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Abstract

In two and three dimensions, the standard treatment of the scattering problem for a multi-

delta-function potential, v(r) =
∑N

n=1 znδ(r− an), leads to divergent terms. Regularization of

these terms and renormalization of the coupling constants zn give rise to a finite expression for

the scattering amplitude of this potential, but this expression has an important short-coming;

in the limit where the centers an of the delta functions coincide, it does not reproduce the

formula for the scattering amplitude of a single-delta-function potential, i.e., it seems to have

a wrong coincidence limit. We provide a critical assessment of the standard treatment of these

potentials and offer a resolution of its coincidence-limit problem. This reveals some previously

unnoticed features of this treatment. For example, it turns out that the standard treatment is

incapable of determining the dependence of the scattering amplitude on the distances between

the centers of the delta functions. This is in sharp contrast to the treatment of this problem

offered by a recently proposed dynamical formulation of stationary scattering. For cases where

the centers of the delta functions lie on a straight line, this formulation avoids singularities

of the standard approach and yields an expression for the scattering amplitude which has the

correct coincidence limit.

1 Introduction

The emergence of singularities in the treatment of delta-function potentials in two and three dimen-

sions and the utility of various regularization/renormalization schemes for their removal have been

known for over four decades [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. These schemes allow for

the solution of the scattering problem for the multi-delta-function potentials,

v(x) =

N∑

j=1

zjδ(x− aj), (1)
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where x is the position vector, zj are real or complex coupling constants, and aj are the centers

of the delta functions. In two dimensions, they lead to the following formula for the scattering

amplitude [15].1

f(k′,k) = −
√

i

8πk

N∑

m,n=1

A−1
mn e

i(an·k−am·k′). (2)

Here k is the incident wave vector, k := |k|, k′ := kx/r is the wave vector for the scattered wave,

r := |x|, A−1
mn are the entries of the inverse of the matrix A := [Amn] with entries

Amn :=

{
z̃−1
m + i

4
for m = n,

i
4
H

(1)
0 (k|am − an|) for m 6= n,

(3)

z̃m are the renormalized coupling constants, H
(1)
0 is the zero-order Hankel function of the first kind,

and we use units and conventions where the time-independent Schrödinger equation takes the form,

[
−∇2 + v(x)

]
ψ(x) = k2ψ(x), (4)

and its scattering solutions satisfy,

ψ(x) → 1

(2π)d/2

[
eik·x +

f(k′,k) eikr

r
d−1

2

]
for r → ∞, (5)

in d dimensions.

For N = 1, (2) and (3) give

f(k′,k) = −
√

i

8πk

eia1·(k−k′)

z̃−1
1 + i/4

. (6)

For N ≥ 2 and m 6= n, Amn diverges in the coincidence limit, am → an. Because A is a symmetric

matrix, this implies that the entries of A−1 and, in view of (2), the scattering amplitude f(k′,k)

tend to zero in this limit. This in particular means that if the distance between the centers of

any two of the delta functions in (1) becomes much smaller than k−1, the scattering amplitude (2)

diminishes in magnitude regardless of the number, position, and value of the coupling constants for

the remaining N−2 delta functions. In particular, according to (2) and (3), the multi-delta-function

potential (1) seizes to scatter waves, if

an → a1 for all n ∈ {2, 3, · · · , N}. (7)

But this contradicts the fact that in this limit (1) turns into a single-delta-function potential with

coupling constant z :=
∑N

n=1 zn, and consequently its scattering amplitude must be given by (6) with

z̃1 changed to z̃. The same difficulties arise in dealing with multi-delta-function potentials in three

dimensions. The purpose of this article is to provide a comprehensive treatment of the scattering

problem for multi-delta-function potentials in two and three dimensions that offers a resolution of

these difficulties.

The main motivation for the present work is provided by a recently-developed dynamical formu-

lation of stationary scattering (DFSS) [16, 17] which turns out to offer a singularity-free treatment

1We offer a derivation of this formula in Sec. 2.
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of the scattering problem for (1) in two dimensions when the centers of the delta functions lie on a

straight line [18]. For this configuration, it leads to (2) with Amn given by

Amn :=

{
z−1
m + i

4
for m = n,

i
4
J
(1)
0 (k|am − an|) for m 6= n,

(8)

where J0 is the zero-order Bessel function of the first kind. For N = 1, this agrees with (6), if we

identify z̃1 with z1;

f(k′,k) = −
√

i

8πk

eia1·(k−k′)

z−1
1 + i/4

. (9)

For N ≥ 2, substituting (8) in (2), we find an expression for the scattering amplitude that, as we

show in Appendix A, has the correct coincidence limit.

2 Standard treatment of multi-delta-function potentials

Consider the multi-delta-function potential (1) in d dimensions. The Lippmann-Schwinger equation

for this potential has the form

|ψ〉 = |k〉+ ĜV̂ |ψ〉, (10)

where

Ĝ := lim
ǫ→0+

1

k2 − p̂2 + iǫ
, V̂ :=

N∑

n=1

zn|an〉〈an|.

In the position representation, (10) takes the form,

〈x|ψ〉 = 〈x|k〉+
N∑

n=1

znG(x− an)〈an|ψ〉, (11)

where G(x− x′) := 〈x|Ĝ|x′〉 is the outgoing Green’s function for the Helmholtz operator, ∇2 + k2.

It is easy to see that

G(x) = lim
ǫ→0+

∫

Rd

ddp

(2π)d
eix·p

k2 − p2 + iǫ
. (12)

Let us introduce Xn := zn〈an|ψ〉, and write (11) in the form

〈x|ψ〉 = 〈x|k〉+
N∑

n=1

G(x− an)Xn. (13)

For x = am, this gives the following system of equations for Xn.

N∑

n=1

AmnXn =
eiam·k

(2π)d/2
, (14)

where

Amn := z−1
n δmn −G(am − an). (15)
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Eq. (14) has a unique solution provided that the matrix A of its coefficients Amn is invertible.2 In

this case we can express the solution in the form,

Xn =
1

(2π)d/2

N∑

m=1

A−1
nm e

iam·k.

Substituting this equation in (13), we obtain

〈x|ψ〉 = 〈x|k〉+ 1

(2π)d/2

N∑

m,n=1

G(x− an)A
−1
nm e

iam·k. (16)

In two and three dimension, we can evaluate the integral on the right-hand side of (12), [20].

The result is

G(x) =





− i

4
H

(1)
0 (kr) for d = 2,

− 1

4π

eikr

r
for d = 3.

(17)

This implies,

G(x− x′) →





−
√

i

8πkr
e−ik′·x′

eikr for d = 2

− 1

4π

e−ik′·x′

eikr

r
for d = 3





as r → ∞. (18)

In view of (5), (16), and (18),

f(k′,k) =
cd√
k3−d

N∑

m,n=1

A−1
mn e

i(an·k−am·k′), cd :=

{
−
√
i/8π for d = 2,

−1/4π for d = 3.
(19)

The difficulties associated with delta-function potentials in two and three dimensions stem from

the fact that the right-hand side of (17) blows up for x = 0. In view of (15), this implies Ann = ∞.

One can regularize G(x) and perform a renormalization of the coupling constants to turn (19) into

sensible expressions for the scattering amplitude. In the remainder of this section, we review the

utility of the cut-off renormalization scheme for this purpose.

2.1 Renormalization of multi-delta-function potentials in 2D

For d = 2, we can evaluate the integral on the right-hand side of (12) using a coordinate system

in the momentum plane in which x points along the x-axis. Labeling the polar coordinates in this

plane by (p, ϕ) and noting that
∫ 2π

0
dϕ eix cosϕ = 2πJ0(x), we have [20],

G(x) = lim
ǫ→0+

∫ ∞

0

dp

2π

p J0(pr)

k2 − p2 + iǫ
= − i

4
H

(1)
0 (kr). (20)

For r → 0, J0(pr) → 1, and the integral in this equation develops a logarithmic singularity. We

regularize this singularity by introducing a momentum cut-off Λ. This changes G(x) to

GΛ(x) := lim
ǫ→0+

∫ Λ

0

dp

2π

p J0(pr)

k2 − p2 + iǫ
. (21)

2This happens when the Schrödinger opertor −∇2 + v(x) has no spectral singularities [19].
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For x = 0, r = 0, and (21) gives

GΛ(0) = − 1

4π
ln

(
Λ2

k2
− 1

)
− i

4
= − 1

2π
ln

(
Λ

k

)
− i

4
+O

(
(k/Λ)2

)
, (22)

where O(xn) denotes the terms of order n and higher in powers of x. Because

H
(1)
0 (x) =

2i

π

(
ln
x

2
+ γ

)
+ 1 +O(x2), (23)

where γ is the Euler number, we can use (20) and (22) to show that for every positive real number

α,

lim
r→0

[
G(x)−G

α

r

(0)
]
=
γ + ln(α/2)

2π
. (24)

In light of this relation, we can identify G(x) with G
α

r

(0) + [γ + ln(α/2)]/2π whenever r := |x| is
much smaller than α/k.

In order to arrive at a finite (and nonzero) expression for the scattering amplitude (19), first we

need to reinterpret the coupling constants zn appearing in the expression for the potential (1) as

the bare coupling constants z̊n which have no a priori physical meaning. In other words, the first

step of the renormalization program is to model the scattering problem using the potential,

v̊(x) =
N∑

j=1

z̊jδ(x− aj).

Next, we let µ be an arbitrary reference momentum scale, set α := 2e−γµ/k, and introduce the

renormalized coupling constants,

z̃n :=

(
z̊−1
n +

1

2π
ln

Λ

µ

)−1

=

(
z̊−1
n +

1

2π
ln

Λ

k
− γ + ln(α/2)

2π

)−1

. (25)

If we suppose that z̊n depends on Λ in such a way that z̃n is Λ-independent, we can use (22) – (25)

to show that for r = α/Λ → 0,

z̊−1
n −G(x) → z̊−1

n −GΛ(0)−
γ + ln(α/2)

2π
= z̃−1

n +
i

4
.

In view of (15), this suggests

Ann = z̃−1
n +

i

4
. (26)

Equation (3) follows from (15), (17), and (26).

2.2 Renormalization of multi-delta-function potentials in 3D

For d = 3, we express the right-hand side of (12) in spherical coordinates in the momentum space

and put a cut-off Λ on the radial coordinate to obtain the regularized Green’s function GΛ(x).

Doing the angular integrals, we then find

GΛ(x) =
1

2π2r
lim
ǫ→0+

∫ Λ

0

dp
p sin(rp)

k2 − p2 + iǫ
, (27)

GΛ(0) = lim
r→0

GΛ(x) =
1

2π2
lim
ǫ→0+

∫ Λ

0

dp
p2

k2 − p2 + iǫ
= − Λ

2π2
− ik

4π
+O(Λ−1). (28)
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The latter relation together with (17) imply limr→0

[
G(x)−Gπ/2r(0)

]
= 0.

We can introduce renormalized coupling constants z̃n according to z̃n := (̊zn + Λ/2π2)
−1
. Suppos-

ing that z̊n depend on Λ in such a way that z̃n is Λ-independent, we can show that for r = π/2Λ → 0,

z̊−1
n −G(x) → z̊−1

n −GΛ(0) = z̃−1
n +

ik

4π
. (29)

Relations (15), (17), and (29) lead to the following three-dimensional analog of (3).

Amn =





z̃−1
n + ik

4π
for m = n,

eik|am−an|

4π|am − an|
for m 6= n.

(30)

For N = 1, (19) and (30) imply

f(k′,k) = − eia1·(k−k′)

4π z̃−1
1 + ik

. (31)

Furthermore, according to (30), Amn diverges for k|am−an| → 0, if m 6= n. In this case, A−1 tends

to the zero matrix, and (19) predicts that the multi-delta-function potential (1) ceases to scatter

waves effectively, if there is a pair of delta functions contributing to this potential such that the

distance between their centers is much less than k−1. This observation together with (31) underline

the coincidence-limit problem associated with the use of (30) in (19) for d = 3.

3 Resolution of the coincidence limit problem

The renormalization schemes used in the treatment of the multi-delta-function potentials in two and

three dimensions involve subtraction of unwanted infinities. This procedure however is not unique.

For example, in the cut-off renormalization of these potentials, we can define the renormalized

coupling constants according to

z̃n :=





(
z̊−1
n + 1

2π
ln Λ

µ
− cn

)−1

for d = 2,
(
z̊−1
n + Λ

2π2 − cn
)−1

for d = 3,

where cn are arbitrary real constants. This choice only changes the diagonal entries of the matrix

A, which take the form

Ann :=

{
z̃−1
n + cn +

i
4

for d = 2,

z̃−1
n + cn +

ik
4π

for d = 3.

The arbitrariness related to the subtraction of infinities may seem irrelevant to the singularities

we encounter in performing the coincidence limit of the scattering amplitude f(k′,k), because the

latter are related to the off-diagonal entries of A. A closer examination of the structure of f(k′,k),

however, reveals a different picture.

The renormalized couplings constant z̃n can not only depend on the wavenumber of the incident

wave but on the distances between the centers of the delta functions constituting the potential, i.e.,

ℓmn := |am − an|. The dependence of z̃n on ℓmn should be such that the scattering amplitude (19)

has the correct coincidence limit. The standard treatment of multi-delta-function potentials, which
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we have reviewed in the preceding section, does not determine the nature of the ℓmn-dependence

of z̃n. It only provides information about the dependence of the scattering amplitude on the wave

vector k′ for the scattered wave. This is clear from (19) particularly if we write it in the form

f(k′,k) =
cd√
k3−d

N∑

m=1

fm(k)e
−iam·k′

, (32)

where

fm(k) :=
N∑

n=1

A−1
mn e

ian·k. (33)

Note that according to (3) and (30), A−1
mn and consequently fm(k) depend on k, an, and z̃n. The

dependence of z̃n on ℓmn should be such that (32) has the correct coincidence limit. To arrive at a

more detailed description of the ℓmn-dependence of z̃n, we explore double-delta-function potentials.

3.1 Double-delta-function potentials in 2D

Consider a general double-delta-function potential, i.e., (1) with N = 2, in two dimensions. We can

choose a coordinate system in which a1 = 0 and a2 = ℓ ey, where ℓ is a positive real parameter, eu
is the unit vector pointing along the positive u-axis, and u ∈ {x, y}. In this coordinate system the

double-delta-function potential reads,

v(x, y) = z1δ(x)δ(y) + z2δ(x)δ(y − ℓ). (34)

Letting θ0 and θ respectively denote the incidence and scattering angles, so that k · ex = k cos θ0
and k′ · ex = k cos θ, we can use (2), (32), and (33) to show that

f(k′,k) = −
√

i

8πk

[
f1(k) + f2(k)e

−ikℓ sin θ
]
, (35)

f1(k) = A−1
11 + A−1

12 e
ikℓ sin θ0 =

4
[
4z̃−1

2 + i− iH
(1)
0 (kℓ)eikℓ sin θ0

]

(4z̃−1
1 + i)(4z̃−1

2 + i) +H
(1)
0 (kℓ)2

, (36)

f2(k) = A−1
21 + A−1

22 e
ikℓ sin θ0 =

4
[
(4z̃−1

1 + i)eikℓ sin θ0 − iH
(1)
0 (kℓ)

]

(4z̃−1
1 + i)(4z̃−1

2 + i) +H
(1)
0 (kℓ)2

. (37)

Demanding that fn tend to nonzero regular functions f0n for ℓ→ 0, so that

f0n(k) := lim
ℓ→0

fn(k), (38)

we can use (23), (36), and (37) to determine the small-ℓ behavior of the renormalized coupling con-

stants z̃n. This leads to the following expressions for z̃n whose derivation we present in Appendix B.

z̃1 =

{
− i

4

[
η(k)H

(1)
0 (kℓ) + 1

]
+

1

f01(k)
+ φ1(k, ℓ)

}−1

, (39)

z̃2 =

{
− i

4

[
η(k)−1H

(1)
0 (kℓ) + 1

]
+

1

f02(k)
+ φ2(k, ℓ)

}−1

. (40)

7



Here φn(k, ℓ) are functions such that lim
ℓ→0

φn(k, ℓ) = 0, and

η(k) :=
f02(k)

f01(k)
. (41)

Taking the small-ℓ limit of the right-hand sides of (39) and (40), we find

z̃n → 2πη(k)2n−3

ln(kℓ)
for ℓ→ 0.

In the coincidence limit, ℓ → 0, the double-delta-function potential (34) tends to the single-

delta-function potential with coupling constant z1 + z2, i.e.,

v(x, y) = z δ(x)δ(y), z := z1 + z2. (42)

Let z̊ and z̃ respectively denote the bare and renormalized coupling constants corresponding to z.

In view of (6), the scattering amplitude for (42) has the form,

f(k′,k) = −
√

i

8πk

1

z̃−1 + i/4
. (43)

We can use this equation together with (35) and (38) to identify the correct coincidence limit of

(35) with

f01(k) + f02(k) =
1

z̃−1 + i/4
. (44)

Observe that due to the arbitrariness in the subtraction of infinities from z̊, we cannot make a

connection between z̃ and z̃n. Therefore, as it stands, (44) does not impose any constraint on z̃n or

their small-ℓ behavior.

The requirement that fn(k) should tend to nonzero regular functions as ℓ→ 0 provides a simple

resolution of the coincidence limit problem at the expense of making the renormalized coupling

constants z̃n depend on ℓ and k through Eqs. (39) and (40). The presence of the undetermined

functions φn and f0n in these equations shows that the standard treatment of the double-delta-

function potential is not capable of describing the dependence of the scattering amplitude on the

distance between the centers of the delta functions. In the remainder of this section, we describe

an alternative treatment of the double-delta-function potential that is free from this short-coming.

Refs. [16, 17] outline a dynamical formulation of stationary scattering (DFSS) whose application

to the double-delta-function potential (34) does not involve divergent terms and yields (2) with Amn

given by (8), [18]. This corresponds to (35) with fn(k) given by

f1(k) = A−1
11 + A−1

12 e
ikℓ sin θ0 =

4
[
4z−1

2 + i− iJ0(kℓ)e
ikℓ sin θ0

]

(4z−1
1 + i)(4z−1

2 + i) + J0(kℓ)2
, (45)

f2(k) = A−1
21 + A−1

22 e
ikℓ sin θ0 =

4
[
(4z−1

1 + i)eikℓ sin θ0 − iJ0(kℓ)
]

(4z−1
1 + i)(4z−1

2 + i) + J0(kℓ)2
. (46)

Because the application of DFSS to (34) does not involve any singular terms, there is no need

to interpret zn as bare coupling constants and perform their renormalization. The fact that they

determine the scattering amplitude via (35), (45), and (46) justifies their identification with the

physical parameters of the scattering problem.
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For ℓ→ 0, J0(kℓ) → 1, and (38), (45), and (46) imply

f0n(k) =
4zn

4 + i(z1 + z2)
. (47)

Evaluating the ℓ→ 0 limit of (35) and making use of (38) and (47), we have

lim
ℓ→0

f(k′,k) = −
√

i

8πk

1

(z1 + z2)−1 + i/4
.

This is precisely the formula that DFSS gives for the scattering amplitude of the single-delta-

function potential (42), namely (9). Therefore, DFSS not only avoids unwanted singularities of the

standard treatment of the double-delta-function potential, but it also produces the correct result in

the coincidence limit.

The application of the standard treatment of multi-delta-function potentials to (34) would agree

with the outcome of the DFSS provided that the renormalized coupling constants z̃n depend on k,

ℓ, and zn in such a way that (36) and (37) coincide with (45) and (46), respectively. Equating the

right-hand sides of these equations and solving for z̃n, we find

z̃1 =
4z1

{
z2
[
eikℓ sin θ0J0(kℓ)− 1

]
+ 4i

}

z1z2Y0(kℓ) [J0(kℓ)− eikℓ sin θ0 ] + 4z2
[
eikℓ sin θ0H

(1)
0 (kℓ)− 1

]
+ 16i

, (48)

z̃2 =
4z2

{
z1
[
e−ikℓ sin θ0J0(kℓ)− 1

]
+ 4i

}

z1z2Y0(kℓ)
[
J0(kℓ)− e−ikℓ sin θ0

]
+ 4z1

[
e−ikℓ sin θ0H

(1)
0 (kℓ)− 1

]
+ 16i

, (49)

where Y0 is the zero-order Bessel function of the second kind, and we have made use of the identity,

H
(1)
0 (x) = J0(x) + iY0(x).

Next, we calculate η(k) by inserting (47) in (41). This gives

η(k) =
z2

z1
. (50)

It is not difficult to check that for this choice of η(k), (48) and (49) agree with (39) and (40).

Furthermore, substituting (47) in (44), we find z̃ = z1 + z2 6= limℓ→0(z̃1 + z̃2) = 0.

3.2 Double-delta-function potential in 3D

Given a double-delta-function potential in three dimensions, we can choose a coordinate system in

which it takes the form

v(x, y, z) = z1δ(x)δ(y)δ(z) + z2δ(x− ℓ)δ(y)δ(z), (51)

for some ℓ > 0. Comparing this relation with (1), we see that a1 = 0 and a2 = ℓex. Substituting

these equations in (32) and (33) and making use of (19) and (30), we have

f(k′,k) = − 1

4π

[
f1(k) + f2(k)e

−ikℓ sin θ cosϕ
]
, (52)

f1(k) = A−1
11 + A−1

12 e
ikℓ sin θ0 cosϕ0 =

4π
[
4πz̃−1

2 + ik − ℓ−1eikℓ(α0+1)
]

(4πz̃−1
1 + ik)(4πz̃−1

2 + ik)− ℓ−2e2ikℓ
, (53)

f2(k) = A−1
21 + A−1

22 e
ikℓ sin θ0 cosϕ0 =

4π
[
(4πz̃−1

1 + ik)eikℓα0 − ℓ−1eikℓ
]

(4πz̃−1
1 + ik)(4πz̃−1

2 + ik)− ℓ−2e2ikℓ
. (54)

9



Here we use (k, θ0, ϕ0) and (k, θ, ϕ) to denote the spherical coordinates of the wave vectors k and

k′, so that k · ex = k sin θ0 cosϕ0 and k′ · ex = k sin θ cosϕ, and α0 := sin θ0 cosϕ0.

Again we demand that as ℓ → 0, the functions fn(k) do not diverge, i.e., there are functions

f0n(k) fulfilling (38). In Appendix B we use this requirement to derive the following analogs of (39)

and (40).

z̃1 =

{
− 1

4πℓ

[
η(k)eikℓ + ikℓ

]
+

1

f01(k)
+ φ1(k, ℓ)

}−1

, (55)

z̃2 =

{
− 1

4πℓ

[
η(k)−1eikℓ + ikℓ

]
+

1

f02(k)
+ φ2(k, ℓ)

}−1

, (56)

where η(k) is given by (41), and φn(k, ℓ) are functions satisfying lim
ℓ→0

φn(k, ℓ) = 0. In particular,

z̃n → −4πη(k)2n−3ℓ as ℓ→ 0.

Having established Eqs. (55) and (56), we can state the correct coincidence limit of the scattering

amplitude (52) in the form,

f01(k) + f02(k) = − 1

4πz̃−1 + ik
, (57)

where z̃ is the renormalized coupling constant associated with z := z1 + z2, and we have employed

(31). Notice that, similarly to two dimensions, z̃ 6= limℓ→0(z̃1 + z̃2) = 0.

In Appendix C, we use DFSS to calculate the scattering amplitude for a multi-delta-function

potential in three dimensions with the centers of the delta functions located on the x-axis. The

result is (19) with d = 3 and

Amn :=





z−1
n + ik/4π for m = n,

i sin(|am − an|k)
4π|am − an|

for m 6= n.
(58)

For N = 1, A−1
11 = (z−1

n + ik/4π)−1 and (19) gives (31) with z̃1 changed to z1. In particular, for the

potential v(x) = z δ(x), we find

f(k′,k) = − 4π

4π z−1 + ik
. (59)

For the double-delta-function potential (51), we can write (19) in the form (52) with the following

choices for the functions fn(k).

f1(k) = A−1
11 + A−1

12 e
ikℓα0 =

4π
[
4πz−1

2 + ik − iℓ−1 sin(kℓ)eikℓα0

]

(4πz−1
1 + ik)(4πz−1

2 + ik) + ℓ−2 sin2(kℓ)
, (60)

f2(k) = A−1
21 + A−1

22 e
ikℓα0 =

4π
[
(4πz−1

1 + ik)eikℓα0 − iℓ−1 sin(kℓ)
]

(4πz−1
1 + ik)(4πz−1

2 + ik) + ℓ−2 sin2(kℓ)
, (61)

where we have employed (58). It is easy to evaluate the ℓ→ 0 limit of the right-hand sides of (60)

and (61). Inserting the result in (38) gives

f0n(k) =
4πzn

4π + ik(z1 + z2)
. (62)

According to (52) and (62),

lim
ℓ→0

f(k′,k) = −f01(k) + f02(k)

4π
= − 4π

4π(z1 + z2)−1 + ik
.
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Comparing this relation with (59), we conclude that the application of DFSS to the double-delta-

function potential (51) produces a formula for the scattering amplitude that has the correct coinci-

dence limit.

The results obtained using the standard method based on the Lippmann-Schwinger equation

agree with those of DFSS provided that we choose the renormalized coupling constants of the

former approach in such a way that (53) and (53) coincide with (60) and (60), respectively. This

condition gives rise to the following three-dimensional analogs of (48) and (49).

z̃1 =
4πz1

{
z2ℓ

−1[kℓ− eikℓα0 sin(kℓ)]− 4πi
}

z1z2ℓ−2 cos(kℓ)[sin(kℓ)− kℓ eikℓα0] + 4πz2ℓ−1[kℓ+ ieikℓ(α0+1)]− 16π2i
,

z̃2 =
4πz2

{
z1ℓ

−1[kℓ− e−ikℓα0 sin(kℓ)]− 4πi
}

z1z2ℓ−2 cos(kℓ)[sin(kℓ)− kℓ e−ikℓα0] + 4πz1ℓ−1[kℓ + ieikℓ(−α0+1)]− 16π2i
.

The small-ℓ behavior of these relations are described by (55) and (56) with f0n(k) and η(k) given

by (62) and (50), respectively.

4 Concluding remarks

The emergence of unwanted singularities in dealing with physics problems has provided the much

needed clues for making important developments in theoretical physics. Among the most notable of

these is the development of renormalization schemes which have proven to be indispensable in the

study of fundamental interactions. Delta-function potentials in two and three dimensions provide

simple exactly solvable non-relativistic toy models whose standard treatment requires a coupling

constant renormalization. This has made these potentials an ideal pedagogical tool for teaching the

basic idea and methods of the renormalization program. During the past four decades, there have

appeared many publications on this subject [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], but none

pay attention to the coincidence-limit problem for multi-delta-function potentials.

Multi-delta-function potentials model a collection of point scatterers whose sizes are much

smaller than the wavelength of the incident wave. These scatterers have nevertheless nonzero

spatial extensions. Therefore they can never coincide. One can use this argument to question

the physical relevance of the coincidence-limit problem. But it cannot explain how shrinking the

distance between two of the point scatterers can nullify the scattering effects of the others whose

positions remain unchanged.

In this article we draw attention to the fact that the application of an alternative approach

to scattering theory, namely the dynamical formulation of stationary scattering (DFSS), produces

an expression for the scattering amplitude of multi-delta-function potentials in two and three di-

mensions that does not suffer from the coincidence-limit problem. Our attempts at exploring the

relationship between the outcomes of DFSS and the standard approach of using the Lippmann-

Schwinger equation have led us to realize that the renormalized coupling constants z̃n appearing

in the latter approach depend not only on the energy scale of the problem (determined by the

wavenumber k of the incident wave) but other relevant physical parameters such as the distances

between the point scatterers. More importantly, our results show that the standard treatment of

multi-delta-function potentials in two and three dimensions is not capable of determining the de-

pendence of z̃n on these parameters. The requirement that the outcome must have a consistent

11



coincidence limit provides some information about the behavior of z̃n when the distance(s) between

two or more of point scatterers become much smaller than k−1, but it does not fix the functional

form of z̃n. This in turn implies that the formula we obtain using the standard approach for the

scattering amplitude does not describe its dependence on the location of the point scatterers. This

is in sharp contrast to the formula we obtain using DFSS.
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Appendix A: Coincidence limit of multi-delta-function po-

tentials in DFSS

Eq. (32) gives the scattering amplitude for multi-delta-function potential (1) provided that (33)

holds. This means that the following equation holds for all m ∈ {1, 2 · · · , N}.

N∑

n=1

Amnfn(k) = eiam·k. (63)

As shown in Ref. [18] for two dimensions and in Appendix C for three dimensions, when the centers

of the delta-functions contributing to (1) lie on a straight line, we can apply DFSS to determine

Amn. This leads to (8) and (58) for two and three dimensions, respectively. We can express these

equations in the following unified form.

Amn =

{
z−1
n + γd for m = n,

γdQd(k|am − an|) for m 6= n,
(64)

where

γd :=

{
i
4

for d = 2,
ik
4π

for d = 3,
Qd(x) :=





J0(x) for d = 2,

sin x

x
for d = 3.

Notice that for both d = 2 and d = 3,

lim
x→0

Qd(x) = 1. (65)

Suppose that the distances between the centers of ν of the delta functions contributing to (1)

tend to zero. We refer to these as the “merging delta functions.” By relabeling the centers and

coupling constants zi of the delta functions appearing in (1), we can assume without loss of generality

that the merging delta functions are labelled by N − ν + 1, N − ν + 2, · · · , N . We wish to explore

the behavior of the scattering amplitude f(k′,k) for the potential (1) in the coincidence limit,

|an − aN−ν+1| → 0 for n ∈ {N − ν + 2, N − ν + 3, · · · , N}. (66)

12



This implies

v(x) → v⋆(x) :=
N−ν∑

n=1

znδ(x− an) + z⋆ δ(x− aN−ν+1), (67)

where z⋆ := zN−ν+1+zN−ν+2+· · ·+zN . v⋆ is a (multi-)delta-function potential consisting of N−ν+1

delta functions. We wish to show that in the coincidence limit given by (66), f(k,k′) tends to the

scattering amplitude of v⋆. It is not difficult to see that if we can prove this assertion for ν = 2, it

will hold for ν > 3. This is simply because we can achieve (66) by making pairs of delta functions

merge one at a time. Therefore, we confine our attention to the case ν = 2 where

z⋆ = zN−1 + zN , (68)

and (66) means

aN → aN−1. (69)

In this limit,

f(k′,k) → cd√
k3−d

{
N−2∑

n=1

fn(k)e
−ian·k′

+ [fN−1(k) + fN(k)]e
−iaN−1·k

′

}
, (70)

AN−1m = AmN−1 →





γdQd(|am − aN−1|) for m < N − 1,

z−1
N−1 + γd for m = N − 1,

γd for m = N,

(71)

AN m = AmN →





γdQd(|am − aN−1|) for m < N − 1,

γd for m = N − 1,

z−1
N + γd for m = N,

(72)

where we have employed (32), (64), and (65). We also note that (69) does not affect Amn for

m < N − 1 and n < N − 1; they are still given by (64).

Next, we examine the effect of (69) on fm(k). We can use (63), (71), and (72) to show that, in

this limit, (63) gives

N−2∑

n=1

Amn fn(k) + γdQd(|am − aN−1|)[fN−1(k) + fN(k)] = eiam·k for m < N − 1, (73)

N−2∑

n=1

AN−1n fn(k) + (z−1
N−1 + γd)fN−1(k) + γd fN(k) = eiaN−1·k, (74)

N−2∑

n=1

ANn fn(k) + γd fN−1(k) + (z−1
N + γd)fN(k) = eiaN−1·k. (75)

According to (71) and (72), AN n = AN−1n for n < N − 1. This observation together with (74) and

(75) imply that fN(k) = z−1
N−1 zN fN−1(k). With the help of this equation and (68), we can write

(74) as
N−2∑

n=1

AN−1n fn(k) + (z−1
⋆ + γd)[fN−1(k) + fN(k)] = eiaN−1·k. (76)

Let us introduce,

ž :=

{
z for m < N − 1,

z⋆ for m = N − 1,
f̌m(k) :=

{
fm(k) for m < N − 1,

fN−1(k) + fN(k) for m = N − 1.
(77)
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Then (70), (73), and (76) show that in the coincidence limit the scattering amplitude is given by

cd√
k3−d

N−1∑

n=1

f̌n(k)e
−ian·k′

, (78)

with f̌m(k) satisfying
∑N−1

n=1 Ǎmn f̌m(k) = eiam·k, and

Ǎmn :=

{
ž−1
n + γd for m = n,

γdQ(|am − an|) for m 6= n.

Comparing this relation with (64), we identify (78) with the scattering amplitude for the potential

v⋆. This concludes the proof that the scattering amplitude given by (32), (33), and (64) has a

consistent coincidence limit. We have been unable to extend this result to situations where the

centers of the delta functions contributing to the potential do not lie on a line, simply because the

application of DFSS to these potentials leads to technical difficulties.

Appendix B: Derivation of (39), (40), (55), and (56)

Eqs. (39) and (40) reveal the small-ℓ behavior of the renormalized coupling constants z̃n. To derive

these equations, first we introduce,

h :=
i

4
H

(1)
0 (kℓ), ξn := z̃−1

n − h +
i

4
, (79)

µ1 := −
(
eikℓ sin θ0 − 1

)
h, µ2 :=

(
eikℓ sin θ0 − 1

)
(ξ1 + h), (80)

and use them to express (36) and (37) in the form,

f1(k) =
ξ2 + µ1

ξ1ξ2 + (ξ1 + ξ2)h
, f2(k) =

ξ1 + µ2

ξ1ξ2 + (ξ1 + ξ2)h
. (81)

According to (23) and (79), h diverges logarithmically as ℓ→ 0. This together with (80) imply

lim
ℓ→0

µ1 = 0, lim
ℓ→0

(ξ1 + µ2) = lim
ℓ→0

ξ1. (82)

With the aid of these relations, we can use (38) and (81) to show that

f01(k) = lim
ℓ→0

1

ξ1 + [η(k) + 1]h
, f02(k) = lim

ℓ→0

1

ξ2 + [η(k)−1 + 1]h
, (83)

and

η(k) = lim
ℓ→0

ξ1
ξ2
. (84)

Next, we introduce

φ1(k, ℓ) := ξ1 + [η(k) + 1]h− 1

f01(k)
, φ2(k, ℓ) := ξ2 + [η(k)−1 + 1]h− 1

f02(k)
. (85)

These functions satisfy, lim
ℓ→0

φn(k, ℓ) = 0, by virtue of (83). Substituting the second relation in (79)

in (85) and solving the resulting equations for z̃n, we arrive at (39) and (40).
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We can similarly derive (55) and (56). To see this, first we note that we can express (53) and

(54) in the form (81) provided that we redefine h, ξn, and µn as follows.

h :=
eikℓ

4πℓ
, ξn := z̃−1

n − h+
ik

4π
, (86)

µ1 := −
(
eikℓα0 − 1

)
h, µ2 :=

(
eikℓα0 − 1

)(
ξ1 + h

)
. (87)

If ξ1 or ξ2 tends to a finite limit as ℓ → 0, (86) and (87) imply that the right-hand side of both

of the equations in (81) tend to zero as ℓ → 0. This contradicts the requirement that f0n(k) are

nonzero functions. Therefore ξ1 and ξ2 must both tend to infinity as ℓ → 0. We can use this

observation together with (38) and (81) to show that (84) holds. Using this equation together with

(38) and (81), we are led to (83). This in turn shows that the functions φn(k, ℓ) given by (85) fulfill

lim
ℓ→0

φn(k, ℓ) = 0. Eqs. (55) and (56) follow from (85) and (86).

Appendix C: Application of DFSS to multi-delta-function

potentials in 3D

Consider a multi-delta-function potential (1) in three dimensions and suppose that the centers of

the delta functions are on a straight line that we identify with the x axis, i.e., an = anex. Then the

potential has the form

v(x, y, z) = g(x, y)δ(z), (88)

where

g(x, y) = δ(y)

N∑

n=1

znδ(x− an), (89)

and we can use the results of Sec. 8 of Ref. [17] to compute the scattering amplitude. In the following

we give the details of this calculation.

First, we introduce a suitable notation. Given u ∈ R
3, we denote the projection of u onto

the x-y plane by ~u; if in Cartesian coordinates u = (ux, uy, uz), then ~u = (ux, uy). In particular,

~x = (x, y) because x = (x, y, z). We also use the hybrid notation: u = (~u, uz).

Now, consider a scattering setup where the source of the incident wave is located at z = −∞ or

z = +∞, then every solution of the Schrödinger equation (4) for a short-range potential v satisfies

ψ(~x, z) →
∫

Dk

d2~p

4π2̟(~p)
ei~p·~x

[
Ă±(~p)e

i̟(~p)z + B̆±(~p)e
−i̟(~p)z

]
for z → ±∞,

where

Dk :=
{
~p ∈ R

2 | |~p| < k
}
, ̟(~p) :=

{ √
k2 − |~p|2 for |~p| < k,

i
√

|~p|2 − k2 for |~p| ≥ k,
(90)

and Ă± and B̆± are functions of ~p ∈ R
2 that vanish for |~p| ≥ k. We denote the set of functions with

this property by Fk, so that Ă±, B̆± ∈ Fk. It is not difficult to see that the scattering amplitude

of the potential should be related to Ă± and B̆±. If the source of the incident wave is at z = +∞,
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we have [17],

Ă− = 0, B̆+ = 4π2̟(~k) δ~k, (91)

f(k′,k) = − i

2π
×
{

Ă+(~k
′) for ϑ ∈ [0, π

2
),

B̆−(~k
′)− 4π2̟(~k)δ(~k′ − ~k) for ϑ ∈ (π

2
, π],

(92)

where (k, ϑ0, ϕ0) and (k, ϑ, ϕ) are respectively the spherical coordinates of k and k′, so that

~k := k sinϑ0(cosϕ0 ex + sinϕ0 ey), ~k′ := k sinϑ(cosϕ ex + sinϕ ey),

and δ~k is the delta function in two dimensions that is centered at ~k, i.e., δ~k(~p) := δ(~p− ~k). Notice

that |~k| = k sin ϑ0, |~k′| = k sin θ, and ̟(~k) = k| cosϑ|.
The fundamental transfer matrix

̂̆
M is a linear operator acting in the space F 2

k . It is conveniently

expressed as the 2× 2 matrix with operator entries
̂̆
M ij : Fk → Fk that fulfills

̂̆
M

[
Ă−

B̆−

]
=

[
Ă+

B̆+

]
.

By virtue of this relation and (91), we have

Ă+ =
̂̆
M 12B̆−, (93)

̂̆
M 22B̆− = 4π2̟(~k) δ~k. (94)

In Ref. [17], we calculate the fundamental transfer matrix for potentials of the form (88) and

show that

(̂̆
M12φ

)
(~p) = − i

8π2

∫

Dk

˜̃g(~p− ~q)φ(~q)

̟(~q)
d2~q, (95)

(̂̆
M22φ

)
(~p) = φ(~p)−

(̂̆
M12φ

)
(~p), (96)

where φ ∈ Fk, and ˜̃g stands for the two-dimensional Fourier transform of g which has the form

˜̃g(~p) :=

∫

R2

d2~x e−i~p·~xg(~x) =

N∑

n=1

zn e
−i~an·~p.

Substituting the last equation in (95) and making use of (90) and (93) , we obtain

Ă+(~p) =
(̂̆
M 12B̆−

)
(~p) = − i

2

N∑

n=1

znB̆−(~an)e
−i~an·~p, (97)

where

B̆−(~x) :=
1

4π2

∫

Dk

ei~q·~xB̆−(~q)√
k2 − |~q|2

d2~q. (98)

Next, we use (96) and (97) to express (94) in the form,

B̆−(~p) = − i

2

N∑

n=1

znB̆−(~an)e
−i~an·~p + 4π2̟(~k)δ(~p− ~k). (99)
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Substituting this equation in the right-hand side of (98) and setting ~x = ~am, we find the following

system of linear equations for Xn := znB̆−(~an).

N∑

n=1

AmnXn = eik·am, (100)

where Amn are given by (58), and we have made use of ~k·~am = k·am, |~am−~an| = |am−an| = |am−an|,
and ∫

Dk

ei~a·~q√
k2 − |~q|2

d2~q =
2π sin(|~a|k)

|~a| .

Assuming that A is invertible, which happens when there are no spectral singularities [19], we

can express the solution of (99) in terms of the entries A−1
mn of A−1. This allows us to determine

B̆−(~an) = z−1
n Xn. Substituting the result in (97) and (99), we find

Ă+(~p) = B̆−(~p)− 4π2̟(~k)δ(~p− ~k) = − i

2

N∑

m,n=1

A−1
mne

i(an·k−am·p).

Using this relation in (92), we recover the formula (19) for the scattering amplitude with d = 3.

Because the multi-delta-function potential (88) is invariant under a reflection about the x-y plane,

this formula holds also for situations where the source of the incident wave is located at z = −∞.
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