{2}}\left(1-J_{0}(q \xi)\right)+\frac{c_{3}}{(q \xi)^{2}}
$$

where c_{3} is some positive constant. Here we have chosen the Debye-Hückel form
 regime. ${ }^{18)}$ Of course (4.3) does not agree with the simple perturbation result. ${ }^{14)}$
*) Here the Hamiltonian of the $2-\mathrm{D}$ Coulomb gas is defined by (2•10) with the correspond-
ence $\pi /(\beta J) \Leftrightarrow \beta e^{2}, e= \pm 1$ being a charge. The potential $G_{0}(\boldsymbol{r})$ then obeys the equation $\boldsymbol{\nabla}^{2} G_{0}(\boldsymbol{r})$
$=2 \pi \delta(\boldsymbol{r})$. The factor 2π in $(4 \cdot 1)$ rather than the usual 4π is chosen to be consistent with this
lefinition.
Renormalization Group Theory of the Interfacial Roughening Transition 377

Using the results obtained in $\S 3$, we study the spin correlation function above T_{c} of the $2-\mathrm{D}$ classical $X-Y$ model with the Hamiltonian:

$$
\mathcal{H}_{X Y}=J \sum_{\left\langle\boldsymbol{r}, \boldsymbol{r}^{\prime}\right\rangle}\left\{1-\cos \left[\theta(\boldsymbol{r})-\theta\left(\boldsymbol{r}^{\prime}\right)\right]\right\}
$$

 axis. The correlation function $g_{p}(\boldsymbol{r})$ is then defined by

$$
g_{p}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)=\left\langle e^{i\left[\theta(\boldsymbol{r})-\theta\left(\boldsymbol{\mu}^{\prime}\right)\right]}\right\rangle
$$

$(5 \cdot 2)$

 evaluate $g_{p}(r)$ which is in the present notations

$$
\begin{aligned}
& g_{p}(\boldsymbol{r})=\exp \left[-G_{0}(\boldsymbol{r}) / K_{\mathrm{eff}}\right], \\
& (\varepsilon \cdot \mathrm{G})
\end{aligned}
$$

Therefore we can generalize (5.3) using $Q(q)$ as

The function $g_{p}{ }^{\prime}(r / \xi)$ which comes from the term $\Delta Q(q \xi)$ in (3.23) is to be

pansion, The correlation $g_{p}(r)$ for $r>\xi$ precisely agrees with that obtained by

 appears to depend on x^{*} which becomes increasingly arbitrary as $t \rightarrow 0$. However, in fact ΔQ and hence g_{p}^{\prime} should also depend on x^{*} in such a way that this arbitrariness disappears.
 MDG model, the 2-D Coulomb gas and the $2-D$ classical $X-Y$ model within the renormalization group method of Kosterlitz. Using the function $Q(q)$ given by

 for $r>\xi$ of the $X-Y$ model is in agreement with that of Kosterlitz. The dielectric function above T_{c} obtained in $\S 4$ is a new result, and below T_{c} it is consistent

 Although the above mentioned agreements in the Coulomb gas and the $X-Y$ model are quite encouraging, one of the tests of the results $(3 \cdot 32) \sim(3 \cdot 34)$ will be provided by precise computer simulation of interface models.

Acknowledgements

 Fund of the Ministry of Education. One of the authors (T.O.) also wishes to thank the Japan Society of Promotion of Science for a fellowship.

References

(1977), 467

 M. J. de Oliveira, D. Furman and R. B. Griffith, Phys. Rev. Letod for this problem. See also the earlier work without the use of an RG method:
J. Zittartz, Phys. Rev. 154 (1967), 529.
S. Fisk and B. Widom, J. Chem. Phys. 50 (1969), 3219.
S. Lisk and B. Widom, J. Chem. Phys. 50 (1969), 3219.
F. P. Buff, R. A. Lovett and F. H. Stillinger, Phys. Rev. Letters 15 (1965), 621.
J. D. Weeks, J. Chem. Phys. 67 (1977), 3106 .
J. D. Weeks, J. Chem. Phys. 67 (1977), 3106.
H. Müller-Krumbhaar, in Crystal Growth and Materials, edited by E. Kaldis and H.
Scheel (North Holland, 1977) and the references cited therein.
6) J. M. Kosterlitz, J. Phys. C7 (1974), 1046.
7 7) J. V. José, L. P. Kadanoff, S. Kirkpatrick and D. R. Nelson, Phys. Rev. B16 (1977), 1217. J. J. Jose, L. P. Kadanof, S. Kirkpatrick and D. R. Nelso
Renormalization Group Theory of the Interfacial Roughening Transition 379

[^3]
[^0]: $(2 \cdot 1)$

 tonian:

 where $\left|y_{0}\right| \leq 1 / 2$ and h_{i} is now a continuous real variable. In MDG the lattice sxpadde 7еч7 [е!

[^1]: we have
 we have

 $$
 y(l+\delta l)^{2} / y(l)^{2}=\exp \{\delta l[4-K(l)]\}
 $$

 which can be converted to the following by letting $\delta l \rightarrow 0$

[^2]:

[^3]: , 3735.
 12) J. D. Weeks, G. H. Gilmer and H. J. Leamy, Phys. Rev. Letters 31 (1973), 549.
 H. J. Leamy, G. H. Gilmer and K. A. Jackson, in Surface Physics of Crystalline Materials,
 edited by J. M. Blakely (Academic Press, New York, 1976).
 13) C. Deutsch and M. Lavaud, Phys. Rev. A9 (1974), 2598.
 14) J. Zittartz and B. A. Huberman, Solid State Comm. 18 (1976), 1373.
 H. Gutfreund and B. A. Huberman, J. Phys. C10 (1977), L225.
 15a) F. J. Wegner, in Phase Transitions and Critical Phenomena (Domb \& Green, Academic
 Press, New York, 1976).
 15b) P. W. Anderson, G. Yuval and D. R. Hamann, Phys. Rev. B1 (1970), 4464.
 16) R. H. Swendsen, Phys. Rev. Letters 38 (1977), 615.
 17) S. Coleman, Phys. Rev. D11 (1975), 2088.
 18) E. H. Hauge and P. C. Hemmer, Physica Norvegica 5 (1971), 209.
 19) J. M. Kosterlitz and D. J. Thouless, J. Phys. C6 (1973), 1181.
 20) D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Letters 39 (1977), 1201.
 21) M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New
 York, 1965).

