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The quantum-mechanical D-dimensional inverse square potential is analyzed using field-theoretic
renormalization techniques. A solution is presented for both the bound-state and scattering sectors of
the theory using cutoff and dimensional regularization. In the renormalized version of the theory, there
is a strong-coupling regime where quantum-mechanical breaking of scale symmetry takes place through
dimensional transmutation, with the creation of a single bound state and of an energy-dependent s-wave
scattering matrix element.

PACS numbers: 03.65.Ge, 03.65.Nk, 11.10.Gh, 31.15.–p

The quantum-mechanical inverse square potential is
a singular problem that has generated controversy for
decades. For instance, the solution proposed in Ref. [1]
failed to give a Hamiltonian bounded from below, and this
led to a number of alternative regularization techniques
[2–4] based on appropriate parametrizations of the
potential—including the replacement [5] of self-
adjointness by an interpretation of the “fall of the particle
to the center” [6]. However, it is generally recognized
that the singular nature of this problem lies in that its
Hamiltonian, being symmetric but not self-adjoint, admits
self-adjoint extensions [7]. Recently, a renormalized
solution was presented using field-theoretic techniques
[8], but it was just limited to the one-dimensional case
and cutoff renormalization.

In this Letter (i) we generalize the results of Ref. [8] to
D dimensions (including the all-important D  3 case) us-
ing cutoff regularization in configuration space; (ii) present
a complete picture of the renormalized theory; and (iii)
confirm the same conclusions using dimensional regular-
ization [9]. This problem is crucial for the analysis and
interpretation of the point dipole interaction of molecular
physics [10,11], and may be relevant in polymer physics
[12]. In addition (i) it displays remarkable similarities with
the two-dimensional d-function potential [13–15]; (ii) it
provides another example of dimensional transmutation
[16] in a system with a finite number of degrees of free-
dom; and (iii) it illustrates the relevance of field-theoretic
concepts in quantum mechanics [13–15,17].

This problem is ideally suited for implementation in
configuration space [18], where the radial Schrödinger
equation for a particle subject to the r22 potential in D

dimensions [19] reads (with h̄  1 and 2m  1)

∑
1

rD21

d

dr

µ
rD21 d

dr

∂
1 E

2
lsl 1 D 2 2d 2 l

r2

∏
Rlsrd  0 , (1)

which is explicitly scale invariant because l is dimension-
less [20]. In Eq. (1), l is the angular momentum quantum

number and l . 0 corresponds to an attractive potential;
with the transformation Rlsrd  r2sD21dy2ulsrd, Eq. (1) is
recognized to have solutions Rlsrd  r2sDy221dZsl

s
p

E rd,
where Zsl

szd represents an appropriate linear combination

of Bessel functions of order sl  fl
spd
l 2 lg1y2, with

l
spd
l  sl 1 Dy2 2 1d2. (2)

If l were allowed to vary, one would see that the nature

of the solutions changes around the critical value l
spd
l , for

each angular momentum state. For l , l
spd
l (including re-

pulsive potentials), the order sl of the Bessel functions is
real, so that the solution regular at the origin is propor-

tional to the Bessel function of the first kind Jsl
s
p

E rd.
However, the same solution fails to satisfy the required
behavior at infinity for bound states (E , 0); in other
words, in the weak-coupling regime, the potential cannot
sustain bound states. Moreover, the scattering solutions
are scale invariant [20], with D-dimensional phase shifts

d
sDd
l  hfl

spd
l g1y2 2 fl

spd
l 2 lg1y2jpy2. Nothing is sur-

prising here: the potential r22 is explicitly scale invariant
and no additional scale arises at the level of the solutions,
which are well-behaved—one could say that the potential
looks like a regular “repulsive” one. However, this picture

changes dramatically for l . l
spd
l : all the Bessel functions

acquire an uncontrollable oscillatory character through the

imaginary order sl  iQl , where Ql  fl 2 l
spd
l g1y2, as

we shall see next.
For the remainder of this Letter, we will mainly analyze

the strong-coupling regime l . l
spd
l . First, for the bound-

state sector, from Eq. (1), ulsrd ~
p

r KiQl
s
p
jEjrd, with

Ksl
szd being the modified Bessel function of the second

kind [21], whose behavior near the origin is of the form

KiQl
szd

sz!0d
, 2

r
p

Ql sinhspQld
sin

∑
Ql ln

µ
z

2

∂
2 dQl

∏

3 f1 1 Osz2dg , (3)

where dQl
is the phase of Gs1 1 iQld. In Eq. (3), the

wave function oscillates with a monotonically increasing
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frequency as r ! 0. As a result, there is no criterion for
the selection of a particular subset of states and the bound-
state spectrum is continuous and not bounded from below.
Clearly, the problem should be renormalized in such a way
that the Hamiltonian recovers its self-adjoint character [7].

A first attempt [1,22] is to use Eq. (3) and recognize
that the orthogonality condition for the eigenstates restores
the discrete nature of the spectrum; unfortunately, in this
approach, the Hamiltonian is not bounded from below.
However, as was proposed in Ref. [8] for the particular
simple case D  1, Eq. (3) can be regularized by intro-
ducing a short-distance cutoff a, with a ø jEj21y2, so
that the regular boundary condition ulsad  0 is imple-
mented in lieu of the undefined behavior at r  0. Then,
Eq. (3) gives the zeros of the modified Bessel function of
the second kind with imaginary order, zn  2esdQl

2npdyQl

[up to a correction factor 1 1 Osz2
nyQld], where n is

an integer; moreover, the assumption that zn ø 1, with
Ql $ 0, implies that s2nd , 0, with the conclusion that
n  1, 2, 3, . . . . Parenthetically, zn ø 1 only if Ql ø 1,

so that dQl
 2gQl 1 OsQ2

l d (with g being the Euler-
Mascheroni constant) and the energy levels become

Enr l  2

µ
2 e2g

a

∂
2

exp

µ
2

2pnr

Ql

∂
, (4)

where n  nr stands for the radial quantum number.
Equation (4) should now be renormalized by re-

quiring that Ql  Qlsad in the limit a ! 0. More
precisely, in order for the ground state [characterized
by the quantum numbers sgsd ; snr  1, l  0d] to
“survive” the renormalization prescription with a fi-

nite energy, it is required that Qsgsdsad
sa!0d! 01. This

condition amounts to a “critically strong” coupling,

lsad
sa!0d! l

spd
sgsd 1 01 (where the notation Q0  Qsgsd

and l
spd
0  l

spd
sgsd is understood for the ground state). In

particular, with this ground-state renormalization, the
required relation between Qsgsdsad and a, for a small, is

2gs0d


2 p

Qsgsdsad
1 2 ln

µ
ma

2

∂
1 2g , (5)

where m is an arbitrary renormalization scale with dimen-
sions of inverse length and gs0d is an arbitrary finite part
associated with the coupling, such that

Esgsd  2m2 expfgs0dg \ 2 m2. (6)

In Eq. (6), it is understood that, due to the arbitrariness of
both gs0d and m, the simple choice gs0d

 0 can be made.
Finally, the ground-state wave function is obtained in the

limit Qsgsdsad
sa!0d! 01, which yields [23]

Csgsdsrd 

s
G

µ
D

2

∂ µ
m2

p

∂
Dy2 K0smrd

smrdDy221
, (7)

whose functional form, up to a factor r2sDy221d, is dimen-
sionally invariant [24].

The existence of a ground state with a dimensional scale
m ~ jEsgsdj1y2 violates the manifest scale invariance of the
theory defined by Eq. (1), but its magnitude is totally ar-
bitrary and spontaneously generated by renormalization.
Here we recognize the fingerprints of dimensional trans-
mutation [16].

The next question refers to the possible existence of ex-
cited states in the renormalized theory. For any hypotheti-
cal state with angular momentum quantum number l . 0,
this question can be straightforwardly answered from the

ground-state renormalization condition Qsgsdsad
sa!0d! 01,

which, together with Eq. (2), provides the inequality l 

l
spd
sgsd  sDy2 2 1d2 , l

spd
l . Then, if such a state existed,

it would automatically be pushed into the weak-coupling
regime, with the implication that it could not survive the
renormalization process. This means that there are no ex-
cited states with l . 0. Next, the question arises as to the
possible existence of bound states with l  0 and nr fi 0.
The fact that these hypothetical bound states also cease to
exist in the renormalized theory follows from the exponen-
tial suppression

Ç
Enr0

Esgsd

Ç
 exp

∑
2

2psnr 2 1d

Qsgsd

∏
sQsgsd!0,nr .1d! 0 . (8)

Moreover, it is easy to see that, for these hypothetical
states, the corresponding limit of the wave function be-
comes ill defined, so that they effectively vanish. In
conclusion, the renormalization process annihilates all can-
didates for a renormalized bound state, with the only ex-
ception of the ground state of the regularized theory, which
acquires the finite energy value (6) and the normalized
wave function (7).

Similarly, the scattering solutions can be studied by
going back to Eq. (1), which implies that ulsrdy

p
r is

a linear combination of the Hankel functions H
s1,2d
iQl

skrd
[21], whose asymptotic behavior (r ! `), combined with
the regularized boundary condition ulsad  0, provides

the scattering matrix elements S
sDd
l sk; ad and phase shifts

d
sDd
l sk; ad. For example, the phase function f

sDd
l sk; ad 

d
sDd
l sk; ad 2 sl 1 Dy2 2 1dpy2 is given by

tan sssf
sDd
l sk; adddd  tanh

µ
pQl

2

∂
1 2 Tlsk; ad%l

Tlsk; ad 1 %l

, (9)

where Tlsk; ad  tanfQl lnskay2dg and %l  y2,lyiy1,l ,
with y6,l  Gs1 2 iQld 6 Gs1 1 iQld. Equation (9)
is ill defined in the limit a ! 0; in effect, the variable
Tlsk; ad oscillates wildly between 2` and `, unless
Ql ! 0, just as for the bound-state sector. From Eqs. (5)
and (6), for l  0, in the limit a ! 0, the renormalized
s-wave phase shift becomes
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tan sssd
sD0d
0 skd 2 sDy2 2 1d py2ddd 

p

lnsk2yjEsgsdjd .

(10)

Equation (10) explicitly displays the scattering behavior of
s states, as well as its relation with the bound-state sector
of the theory. Both the functional form of Eq. (10) and
the existence of a unique bound state in the renormalized
theory are properties shared by the two-dimensional d-
function potential [13–15].

The analysis leading to Eq. (10) refers to l  0. For all
other angular momenta, l . 0, the coupling will be weak,
so that the phase shifts will be given by their unregularized

values, with the condition that l  l
spd
sgsd  sDy2 2 1d2;

then,

d
sDd
l jlfi0  fsl 1 Dy2 2 1d 2

p
lsl 1 D 2 2dg

p

2
,

(11)

which is a scale-invariant expression.
We now turn to an outline of a similar analysis using

dimensional renormalization [9]. In particular, we will fo-
cus on the bound-state sector of the theory, to illustrate
and emphasize the fact that proper renormalization using
different regularizations yields the same physics. In this al-
ternative regularization scheme, we define the dimension-
ally regularized potential in D0 dimensions in terms of its
momentum-space expression, according to [23]

V sD0dsr 0d  2lB

Z dD0
k0

s2pdD0 eik0?r0
∑Z

dDr e2ik?r 1

r2

∏

kk0

 2lBpey2Gs1 2 ey2dysr 0d22e , (12)

where e  D 2 D0 and lB is the dimensional bare cou-
pling, which will be rewritten as mB  lme , with flg  1

and m being the floating renormalization scale. The cor-
responding D0-dimensional Schrödinger equation for the
reduced radial wave function ulsrd  r sD021dy2Rlsrd can
be converted, by means of a duality transformation [4,25]

8<
:
jEj1y2r  z2ye ,

jEj2D0y4 ulsrd  wl,eszdz1ye21y2,

(13)

intoΩ
d2

dz2
1 eh 2 fVeszd 2

p2 2 1y4

z2

æ
wl,eszd  0 ,

(14)

where fVeszd  24 sgnsEdz4ye22ye2. In Eq. (14), the
new parameters are

eh 

4lpey2 Gs1 2 ey2d

e2

µ jEj
m2

∂2ey2

, (15)

and p  2sl 1 D0y2 2 1dye. The key to solving
Eq. (14) is that (i) the parameter p is asymptotically

infinite; and (ii) the term fVeszd in Eq. (14) behaves as an
infinite hyperspherical potential well in the limit e ! 0.
Then, for bound states, as a first approximation, the
particle is trapped in a well with a smooth left boundary
proportional to 1yz2 and an infinite-well boundary at
z2 ø 1; as the left turning point is z1 ø pyeh1y2, the
WKB quantization condition—which we expect to be
asymptotically correct for p ! `—becomes

Z 1

pyeh1y2

s
eh 2

p2 2 1y4

z2
dz ø

µ
nr 2

1

4

∂
p , (16)

so that eh1y2
 p 1 Cnr

p1y3, where Cnr
 f3psnr 2

1y4dg2y3y2. Therefore, from Eq. (15), it follows that the
regularized energies are

jEnr lj  m2

"
l

l
spd
l

#
2ye

expfGnr lsedg , (17)

where

Gnr lsed  2 24y3Cnr
sl

spd
l d21y3e21y3

1 flnp 1 g 1 2sl
spd
l d21y2g . (18)

Equation (17) can be renormalized by demanding that it
be finite for the ground state and by letting l  lsed;
explicitly,

lsed  l
spd
sgsd

Ω
1 1

e

2
fgs0d 2 Gsgsdsedg

æ
1 osed , (19)

with an arbitrary finite part gs0d. In particular,

lsed
se!0d! l

spd
sgsd 1 01, i.e., upon renormalization,

the coupling becomes critically strong with respect to s

states. Just as for cutoff regularization, it follows that
only bound states with l  0 survive the renormalization
process. As for the excited states with l  0 in Eq. (17),
they are exponentially suppressed according to

Ç
Enr0

Esgsd

Ç
 expf224y3sCnr

2 C1d sl
spd
sgsdd

21y3 e21y3g

se!0,nr .1d! 0 . (20)

Parenthetically, the regularized energies of Eqs. (4) and
(17), for finite a and e, are noticeably different; nonethe-
less, as expected, their renormalized counterparts have ex-
actly the same informational content.

In short, we have analyzed the inverse square potential
and found that (i) a critical coupling divides the pos-
sible behaviors into two regimes; (ii) in the strong-coupling
regime, the theory is ill defined and requires renormaliza-
tion; and (iii) upon renormalization of the strong-coupling
regime, only one bound state survives and s-wave
scattering breaks scale invariance with a characteristic
logarithmic dependence. The existence and order of

magnitude of a critical coupling l
spd
sgsd  1y4 for D  3
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are in agreement with recent experimental results [10,11]
for a wide range of polar molecules [26].

A final remark is in order. Strictly, even though a more
careful treatment with dimensional regularization changes
Eq. (17), the difference appears only at the level of the
finite parts (linear in e) and is immaterial to the arguments
presented here. These corrections, as well as a detailed
treatment of the scattering sector of the theory, will be
presented elsewhere.
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