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ABSTRACT

The development of a quantum field theory around a classical solu-
tion implies the treatment of the corresponding zero frequency
modes., For the Yang-Mills theory arocund the instanton there are
the gauge, translation and dilatation zero modes. We treat them
together by introducing the corresponding collective co-ordinates
and re-expressing the Jacobian in terms of Faddeev-Popov fields.
The propagators of the gauge and Faddeev-Popov fields are cbtained
together with the vertices that define the Feynman rules. Renor-
malization is performed in the zeroc mass version of the BPHZ for-
malism. Slavnov identities are thus proved; they allow to show
the independence of the theory on the parameters introduced to

deal with the zero modes.
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1. INTRODUCTION

We wish to present in this paper a careful study of the definitions of the

perturbative expansion of gauge theories around a classical solutiom.

The interest for such an attempt is obvious. Gauge theories are known to
: have classical solutions with finite action in Euclidean space, which is the space
in which quantum field theories are actually developed. These solutions represent
: the minima of the quantum actionsl)

2)

integral that defines the theory ‘', The actual contribution of the classical

and, therefore, contribute té the functional

solution is weighted by the vacuum fluctuations of the quantum modes which have
been calculated by 't Hooft3). This calculation implies the evaluation of the
determinant of the quadratic form in the expansion of the Lagrangian arownd the
classical solution and involves no major difficulties related to zero modesA).
These difficulties seem to us unavoidable if one wants to define the theory beyond
this zero order contribution. Or, in other words, if one wants to have a well-
defined expansion whose first term is the classical contribution evaluated by

't Hooft-

We would like, therefore, to reproduce for this case, and to be more definite
for the Yang-Mills theory developed around the BESF instaﬁtonl),.a technique some-—
what analogous to the one we have for the usual expansion around the zero field
solutions. This implies the definition of a renommalization procedure that would
allow the construction of a perturbative algorithm (Feynman diagfams) based on
propagators, vertices and finite counterterms calculable in terms of a limited num-

ber of arbitrary parameters,

In order to do so we shall first recognize all zero modes. For the case
under consideration these are those related to gauge invariance besides the transe
lation and dilatation ones. A formalism which treats them together in terms of
covariant quantities is introduced in Section 2.

Using functional integral techniques we then introduce collective co~ordi=-

: natess)’z)

to face the problems‘generated by the zero modes. The Jacobian is
written in terms of generalized Fa&deev—Popov ghosts. Finally, the Lagrangian so
obtained is proved to be invariant under some transformations of the supersymmetric

type6). ' |

Starting from this Lagrangian we sketch in Section 3 the renormalization pro-
cedure and we derive the Feymman rules and the propagators. Section 4 is more

7).8)

technical; it strongly relies on the BPHZ fo:malism and the technigues de-

veloped in Ref. 6). It can be omitted without jeopardizing the understanding of
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the paper. Some aspects of the renormalization, related to the non-locality of
the Lagrangian, are discussed. Slavnov's identity, transcribing the invariance
found in Section 2, is then proved at any order in the perturbation theory.
Section 5 summarizes the results. Using Slavnov's identity we finally prove that
the connected Green functions which do not contain Faddeev-Popov ghosts related
to translation and dilatation zero modes, are independent of the parameters fe—

lated to these zerc modes.

HEURISTIC DEFINITION OF THE THEQORY:
TREATMENT OF ZERO MODES

In this part we shall use functional integral methods to derive the form of
8 perturbative development of the Green functions around a classical solution with
finite action in the Euclidean metric. The generating functional of the Green
functions will be normalized to the sourceless'generating functional pertﬁrbatively
developed around the same classical solution. To be specific, we shall study the

1)

case of pure SU(2) Yang-Mills theory developed around the instanton

oL = -f b ¥
By o Qb A g B

where the notations are the usual ones3). We want to compute the quantity

2()u) = fﬁ@u wpﬂ%(",’ﬂ@) ol

Agl being a classical solutiom, (A;l

basic quantity to study to get a perturbation theory is the kernel of the quadratic
form in Qu:

+ Qﬁ) has no linear term in Qﬂ and the
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This kernel is not invertible because of zero modes appearing in its spectral de-

0/11 i ;20/64/‘)

composition. Occurrence of these zeroc modes is due to the fact that the chosen

classical solution breaks some of the symmetries of the Lagrangian =- specifically
gauge, translation and dilatation invariance in our exdmple, The elimination of

the zero modes due to gauge invariance is equivalent to a background gauge fixing
termg)'

A G

24 a i,
A/Mli(é'x) = -Q(l(x fa)[/{ﬁ/fi(hm)?] _Q (/(X+q)+

o L Rpfxea) d R Uxpa)
7 ?)(Am}“

In fact, the equations of motion admit a family of solutions deduced from

. ) ) ] (4)
b= (who, av, 4) i Qe (w2
C{ f X;. ‘n/)
LA ;(’(”'q) = 2 7/7"{ r:
Vel 9’ (X+Q) + /,(z
A o’/(é«)/ , =0 ¥ b
Ve
OFA/ ) A/: 3“".(;") (5)
] !/
VAR

appear as zerc modes for the kermel ‘{ﬁv'
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We can write ezplicitly these zero modes in our example

V.
k, b x
2 (1) < 24, (bx) [ﬂq [5,x1+ 24 &4 3] )

2w ly)
k
sg(lu) J (hrea-y) ©

Gatbe) s QALY 9 47 )
P ;) ‘?;' é)é‘}{f‘{)
— _ QA ('61 l x
‘/k,i(éb‘d = E)‘A; t{’} f'é‘a(f‘t) ;’e(‘i“?) "‘5( }:)

However, these z are not naturally defined in terms of commections,

Indeed, a
space-time transformation should be accompanied by the corresponding gauge trans-

formation. This leads naturally to the orthogonal basis

B b,y y
Z/M.(L,x) = {7,'0,[ /6,1) ) 7/"‘(6' x) Z,S'L'x)/ -

where z (b x) and z_l‘l .(b,x) are linear combinations of the =z defined in (6):
’

7 U’M)-' ?’ “")— f?i'(éx} A,‘(é }o/?~.
) A = - ,.,,.(h)

fot
ﬁﬁ.('bd) d (‘ 5 - f? [(6.5) (‘(ﬁf”’)’q (L :1)"/7 (8)
(’(Xr*“) Fr bo) = -(x 1, Lo, ))W

&




2,1 General treatment of the zero modes

To face the problem raised by the occurrence of these zero modes we shall

use the now well-known collective co-ordinate. method and the Faddeev-Popov trick,

Let us decompose the quantum field QU on the basis of the eigenmodes of

d{ﬁv. Denoting the non-zero eigenmodes by qﬁ i(b,x) we write
' H)

74 B B " g,
4,00 % Anloore G, o= AL1b s § (ko § 3o

pall Yol
(9)

The fumctional integral on Qu (2) is an integration over the quantum variables

2 ama 2o

. n . . .
Let us change the variables and use b and § as integration variables,
. . ' . B . . . -
fixing the EB at some given values ¢ . The functional integration om Q is
U

(olb A5 g™ TG") A7’

where A is the Faddeev-Popov Jacobian

" 8 2" "
A ) oAe T BCB (10)

Thanks to the orthogonality of the eigenmodes we get from (9) the equation:

[Sc/xgﬁ;f‘:x)gﬂiu,n §B.-.f A4S a0 f A (5:1)25:{"‘):/::

(11)

Using the expression on the left-hand side of Eq. (11)
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as quantum variables in place of the gB the functional integral (2) can be

written:

Z(je) = (DR [(, 3ot -]
<O e fo/x[ KBl +4) ] .
A= DA—{ 24 W} i *f@ o 37’"1“; }

Let us change the integration variable Qu,i(x) to Qu,i(b'x) defined so as to
transform as the adjoint representation under the gauge transformations., Using
the fact that Zﬁ’i(b,x) transform in the same way, the argument of the & fumc-
tion in (12) is invariant under a b transformation., Then we can write (12)

under the form

z /J}} = F/A A, Q,(A,x) o Hg,,(ﬁn) /j,,iw,x;,/,.._ c®7].
4 Juf fr/x [/@/Jf,@) ‘l’J,v @,,] (13)
174
N IA b9 e Q ] B s
A i DM({ .—f—— b Jf,f‘(l" )"/]

Using the classical trick due to 't Hooft we can multiply 2Z(j ') by exp - ABC

B2

without changing the ratio Z(ju)/Z(O) which does not depend on cB and inte-

grate over cB using the ¢ function. Finally, the Jacobian A can be written
. . s B - . .

making use of Faddeev-Popov anticommuting fields < ,cB. This casts (13) into

Z(J;u)_., (o(é p@@cagf ﬁff[[[@,,cf’ﬂ}y; @]a/x "

where

DY R T O
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«
i CB[ 9[/4/,"(6,1) t+ Q,,'(é.xjjj B-(‘,J‘)ﬂ/xj =B (15)

9 B' /

B -B . X . . .
L(Q,¢c ,c ) admits an exact symmetry which gemeralizes the ome introduced in 0

Ref. 16). In fact, (15) is invariant under the following set of tramsformatioms:
74
()-A (b.x) = O ‘(‘ « ]
6.0 + @ Sox)f _ g’
? D[A/o,g - L c e
o B
a 4B € x 8 b, x) ofx
-2 4 @“.J_'XZ".((' x (16)

A B8 _p'_d”
Jcl - kl?,CB c’c

B Qg
"o X
S
Radl
]
Ir

1 "
where T is an infinitesimal anticommuting parameter, and where fB is defined

"’ 4 8’8" s
[5%3’ ' 99_'] (A/“ +€)“) = 7(3 ;%Mw "fw) an

This symmetry will be the basic tool for carrying out the renormalization program

in Section 4.

2.2 Explicit formalism

Let us now fix the AB to be 1/20 independent of x for the gauge modes,
1/28 independent of Vv for the translations and 1/2y for the dilatations. Let
us also remark that if we change the quantum variables cB and EB to cB(b)
and EB(b) as we have done for QH’ (15) is invariant under b transformatioms,

except for the terms in B and Y which vary under dilatations. This implies

AT 183 e RN YO e i -
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that we can perform a b transformation and forget the b wariables except for

A in the B and vy terms. Using the notations cB = (e(y), wv' P) and EB

= (c(y), av' ), (14) can be written:

i) <D, (D, De D L, o Yol .
x&?ﬁ[‘f‘,j/@)’/x (18)
L2 %) Fi%) - 2, (0 4)°

d
"’% (29 - L (te) o
c, u (Y’fxyy/}/qy

4

vhere we have used the notations Fcé = F (AC15, so that DﬁFst =0, and
:.-D c+@xc .,.(V,x,f’)(pﬁ-f; + ) V/

u/’ 7’ > v e 7 (20)

The Lagrangian (19) is invariant under the transformations (16) which can be
explicitly written:

Jﬁiw :0
Jﬁ/j."-(x)-
AJC‘"W
J¥ .
J ¥

\:Q

L1

&
J) o) '
: (21
./D“ (x)
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¥ = (:{-;(x)
Jg - Ty .
-— (21ctd)
or‘/’ = O
o-! ox& e(BenP)D & - 2(Een ) 5 F)E
1 ’ * f(21')

Actually the four following terms composing L in (19) are separately invariant

under (21)

{
i
(

Nl"'
Niw
N
0>
-

~
N~
N~

c{ (22)

Equation (18) is a proper definition of the generating functional which was
i1l defined in (2) due to the zero modes. The Lagrangian (19), which generates

this functional integral, is invariant under the transformatioms (21).

Conversely the transformations (21) characterize the Lagrangian, up to the
four normalization constants, corresponding to the four terms in (22), provided
we demand the additional following property: apart from (f FﬁvQﬁ)z and
g vaﬁva)z’ all the other terms in the Lagrangian should have canonical di-
mension 4, carry no Faddeev-Popov charge and be local in the quantum and extermal
fields. Let us finally list in the Table the quantuiz and external fields of the
theory. The first number in brackets represents the canomical dimension of the

field, the second one its Faddeev-Popov charge.
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Externagl fields x dependent quantum fields |x independent quantum fields

E, ‘/m [2d QW [.o] iE,, [-1, 1]
l—‘“’ [1e]] < Jo, 1] s
«’: e R R I A

(F) [0' 0] 4’ [2 . -(]

vy

Do
»

3. RENORMALIZATION PROCEDURE -
FEYNMAN RULES - PROPAGATORS

Let us now forget the heuristic arguments which have led us to the Lagrangian
(19) and the symmetry (21). We shall now start from this point, and try to con-
struct a perturbation theory such that the Green functions satisfy the symmetry
(21) at any order. Using this symmetry we shall show that the “physical" Green
functions will not depend on the parameters o, B, Y, justifying a posteriori

the heuristic approach. What is called "physical" will be discussed in Section 5.

We start this section by drawing a crude scheme of the BPHZL 73,8 renormali-
zation frame. This procedure has been extensively exposed and usedé) and we just

intend to give some hint to the non—expert reader.

Then we write down the propagators which have to be used to compute Feynman
graphs. Technical remarks on the specificities of the renormalization techniques

in our case, due to the non-locality, are postponed to Sectiom 4.

7)

Let us first summarize the BPHZ procedure'’ for the massive case.

1) Compute the unrenormalized integrand I(y) corresponding to each subgraph v,

i.e., the naive product of the propagators and the vertices.

2)  Assign to each subgraph y a degree d(Y) at best equal to its naive diver—
gence degree. Subtract to I(Y) the OS(Y) first orders of its Taylor series
with respect to the external momenta of Y, This defines the renormalized

integrand.

FETNRINUN DN ] S o0 1P ST POTORYTOIC PR AT B RO IR T Y Ladly ] LI LR L T
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3) Then you can carry out the integrations: they do converge.

4} 'The counterterms are formally like in the Bogoliubov-Parasiuk-Hepp usual pro-
cedure, but, because of the convergence of the integrals, just their finite
part appears. This means that the counterterms are formal powér. series in h
(loop expansion) with finite coefficients. These counterterms are to be de-
fined by requiring some symmetry [the one given by (21) in our case] together

with some normalization conditiomns.

Actually our theory is massless. This creates a supplementary problem which

8)

has been sclved by Lowenstein and Zimmermamn ° in the following-way:

1) Add to the Lagrangian a mass term of the form (1 - s)? M.

2) Put to zero — by hand - all the counterterms with cancnical dimension less
than four.

3) Compute I(y) as in the massive case.

4) Subtract to I({y) the &(y) first orders of its Taylor series with respect
to the external momenta of Y and with respect to s.

5) Carry out the integratioms. At non—exceptionél momenta, they do converge
for any 0 £ s < 1,

6) "Put s = 1. Then you have really computed the massless theory.

3.1 Gauge field propagator

We shall now derive the propagator of the gauge field QU' The part of the

Lagrangian (19) quadratic in Qu is

gnadh. 2 ' e
L £ g0 -1 0.4) H-2)0-9)

(22)
z

. 2 4 2 220 2
L8] & Vet g

The last term has been added following the procedure memtioned above. Its
dependence is to compensate its variance under dilatations. By defining the ker-

quad _ ;
nel P by. LQ Quli'qu\J we find
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) o
E//f«):Jf- Fx/,ff =-9) +

+5‘ [D)mf(r $) UMY -)J(f-ﬂ
)(x) O?“J) /(eF WF 3) (23)

fg /«v «

¢ of
. .r.(a.; U % /F"-fzJW}

The elimination of the zero modes which led to (22) emsures the invertibility of
the kermel P, 1In other words, there exists a unique propagator HJk(y,z) de~

fined by

falz ‘/ 7) 77_(9:3} 3", o‘: Jx 2)

(24)

We have been able to compute this propagator which can be written under the form

sk T
'5«-{(7") . [3/]0}5__@“(@) I}{(WJA,«J” -2/
4 J;(f F;.(ID} F:{(H A!(t-j 01?5'9)

ﬁ(fyf /'f_)m)f
.z[ D) (D (54 Ht) L )](y}rf(yf)

(é) A (“/ ) @

where

N[ (0% o) A1) 2[5, 21 [
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N1 and N2 are the normalization constants given by
¢ A
X */ =
‘ngs( 4;;y;¢ (X) {fi;fu ¢ /1CL‘D£5’

o/ 4 (27)
(o/x X"ﬁ«rw ] f'f,‘m =/V(

Equation (24) can be verified using the relations

sk
:m w- [) - sfm]w @

(28)

(,,9,( M /'“(x) = A/a;x} /?-,}(x}

These relatioms can be easily derived from the identities:

DZQ“ +Q“DL: ZRJ/ZD‘/

o & (29)
:i:>33 jﬁ;‘, = 2 .Z%; 'EEZ‘ 453;, |

Let us now comment on the structure of the propagator (25).

1) If in place of the classical solution (1) we should consider A;l =0, (25)

reduces to the ordinary propagator
%2 %4
T, de” e =7
v -+ X e
22 4 (1) A D2, (1)K d 1

(30)

2) Let us denote by ﬁiﬁ(y;z) the three first terms of (25). ﬁ;ﬁ(y.z) genera-
lizes the transverse propagator, the first term of {(30). Indéed it is transverse

to the gauge, to the translation and to the dilatation zero modes:
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Al g X

)/ (j) (ﬂf“/ Y ':)*) D=0
f/y (7) TP (y#) = ﬁé T (y,eyF (=g

l(
fo/? Y Fo, (7) (9,&) [o/eﬂ(%é/? E} =0

As expected, ﬁﬂt(y,Z) does not depend on the "gauge parameters" o, B, Y.

3) The last term in (25) generalizes the longitudinal propagator —- the second
term of (30). It propagates the gauge zero mode and depends explicitly on d.
let us remark that it is, however, transverse to the translation and dilatation

zero modes.

4) We could have nalvely expected in Hﬁv terms propagating the tranmslation and

dilatation zero modes and depending on B sand Yy, i.e., terms of the form

of
f; [ore //-;ﬁj(gj fr(;} Z’V ¢ 2

q’ ‘\{" 32
fy”{tljf £ (y} - yr ¢ ny(é,e/ (32)

Besides, we might be puzzled by the role of the B and Yy dependent terms in

P in order to derive II which finally does not depend on them. Actually, if
the terms depending on B and v had been omitted, i.,e., if we had not taken
into account the translation and dilatation zero modes, the propagator would have
been i1l definedlo) because any term of the form {32) could have been added to
the propagator (25) without spoiling equation (24), The effect of the terms de-
pending on B and v in the kermel (23) is just to forbid terms of the form (32)
providing a unique definition of the propagator. We emphasize that our prescrip-
tion is to treat the translation and dilatation zerc modes exactly as the gauge
onesg). This differs -~- at least in priﬁciple -- from other approaches in which
the propagator is the inverse of the quadratic form in the subspace orthogonal

to the dilatation and translation zero modes. A propagator defined in this way
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. 12) .
has recently been obtained . Due to the fact that it seems to propagate.at

least the dilatation zero mode, the relation with ours is not immediate.

3.2 Propagators of the Faddeev—Popov ghosts

Let us now derive the other propagators. The part of the Lagrangian (19)

quadratic in ¢ and ¢ can be written
M. 2 2 4 2 -
LT_, = CDE’+("5}’(“‘ cc
ce

(33)

which defines the cc propagator

. -1
M. ) = (D° +('-f)z‘“2.j %-1) oo

e

Finally the part of the Lagrangian (19) quadratic in the x independent fields
y and wv is

L7A“z. . /C:’/C:/[foy%}/g*-ngpj

vy,

:—M%/(Z/'A/a'//l}? _(35)

Nl and N2

pagators which are in p space & distributions. Introducing such propagators

are defined in (27). This leads to associate to the ¢ fields pro-

allows us to define a perturbation theory in the number of loops. Computing a
Green function at some given order requires the calculation of a finite number of
Feynman graphs, each graph being computed using perfectly well-defined rules.
Ultra-viclet and infra-red convergence is ensured by the renormalization procedure

indicated at the beginning of the section.

4. RENORMALIZATION: PROOF OF THE SLAVNOV IDENTITIES

We shall begin this part by transcribing invariance (21) into a Slavmov-type
identity. Invariance (21) being satisfied at zeroth order, the same is true

for the Slavnov identity. Then we shall study the structure of the right-hand

p e e IR REEG AR S L R 1P B R
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side of Slavnov's identity for am arbitrary choice of the counterterms. Finally,
we shall prove that it is possible to choose these counterterms in such a way that
this right-hand side of the Slavnov identity vanishes at any order. To a large
extent this proof will follow closely Ref. 6), so that we shall just sketch these

aspects, giving a larger emphasis to the points which are specific to our case.

To transcribe invariance (21) into a Slavnov identity, let us add to the

Lagrangian (19) external fields coupled to the variations UU and U defined in
(21) and (21")
Lo Ue s U

In order that the terms addéd have dimension four and zero Faddeev-Popov charge,
ni and ni will be respectively assigned dimension 4 and 3 and Faddeev-Fopov
charges =2 and -1. We shall define the action of the Slavnov operator S onto
the generating functional I of the renormalized one irreducible particle Green

functions computed at s = 1 by:

w[dl Jr L Ir, I e
F) f‘ Q(J‘) J"L«‘H JC wJ or'fW 4 J(-(Xl

JdM v
_R%v

1 4

!X)p/x +
+P J [F ”0‘) st (37)

A OF/" F‘({v@wafx
4

/'V,( (X

At zeroth order T coincides with the Lagrangian f(s = 1) and, as a re-

sult of invariance (21),
( 2erofl ordlor G8

We shall now state that, for an arbitrary choice of the counterterms allowed by

our renormalization procedure, 8(I) satisfies to any order

IR NARRD AL LR RN AR GNP B K A IR
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s)=al

(39)

where Al' denotes the generating functional of the renormalized irreducible Green

functions with an insertion A satisfying the following properties

1) A is of order K as implied by (38).

2) A 1is the integrazl over x of a polynomial of n, nu, and the fields
described in the Table —- including the external ones —— which are local in
these fields,

3) The products of fields composing A have a cancnical dimension which is

strictly equal to 4 and a Faddeev=Popov charge +1.

Let us now prove these assertions. To compute S(I') we have to use the quan-
tun equations of motionll) of Q - multiplied by GT/Snﬁ, that of ¢ multiplied
by &I/én, that of c multiplied by DQ , that of | multiplied by U,

1]
that of wv multiplied by SF iqu, and the one of Y multiplied by [x FC

c

u PRNATE
The contributions to the equation of motion of terms —— or counterterms —= of’ the
Lagrangian which have dimension 4 give rise to contributions to A, which clearly
have the stated structure. The two mass terms —— proportional to A?(1l - s)? —-
and the non-local terms proportional to B and Y give rise to contributions more
difficult to analyze. Actually they generate in the equations of motion anisotro-

12)

pic terms which must be reduced using the Zimmermann identities., This is due

to the fact that these terms - do not forget that there is mno counterterm of this
type - which belong to the free Lagrangian are over subtracted and appear in the
Zimmermann terminology as NéQﬁ’ NAEC,N?CIFquu)Z, Né(fvaquu}z. In the Zimmermann
reduction, extra terms are due to the contributions of the graphs in which & sub-
graph is or is mot subtracted following whether the prescriptiom is the N4 one or
the minimal one. Hence the extra terms have the form of a product of a subgraph at
zero s and external momenta, times the contribution of the totalngraph in whi.ch
the subgraph has been contracted to a point. These contributions are visualized

in Figs. 1 and 2. We notice that all the non-locality is factorized out in the
subtraction terms which appears as a ¢ number coefficient. These contributions
to A have also the structure stated above, - In other words, despite the presence

of the mon-local terms proportional te B and Y in the Lagrangian (1%), & Te-

mains local in terms of quantum and external fields.



- 18 -

4,1 Consistency condition

Using (39) together with what we have learnt on the structure of A we shall
now derive consistency conditions with a method identical to that of Ref. 6) which
we summarize., Due to the anticommuting character of the Slawnov operator § we

can associate to the operator 82 defined by

S(r) = et o’ DYXAY

4 J( ", Sy L 40)

symmetry transformations deduced from (21):

G- I - dF-

*

ch {\:Z’ D UM
4 (41)
2 o [t _ 122
0 v - ___[a/A’ £ (0 6/”

e Y
2 x) U X
CJ‘ 9£/ - ‘} :;; szf’hr *;155;%27) /}”rc

where 3 is a commuting infinitesimal parameter, To be able to apply the opera~
tor S5 to (39) it is necessary to introduce a source U coupled to A in the
Lagrangian. This obviously modifies (39) in two ways: firstly A may vary under
S8, which will introduce in the right-hand side of (39) a term of the form RS(A),
Secondly A may depend on the sources nu and n introduced in L (36). Then
the Slavnov operator defined by (37) is no more equivalent to the transformations

(21). A new variation is then introduced and we shall denote it by SA so that
(39) becomes

) f" . s-[Sa) SAL ]+ tores of erter 44

(42)
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Applying 8 to (42) we get the consistency'condition

a ~
SZ(F} = S(A) +S L + CLerws of erefer f(AM)
S =0

Following Ref. 6) we shall now use (43) to prove that A satisfies

A = S([)J- Corms of order /g4

(44)

where £ 1is a polynomial in the fields of dimension 4. Equation (44) allows us
to prove recursively that it is possible to choose the counterterms at any order
in % such that the generating functional of the one irreducible Green fumctioms

computed at § = 1 satisfy the Slavmov identity

S(f') =0 5

to any order in K.

Indeed, suppose we have been able to choose the counterterms of the Lagrangian

(1) ‘up to the order L g0 that

S([“H)"’ A‘h M O(ﬁwj (46)

where A" begins at order Hn. If (44) holds, At = S(%n) up to the order ﬂn+1.

Let us fix the counterterms of order 1 by defining " = Ln"1~- 2%, The generat-

ing functional ™ computed from 1" then satisfies
«® el
S(F ):’ O(ﬁ ' (47)

This ends the recursive proof of (45) provided we are able to prove (44).

The proof of (44) paraphrases the analogous proof in Ref. 6) and will only
be sketched here. Firstly, one can verify that SZ(I‘)|U:0 is equal to

5 (RA)10=0 modulo terms of order K , where RA is a polynomial of fields of
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dimension 4 and of the same order in K as A, In a first step consider
only in (43) the terms linear in nu or 7. Such terms cannot appear in Sﬂi,
since A cannot contain terms more than linear in nu and T, because of the

power counting. Thus (43), restricted, for instance, to terms linear in 1,

Sz(‘f }?‘1} = S("l A"I)

where nRy and nby are the terms linear in 1, and in RA and A, respectively.

yields:
(48)

Let us divide An in its invariant part An and its non—invariant part An. n

which is of the form (44). Hence nAﬁ can be absorbed by choosing the correspond-
ing counterterm properly. The invariant terms Ag can easily be listed and seen
to be also of the form (44). The same arguments work for the terms depending on
np. Having then absorbed these terms, SA reduces to zero, by definition, and

the consistency condition is reduced to:
2
S (K) = S{A) (50)

Again A 1is divided in its invariant part t:\l7 and its non invariant part A .
From (50), Ab clearly has the form (44) and thus cam be absorbed. At this point

we stay only with terms A" satisfying
S(A / =0 | (51)

These terms cannot contain | or wv fields, because of the form of the varia-

tions of Y and wv.

If we consider in AE’ the terms independent of V¥, the analysis is iden-
tical to the one done in Ref. 6): all these terms can be absorbed. We are left

with the terms depending on ¥, ah@' U being invariant, having dimension O and

Faddeev-Popov charge +1, Am is invariant, has dimension 4 and carries mno

Faddeev-Popov charge. Such terms are well known: they are the basic terms of the

tree approximation Lagrangian (22), that is, since the non-local terms (fFﬁiQ )2
¥
are excluded in A4,

RRLUVTERT L LLRU LU L GR s e A0 DT L SRR R B Tt gl b DT B D T T L T R [ R et TR T T T IR AT TR T TRY T RTE T TR P TR TR T
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L = § B (4%€) F(A%6)

Ly Jl204)-< 24l @

'j?hese terms are not variations and cannot be absorbed by fixing some counterterm.

In fact, we have fixed all the counterterms at first order and proved

S(f’) -al, ¥ ¢a, L, ¢ + O(ﬁe')

(53)

where a, and a, are unknown coefficients,

1 2
In fact, we shall verify that a, and a, vanish. Let us differentiate
(53) with respect to ﬁ and put to zero the sources Qﬁ, C, E; wv, ﬁv, v, V.

The left-hand side vanishes, while the right-hand side is halﬂl, where 'Nl is
the normalization constant given in {(27), This proves that a; is actually zero.
To prove that a, is zero, let us differentiate with respect to cDuQﬁ the

equality by now proved:
2 2 |
S (f')-‘—' O(t ) (54)

and then set the sources to zero. All the terms vanish except the commutator of
§ with the derivatives with respect to cDuQﬁ applied on S, But the action of
this commutator on § amounts tc derive S with respect to (DﬁQﬁ)z + pDﬁUh.
From (54) we learn that this action is zero at order h  while from'CSBj we learn
that it is proportional to a,. Thus a, has also to vanish and the Slavnov ‘
identity is proved up to order ﬁz. ‘These arguments can be recursively repeated,
proving that it is possible to fix the counterterms at any order in such a way

that the Slavnov identity is satisfied at any order in the perturbation theory.

SUMMARY AND INTERPRETATION OF THE RESULTS

We have now completely defined a perturbation theory around a classical solu-
tion: from the classical Lagramgian (19), and taking into account the mass temrms
due to the BPHZL renormalization procedure, we have been able to calculate the

propagators of the different quantum fields (25), (34) and (35). The counterterms
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are local in the quantum and external fields, have a canonical dimension 4 and
carry no Faddeev-Popov charge. They are uniquely defined by requiring that the
generating functional of the one irreducible particle Green functions calculated

at s =1 sgatisfy the Slavnov identity {(37)

S’([') =0 (54)

at any oxder in the perturbation theory, together with four normalization condi—-
tions. At a given order, calculation of a one irreducible particle Green function
requires therefore the computation of a finite number of Feynman graphs. The
rules to compute each graph are well defined. They have been stated at the begin-
ning of Section 3, the section in which the propagators have been also explicitly
given. Convergence is granted by the subtractions involved in the renormalization
procedure.

Physically we are interested in Z, the generating functional of the commected
Green functions (computed at S = 1), more than in its Legendre transform [. To

define Z we must add source terms to the Lagrangian which becomes

I' = [+ 1w % ® + ‘&M.m 6//«,;(““

. 0 -
+ J/"‘,(X} 9“('- + f‘-{r) C;“} + ;l:.(x} C" «) * (55)

TN ARAT

The action of the § operator on Z is defined by

J x)D(KJf
f/x[-) m )E(""J:r{ * fI 0!"/{;’
T 0 2
-z,s%:s; £ ;,,,ﬁ, far
. r 45 1z2=0
, 4795 Arx, ﬁ,f’f’ TL
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From the squared Slavanov identity (40) we can derive, as in Ref, 6), the equa-

tions of motion of the Faddeev-Popov ghosts which, written in terms of Z, are:

o 22 - B

0['7/‘(:)

AL
'7/-

J
ga/x Xy F"‘(X)J‘ 2= j

Firally, we can study the dependence on B and vy of the connected Green
functions. Actually we have already found that the propagator of the Qﬁ does

not depend on these parameters. We shall discuss the dependence on- B, the

12)

arguments being identical for Y. From Lowenstein's action principle

397 N Z 58
where ABZ is the genmerating functional of the connected Green functions with the

insertion AB which is (IFﬁUQﬁ)Z in the.tree approximation. Let the Slavnov

operator act on (58):
? J
IS' A?] 2 = - [5") S] 2 = /( JA /""EX‘} J‘} (“JZ?(sg)

On the other hand, let us consider the insertion

, g_ _ -

vV

It verifies
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42 @
which allows the following decomposition for AB:
A - 2 A + A(..*V
P (62)

);S, Ai«v‘] 2 =0

We know that there are six independent invariants which, in the tree approximation,

are the four invariants Li of (22) and two invariants related to the normaliza-

tion of the external fields n S8

A, - SEMGOIF %G ¢ o d ik

A- = f[—i (% p)ech L/{“) v B d n‘!"gw

———

A; = ‘A ([4 ,qr,”ﬁﬂ )a Jf/’ad;

Aok (fv’“vf?‘.'gj J'e 1
2y Yo

A;—-] f 7/‘3:‘1/« §.3’-;.+_*g?;

AG = § /d' £ t 14y
where use has been made ot the equations of motion (57) for Ev,é. Let us now in
{58} put to zeroc the sources Cv, EU, T, [ Taking into account the fact that the
propagator of the Qu is orthogonal to F;\l) and to vait, the first term of
A3 and A4 does not contribute. On the other hand, R and the second term of

A3 and A4 do not contribute because of vanishing sources C\J and E Then (58)

can be written

LT 1dero] A
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d 2 = 6,02+ b,4,2+4,.4,2+44:2
J? .S-‘-'i'-’j,-‘—};-‘—'o (64)

b., b, are some unknown coefficients, It is the point now to re-

2 75 76
call that we must require normalization conditions to define the theory, precisely

where bl, b

to fix in the Lagrangian the coefficients of Ll' LZ’ LB’ L4 and the normalization

of the external fields. For L Loy Nos nu we shall give normalization conditions

’
of course independent of 8 ané Y - uthey will be, for instance, coupling con-—
stants for Ll and L,. Applying (64) to these normalization conditions which are
required to be independent of R we find that bl’ bz, b5, b6 must vanish. Thus
we have proved that the connected Green functions containing no field wv' P, wv,

) are independent ¢f B and Yy, which confirms what was expected from the
heuristic approach of Section 2. A consequence is that the dilatation parameters

A coming together with B and <y in the Lagrangian can be forgotten, which makes
manifest the dilatation invariance (at s = 1) in the tree approximation. How-
ever, dilatation invariance is broken at higher orders. Let us recall indeed that
in Section 4 we have chosen the counterterms to absorb the right-hand side of the
Slavnov identity. As we have explained, & contribution to this right-hand side
came out of the Zimmermann identities used to reduce the "anisotropy" generated

in the equations of motion by the mass terms proportional to AZ. As a result, the

counterterms do depend on A, and dilatation invariance is broken at order .

We cannot argue sbout the dependence on ¢ in pure Yang-Mills theory. How-
ever, if we supply this model with a Higgs-Kibble mechanism we can obviously fol-
low the arguments given in Ref. 6) for the perturbation theory developed around

Zero.

To summarize, we have rigorously defined a perturbation expansion of the
Yang-Mills theory around the BPST instanton solution in the sense of a formal
power serieg in h. This expansion has, therefore, the same status as the pertur—

bative one around the AU = 0 solution (usual wvacuum).

The method we introduce can be generalized to more complicated classical
solutions. Its form will determine the zero modes that should be considered for

each case.

0f course, we do not enter into the matter of whether or not the perturbative

treatment around classical solutions can have any chance to exhaust the non-pertur-

bative character of the theory.
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Ny (Qr UP)
or ffi (
8 subgraph v sub- subtraction term
tracted for N, ¥} (zero external mo-
unsubtracted for menta) = coefficient
N2 .
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N
? 0
Graph G with ¥y

# contracted to a point
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\
| 74 | |
subgraph y subtracted subtraction term =
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J lq for the other case
"
—>
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