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The process at the heart of neutrinoless double-β decay, nn → pp e−e− induced by a light Majorana neutrino,
is investigated in pionless and chiral effective field theory. We show in various regularization schemes the
need to introduce a short-range lepton-number-violating operator at leading order, confirming earlier findings.
We demonstrate that such a short-range operator is only needed in spin-singlet S-wave transitions, while
leading-order transitions involving higher partial waves depend solely on long-range currents. Calculations are
extended to include next-to-leading-order corrections in perturbation theory, where to this order no additional
undetermined parameters appear. We establish a connection based on chiral symmetry between neutrinoless
double-β decay and nuclear charge-independence breaking induced by electromagnetism. Data on the latter
confirm the need for a leading-order short-range operator but do not allow for a full determination of the
corresponding lepton-number-violating coupling. Using a crude estimate of this coupling, we perform ab initio

calculations of the matrix elements for neutrinoless double-β decay for 6He and 12Be. We speculate on the
phenomenological impact of the leading short-range operator on the basis of these results.

DOI: 10.1103/PhysRevC.100.055504

I. INTRODUCTION

The observation of neutrino oscillations has demonstrated
that neutrinos are massive particles, with masses constrained
by single-β decay experiments [1,2] and cosmological obser-
vations [3] to be several orders of magnitude smaller than
those of the charged leptons. The smallness of the neutrino
masses suggests that they have a different origin with re-
spect to other standard model (SM) particles. In particular,
neutrinos, the only fundamental charge-neutral fermions in
the SM, could have a Majorana mass, whose small value
naturally arises in the “see-saw” mechanism [4–6]. A distinc-
tive signature of the Majorana nature of neutrino masses is
the violation of lepton number (L) by two units (|�L| = 2)
[7], which would manifest itself in processes such as neu-
trinoless double-β decay (0νββ), nuclear muon-to-positron
conversion, or rare meson decays such as K+ → π−e+e+.
0νββ [8] is by far the most sensitive laboratory probe of
lepton number violation (LNV). Current experimental limits
are very stringent [9–21], e.g., T 0ν

1/2 > 1.07 × 1026 yr for 136Xe
[13], with the next-generation ton-scale experiments aiming
for improvements by one or two orders of magnitude.

The interpretation of 0νββ experiments and the con-
straints on fundamental LNV parameters, such as the Majo-

rana masses of left-handed neutrinos, rely on having a gen-
eral theoretical framework that provides reliable predictions
with controlled uncertainties. Contributions to 0νββ can be
organized in terms of SU(3)c × U(1)em-invariant operators
[22–25] at the scale �χ ≈ 1 GeV characteristic of QCD
nonperturbative effects. The operator of lowest dimension is
a Majorana mass term for light, left-handed neutrinos,

L|�L|=2 = −mββ

2
νT

eLC νeL + · · · , (1)

where C = iγ2γ0 denotes the charge conjugation matrix and
the effective neutrino mass mββ = ∑

U 2
eimi combines the

neutrino masses mi and the elements Uei of the Pontecorvo-
Maki-Nakagawa-Sato (PMNS) matrix. Because of the SU(2)L

invariance of the SM, mi ∼ v
2/�, where v ≃ 246 GeV is

the vacuum expectation value of the Higgs field and �

is the high-energy scale at which LNV arises [26]. The
dots in Eq. (1) denote higher-dimensional LNV operators,
which are suppressed by more powers of v/� and �χ/v

[25].
In this paper, we focus on the 0νββ transition operator

induced by mββ . The quark-level Lagrangian we consider is
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given by

Leff = LQCD − 4GF√
2

Vud ūLγ μdL ēLγμνeL

− mββ

2
νT

eLCνeL + H.c., (2)

where the first term denotes the strong interactions among
quarks and gluons, and the second term represents the weak
interactions of up and down quarks and leptons, whose
strength is determined by the Fermi constant GF and the Vud

element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
In order to calculate 0νββ transitions, the Lagrangian in
Eq. (2) needs to be matched onto a theory of hadrons,

L = Lstrong(π, N,�) − 4GF√
2

Vud Jμ(π, N,�) ēLγ μνeL

− 1

2
mββ νT

eLCνeL − 4GF√
2

Vud O(π, N,�) ē ŴCν̄T
eL

− G2
F O′(π, N,�) ē ŴCē + H.c., (3)

where again the first and second terms represent the strong
and weak interactions, respectively, while the operators in the
second line violate L by two units. Here Lstrong, Jμ, O, and
O′ are combinations of pion, nucleon, and � isobar fields. Ŵ

represents the possible Dirac structures of the leptonic bilin-
ear, and we are suppressing, for simplicity, possible Lorentz
indices on Ŵ, O, and O′. For the short-range operators induced
by light Majorana-neutrino exchange, Ŵ = 1. For low-energy
hadronic and nuclear processes, Eq. (3) can be organized
using chiral effective field theory (χEFT) [27–29] according
to the scaling of operators in powers of the typical momentum
in units of the breakdown scale,

ǫχ = Q/�χ , Q ∼ mπ , �χ ≈ 4πFπ , (4)

where mπ ≃ 140 MeV and Fπ ≃ 92.2 MeV are the pion mass
and decay constant, respectively. Given that the quark-level
Lagrangian breaks L, all possible |�L| = 2 operators are
generated at some order in GF and ǫχ .

The Lagrangian in Eq. (3) can then be used to derive the
0νββ transition operator, often referred to as the “neutrino
potential.” A leading contribution to the transition operator is
induced by the exchange of neutrinos between two nucleons,
mediated by the single-nucleon vector and axial currents.
Defining the effective Hamiltonian as

Heff = Hstrong + 2G2
FV 2

ud mββ ēLCēT
L

∑

a �=b

V (a,b)
ν , (5)

the long- and pion-range contributions to the neutrino poten-
tial between two nucleons labeled 1 and 2 are given, at leading
order (LO), by

V
(1,2)
ν L = τ (1)+τ (2)+

q2

{

1 − 2g2
A

3
σ (1) · σ (2)

[

1 + m4
π

2
(

q2 + m2
π

)2

]

− g2
A

3
S(12)

[

1 − m4
π

(

q2 + m2
π

)2

]}

, (6)

where gA = 1.27 is the nucleon axial coupling, q is the
transferred momentum, τ+ is the isospin-raising Pauli matrix,
σ are the Pauli spin matrices, and S(12) = σ (1) · σ (2) − 3σ (1) ·
q σ (2) · q/q2 is the spin tensor operator. We use the subscript L
to indicate that Eq. (6) is a long-range potential. In the rest of
the paper, we will drop the nucleon labels in Vν . Corrections
from the momentum dependence of the nucleon vector and
axial form factors, as well as from weak magnetism, are
usually included in the neutrino potential; see, for example,
Refs. [30,31]. These corrections contribute at next-to-next-to-
leading order (N2LO) in χEFT. At this order, there appear
many other contributions, for instance, from pion loops that
dress the neutrino exchange and from processes involving
new hadronic interactions with the associated parameters, or
“low-energy constants” (LECs) [32].

The 0νββ transition operator in Eq. (6) has a Coulomb-like
behavior at large |q|, which induces ultraviolet (UV) diver-
gences in LNV scattering amplitudes, such as nn → pp e−e−,
when both the two neutrons in the initial state and the two
protons in the final state are in the 1S0 channel. Our main
goal in this work is to investigate these divergences and their
consequence: the need for a new short-range 0νββ operator at
LO [33]. This situation is analogous to charge-independence
breaking (CIB) in nucleon-nucleon (NN) scattering, which
receives long-range contributions from Coulomb-photon ex-
change and from the pion-mass splitting in pion exchange.
The consistency of the EFT requires then that, in addition to
these long-range contributions, one should include also short-
range CIB NN operators. This observation is consistent with
fits to NN scattering data, which, for both chiral potentials
[34–39] and phenomenological potentials such as Argonne
v18 [40] and CD-Bonn [41], require sizable short-range CIB.
A short-range 0νββ operator also appears at LO [32] in
a simpler EFT, pionless EFT (/πEFT), where all hadronic
degrees of freedom other than the nucleon are integrated out.

In this paper, we build upon Refs. [32,33] and study the
0νββ transition operator up to next-to-leading order (NLO)
in χEFT. We begin in Sec. II by illustrating the problem
of having just a long-range neutrino-exchange transition op-
erator at LO, without going into any technical detail. The
lepton-number-violating operators in the two EFTs, pionless
EFT and chiral EFT, are constructed in Sec. III. (Oper-
ators with multiple quark-mass insertions are relegated to
Appendix A.) In Sec. IV, we study the scattering amplitude
nn → pp e−e− at LO, using different regulators and renor-
malization schemes. (Details about the modified minimal
subtraction scheme, the MS scheme, are given in Appendix
B.) In all schemes, and independently of the inclusion of
pions as dynamical degrees of freedom, the matrix element
of the neutrino potential Vν L between NN wave functions in
the 1S0 state shows logarithmic sensitivity to short-distance
physics, which is cured by including an LO LNV countert-
erm. In Sec. V, we study the transition operator in higher
partial waves, such as 3PJ and 1D2. Weinberg’s original power
counting [28,29] leads to inconsistencies for NN interactions
in certain spin-triplet waves such as 3P0 [42,43], which require
the promotion of contact operators to LO in these waves.
Yet, we show that, after the strong interaction is properly
renormalized, LNV matrix elements are well defined, and do
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FIG. 1. Long-range contributions to the neutrino potential. Double and dashed lines denote, respectively, nucleons and pions. Single lines
denote electrons and neutrinos, and a square indicates an insertion of mββ .

not require further renormalization. In Sec. VI, we extend the
analysis beyond LO. We consider only the 1S0 channel, which
receives a new contribution from strong interactions at NLO
[44]. We again study the two EFTs and show that no additional
independent LNV counterterms are needed at this order. In
Sec. VII, we discuss the relation between 0νββ and CIB in
NN scattering and argue that scattering data show evidence
for a CIB contact interaction in the 1S0 channel at LO in
O(e2), where e is the proton charge. While chiral and isospin
symmetry allows us to derive relations between the CIB
and LNV contact interactions, we show that unfortunately
scattering data are not enough to unambiguously determine
the latter. In Sec. VIII, we explore the implications of the LO
short-range contribution to the neutrino potential on the 0νββ

nuclear matrix elements in light nuclei, whose wave functions
can be computed ab initio, and we conclude in Sec. IX.

II. THE PROBLEMS OF THE LEADING-ORDER

NEUTRINO POTENTIAL

The main theoretical problem is to connect the Majorana
mass term in Eq. (1) to the experimental 0νββ rate for various
nuclear isotopes. Traditionally, this connection is made by
considering the exchange of a neutrino between two neutrons
in a nucleus. An insertion of the neutrino Majorana mass
on the neutrino propagator is required to account for the
violation of lepton number by two units. At tree level, the
process nn → pp e−e− can happen either via a direct neutrino
exchange between neutrons or via intermediate pions which
then decay into a neutrino and electron. The relevant diagrams
are shown in Fig. 1 and lead to the so-called neutrino transition
operator or neutrino potential in Eq. (6).

To obtain the 0νββ nuclear matrix element, this transition
operator is inserted between all pairs of neutrons in a nucleus
using advanced nuclear many-body methods [30]. Typically
such calculations apply a closure approximation to take into
account the effects of intermediate nuclear excited states,
effectively shifting q−2 → |q|−1(|q| + Ē )−1 in terms of the
closure energy Ē = O(MeV). Such corrections can be shown
to occur at higher order if the neutrino transition operator is
derived with the χEFT power-counting rules [32]. We will not
consider it here and set Ē = 0 for simplicity. Our concerns in
this section involve large values of |q| and therefore are not
affected by the closure approximation.

For a theoretical study of the neutrino transition operator, it
is convenient to perform a gedanken experiment involving two
neutrons in the 1S0 state, the simplest nuclear system where

the operator can act. Higher partial waves will be studied in a
later section. The transition operator can be straightforwardly
projected onto the 1S0 → 1S0 channel, where it takes a simpler
form

V
1S0
ν L (q) = τ (1)+τ (2)+

q2

[

1 + 2g2
A + g2

Am4
π

(

q2 + m2
π

)2

]

. (7)

The transition operator is clearly Coulomb-like, scaling as
q−2, and therefore typically expected to drop off sufficiently
fast for large |q| (or short distances |r|) to give rise to finite
nuclear matrix elements. As we demonstrate in this section
and study in significant detail below, this expectation turns
out to be false.

Before going into a more detailed analysis, we wish to
explicitly demonstrate the problem here. We want to calculate
the amplitude1

Aν (E , E ′) = −〈�pp(E ′)|V 1S0
ν L |�nn(E )〉 (8)

for the process nn → pp e−e− where both initial |�nn(E )〉
and final |�pp(E ′)〉 states are in the 1S0 channel. We denote
by E = p2/mn and E ′ = p′2/mp the center-of-mass energies
of the incoming neutrons and outgoing protons of masses
mn and mp, respectively, and by p and p′ the corresponding
relative momenta. Without loss of generality, in this section
we assume the outgoing electrons to be at rest such that

E ′ = E + 2(mn − mp − me),

|p′| =
√

p2 + 2mN (mn − mp − me), (9)

with me being the electron mass and 2mN = mn + mp. When
working at the kinematic point (9), we will drop, for simplic-
ity, the second argument in Aν .

The initial- and final-state wave functions are obtained
by solving the Lippmann-Schwinger or Schrödinger equation
involving the strong NN potential. Of the latter, there exist
many variants but most include the long-ranged one-pion
exchange and short-range pieces, which are described by the
exchange of heavier mesons and/or by arbitrary short-range
functions (phenomenological potentials), or else by NN con-
tact interactions (χEFT potentials). Our arguments are best
illustrated by use of the LO χEFT potential in the 1S0 channel,

1The amplitude A f i is related to the S-matrix element by S f i =
i(2π )4 δ(4)(p f − pi )A f i.
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FIG. 2. The left panel shows the phase shifts in the 1S0 channel for several momenta |p| as functions of the cutoff, RS . The right panel
shows the 0νββ amplitude of Eq. (8). The dots result from explicitly evaluating Eq. (8), while the straight lines are due to a fit of the form
Aν = a + b ln RS .

which consists of only two terms,

V
1S0

NN = C + V
1S0
π (q), (10)

where

V
1S0
π (q) = − g2

A

4F 2
π

m2
π

q2 + m2
π

(11)

is the Yukawa potential written in terms of the transferred
momentum q = p − p′ and C is a contact interaction that
accounts for short-range physics from pion exchange and
other QCD effects. The latter is needed for renormalization
and to generate the observed, shallow 1S0 virtual state. It is
expected at LO [28,29] on the basis of the naive dimensional
analysis (NDA) [45] and discussed in detail in Sec. III B.

To obtain the NN wave functions, V
1S0

NN must be iterated to
all orders, which we do by numerically solving the Lippmann-
Schwinger or Schrödinger equation. Because of the short-
range pieces in the potential, the involved integrals are in
general divergent and require regularization. In this section,
we will use a coordinate-space cutoff RS but other regulators
will be discussed throughout this paper. For each choice of
RS , the short-range NN LEC C(RS ) is fitted to the observed
1S0 scattering length. Since C(RS ) is not an observable, its
cutoff dependence is of no concern. We can then calculate
the 1S0 phase shifts at other energies as a function of RS and
observe that these observables have well-defined values for
small RS: The cutoff dependence cannot be seen in the left
panel of Fig. 2 for RS � 0.2 fm. That is, the NN interaction
is properly renormalized. These results are in agreement with
Ref. [46].

Having obtained the wave functions �nn and �pp, all that
is left is to evaluate the amplitude in Eq. (8). This expression
only depends on the values of the LECs gA and C(RS ), and
the effective neutrino mass mββ . C(RS ) has been linked to the
NN scattering length and is thus known for each value of RS .
As |Aν (E )|2 is an observable (although experimentally it will
be hard to measure!), it should not depend on the value of
the regulator. The value of Aν (E ) for various energies as a

function of the regulator RS is shown in the right panel of
Fig. 2. The amplitude is clearly not regulator independent
and the dependence at small RS can be fitted with a ln RS

function. We will derive the form of this RS dependence in
later sections. At larger RS , power corrections in RS induce a
deviation from this simple behavior.

The consequences of the dependence of Aν (E ) on RS are
severe. Such dependence implies that mββ cannot be directly
obtained from a measurement of the nn → pp e−e− transition
(or alternatively, mββ cannot be limited from an experimental
upper bound on the transition rate) as the matrix element
linking the measurement to mββ depends on the unphysical
parameter RS . While we have studied a very simple state
of just two nucleons, the arguments and conclusions do not
depend on it: The same RS dependence occurs in nuclear
transitions as long as the corresponding nuclei are described
in χEFT. In practice, it might be difficult to observe this regu-
lator dependence due to the nature of many-body calculations
where regulators are often fixed or can only be varied in a
small range. In this light, ab initio calculations on lighter
nuclei can provide an important intermediate step.

Of course, in an EFT setting an observable that depends on
the regulator simply indicates that there exists a counterterm
with a corresponding LEC that absorbs the divergence. In the
context of 0νββ, the counterterm is provided by a short-range
nn → pp e−e− interaction that adds a term to the neutrino
transition operator

Vν L → Vν L − 2gNN
ν τ (1)+τ (2)+ ≡ Vν L + Vν S, (12)

where gNN
ν is the corresponding LEC. In Weinberg’s power

counting [28,29], such an interaction appears at N2LO. Renor-
malization, however, requires it at LO. This is in agreement
with what was already anticipated on general grounds in
Ref. [47] for other weak currents acting in the 1S0 channel.
The LEC gNN

ν (RS ) depends on the regulator RS in such a way
as to make Aν (E ) regulator independent.

We stress that gNN
ν corresponds to a genuine new contri-

bution due to high-momentum neutrino exchange involving
internucleon distances R � �−1

χ . It is an intrinsically two-
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nucleon effect beyond that of the radii of weak form factors,
which also leads to a short-range neutrino potential but can
be determined in principle from one-nucleon processes—one-
nucleon form-factor radii are N2LO contributions unaffected
by two-nucleon physics. In contrast, two-nucleon weak cur-
rents, also a higher order effect, generate a neutrino potential
involving three nucleons.2 Despite being a two-nucleon quan-
tity, gNN

ν cannot be described by a modification of the NN

potential itself which, in this example, is already correctly
renormalized. Likewise, gNN

ν is not part of the so-called “short-
range correlations” [8,49–52], if the latter are intended to
describe nucleon correlations missed in approaches built on
independent-particle states. As we have seen, gNN

ν is needed
even when we use fully correlated wave functions, which
are exact solutions of the Schrödinger equation. In ab initio

calculations, such as those described in Sec. VIII, the input
should be the 1S0 neutrino potential (12), not Eq. (7). In many-
body calculations where an ab initio approach is not possible,
the 1S0 neutrino potential should still be Eq. (12), on top of
the correlations necessary to produce good wave functions
starting from an independent-nucleon basis. Now, short-range
correlations can be viewed as a modification of the neu-
trino potential—see, e.g., the discussion in Ref. [52]. Miss-
ing correlations at distances R � �−1

χ can thus be mocked
up by a gNN

ν (R). However, the converse is in principle not
true: A gNN

ν (RS � �−1
χ ) cannot be replaced by correlations

at distances where the nucleon can be considered a well-
defined entity. The situation is analogous to β decay, where
two-nucleon weak currents and short-range correlations are
both present even if each can be viewed as an “in-medium
quenching” of gA—see Refs. [53,54] for recent discussions.

gNN
ν accounts for neutrino exchange between quarks taking

place at the characteristic QCD scale, which is needed for
the very definition of the neutrino potential between nucle-
ons and requires input from QCD. Indeed, while it is fairly
easy to obtain part of gNN

ν (RS ) by demanding that Aν (E ) be
regulator independent, the finite contribution of gNN

ν to the
amplitude cannot be so obtained. The only way to get the total
value of gNN

ν (RS ) is to fit to data—similar to how we obtained
C(RS ) by fitting the NN scattering length. Fitting to LNV
data is for obvious reasons impossible at present, and even
if there were data it would be undesirable: We want to
use a nonzero 0νββ rate to infer the value of the neutrino
Majorana mass. Fortunately, there are ways out. We will
argue in Sec. VII that the problems associated with light
Majorana-neutrino exchange also affect another well-known
long-range potential, the Coulomb potential. In that case, the
corresponding counterterm can be fitted to data on electro-
magnetic isospin-violating processes. Chiral symmetry relates
the electromagnetic counterterms to gNN

ν (RS ), but at present
this is insufficient to fully determine it. Nevertheless, this
approach explicitly demonstrates the necessity of including

2Two-nucleon weak currents also induce loop corrections to two-
body 0νββ transition operators [48]. These corrections are UV
divergent, and the divergence is absorbed by N3LO corrections to
gNN

ν [48].

gNN
ν at LO. An alternative is to match this counterterm to

results from a direct nonperturbative QCD calculation, some-
thing which is imaginable with lattice QCD (LQCD) methods,
both for light Majorana exchange [55–58] and TeV-scale LNV
mechanisms [59,60].

III. EFFECTIVE FIELD THEORIES

In this section, we describe the EFTs that we employ to
discuss LNV in the two-nucleon sector. In Sec. III A, we intro-
duce pionless EFT, an EFT without explicit pionic degrees of
freedom that allows us to derive more explicit expressions for
the nn → pp e−e− amplitude than in chiral EFT. In Sec. III B,
we restore pions and discuss some of the problems associated
with them. Finally, in Sec. III C, we describe long- and short-
range LNV operators at leading orders.

A. Pionless EFT

Few-body systems characterized by momentum scales p

much smaller than the pion mass can be described in pionless
EFT (/πEFT) [61–65]—for a review, see Ref. [66]. /πEFT has
been shown to converge very well in the two- [63,64] and
three- [67,68] nucleon sectors, and works within LO error
bars for nuclei as large as 40Ca [69–72]. While it is unclear
whether its regime of validity extends to experimentally rele-
vant 0νββ emitters, LNV amplitudes in /πEFT have a simple
form, which allows analytical insight into the structure of
the 0νββ transition operator [32]. Lowest-order interactions
contribute only to NN S waves. Since the 1S0 channel is the
most important for 0νββ, we will see that many conclusions
drawn in /πEFT continue to hold in χEFT. Furthermore,
/πEFT will be useful in light of a possible matching to LQCD
calculations of 0νββ matrix elements performed at heavy
pion masses. A similar matching between LQCD and /πEFT
for strong and electroweak processes has been carried out in
Refs. [55,56,71–76].

The strong-interaction Lagrangian in /πEFT is made out
of all interactions among nucleons—the relevant low-energy
degrees of freedom in this case—constrained only by the
symmetries of QCD. While an infinite set of such interactions
exist, they can be ordered in a power-counting scheme. At LO
in the two-nucleon 1S0 channel,

L
(0)
/π = N̄

(

i∂0+
∇

2

2mN

)

N −C
(

NT �P1S0
N

)† ·
(

NT �P1S0
N

)

, (13)

where the nucleon isospin doublet is represented by N =
(p n)T and the projector is

Pa
1S0

= 1√
8
τ2τ

aσ2. (14)

Here, τ a are the Pauli matrices in isospin space, where a
vector is denoted by an arrow. The four-nucleon interaction
scales as C = O(4π/(mNℵ)), where ℵ is a fine-tuned scale
much smaller than the breakdown scale �/π ∼ mπ , in order
to produce a low-energy pole in the NN 1S0 amplitude. At
momenta Q ∼ ℵ, the LO amplitude consists of a resummation
of C interactions and coincides with that of the effective-range
expansion truncated at the level of the scattering length. C can
thus be determined from matching to the np 1S0 scattering
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length a = −23.74 fm or to the position of the virtual state in
the complex momentum plane, which agree within the relative
LO error ∼r0/a set by the effective range r0 = 2.7 fm. The
latter arises from the NLO Lagrangian

L
(1)
/π = C2

8

(

NT �P1S0

←→
∇

2N
)

·
(

NT �P1S0
N

)† + H.c., (15)

where
←→
∇ = −→

∇ − ←−
∇ and C2 scales as C2 =

O(4π/(mNℵ2�/π )).
To ensure regulator independence of the scattering ampli-

tude, the LECs C and C2 must obey renormalization-group
equations (RGEs). For example, in the power divergence
subtraction (PDS) scheme [77,78],

d

d ln μ
C = μmN

4π
C2,

d

d ln μ

(

C2

C2

)

= 0, (16)

where μ is the renormalization scale. Solving the RGEs
determines

C = 4π

mN

1

1/a − μ
, C2 = 2π

mN

r0

(1/a − μ)2 . (17)

Similar RGEs hold in schemes that employ momentum cut-
offs with the replacement μ → c�, where c is a scheme-
dependent constant. With such regulators, one sees explic-
itly that the amplitude calculated from the Lagrangian (13)
contains a residual cutoff dependence, which contributes ∝
k2/� to the effective-range expansion, with k the on-shell
momentum. This indicates that in the absence of further fine-
tuning C2 enters at NLO and r0 = O(�−1

/π ), consistent with
its numerical value. Renormalization beyond LO can only be
achieved if subleading corrections such as C2 are treated in
perturbation theory [79,80].

At higher orders, a four-derivative operator appears whose
coefficient, C4, is fixed at N2LO and determined by the shape
parameter at N3LO. Except for interactions in the 3S1 channel
analogous to those above, all other two-nucleon interactions
contribute at N2LO or higher, including interactions in other
isospin-triplet channels relevant to 0νββ such as 3P0. The
power counting is reviewed in Ref. [66]. While our work
focuses on the two-body sector, it is interesting that three-
body forces appear already at LO in /πEFT [65,81,82]. To our
knowledge, the possible implications for the 0νββ transition
operators have not been studied.

B. Chiral EFT

The low-energy EFT of QCD that incorporates pions ex-
plicitly is often called chiral EFT, a generalization of chiral
perturbation theory (χPT) [27] to systems with more than
one nucleon [28,29]. Pions play an important role as they
emerge as pseudo-Goldstone bosons of the spontaneously
broken, approximate chiral symmetry of QCD. This symme-
try would be exact were it not for the small quark masses
and electromagnetic charges. Contrary to /πEFT, in whose
regime it is badly broken, approximate chiral symmetry is
implemented in the χEFT Lagrangian: All interactions either
conserve chiral symmetry or break it in the same way as
the chiral-breaking sources at the quark level. In addition to
the nucleon contact interactions of /πEFT, there are also pion

interactions with nucleons and pions themselves. Because the
� isobar is heavier than the nucleon by only about 300 MeV,
it should also be included in order not to limit the range of
validity of the theory too stringently [83]. However, � isobars
appear only in loops in the nuclear potential at orders higher
than our discussion of renormalization below [84,85] and will
not be explicitly displayed. “Chiral potentials” obtained from
χEFT—for a review, see Ref. [34]—have been extensively
used as input to modern ab initio methods. It is hoped that
χEFT converges for the nuclei employed in searches for
0νββ.

For processes with at most one nucleon, χEFT can be
treated in perturbation theory (χPT) in a systematic expansion
in the small ratio ǫχ , Eq. (4) [27]. However, as in /πEFT,
the existence of nuclei requires a resummation of a class of
diagrams. In Weinberg’s original papers [28,29], it was recog-
nized that the nonperturbative nature of NN interactions is due
to an infrared enhancement in the propagation of nucleons,
leading to the presence of the large nucleon mass mN in the
numerator of integrals arising from loops with only nucleons
in intermediate states—a pinch singularity when mN → ∞.
Weinberg then proposed to calculate nuclear amplitudes in
two steps. In the first step, one calculates a nuclear potential
from diagrams that do not contain pinch singularities. Such
diagrams are expected to follow the standard χPT power-
counting rules, as long as nucleon contact interactions obey
NDA [45]. In a second step, the truncated nuclear potential
is iterated to all orders by solving the Schrödinger equation.
Most work on nuclear physics has followed this prescription.

While the potential in /πEFT consists of only contact
interactions—all loops contain pinch singularities—in χEFT
the potential contains also pion exchange. In Weinberg’s
original prescription [28,29], static one-pion exchange (OPE)
appears at LO in the potential,

Vπ (q) = − g2
A

12F 2
π

�τ (1) · �τ (2)
[(

1 − m2
π

q 2 + m2
π

)

σ (1) · σ (2)

− q2

q 2 + m2
π

S(12)

]

, (18)

which is treated nonperturbatively together with contact in-
teractions that arise from dynamics of shorter range than
m−1

π . The size of the contact LECs was assumed to be given
by NDA, so at LO only two nonderivative, chiral-symmetric
contact interactions were supposed to appear, one in 1S0 and
the other in 3S1. The question of renormalizability of the NN

amplitude was left unanswered. Initial numerical evidence
[84,85] suggested no problems. Unfortunately, it has been
known from the mid-1990s that Weinberg’s prescription leads
to amplitudes that depend sensitively on the regularization
procedure. Two types of problems have been identified:

(1) In the 1S0 channel, the LO potential reduces to
Eqs. (10) and (11). According to NDA, C consists of a
contribution from pions plus the undetermined LEC C0

of a chiral-symmetric contact interaction. The contact
interaction is singular and must be renormalized. As
we have seen in Sec. II, allowing C to be cutoff
dependent is sufficient for renormalization at a fixed
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pion mass. However, Ref. [86] showed that the cut-
off dependence contains an m2

π -dependent logarithmic
divergence that originates in the interference between
the contact and Yukawa interactions. The presence
of additional chiral-symmetry-breaking interactions is
thus required for renormalization, even though such in-
teractions appear at higher orders in Weinberg’s power
counting. In a cutoff scheme, an operator with LEC
D2m2

π is sufficient to produce an NN amplitude that
approaches a constant as the cutoff is increased [46],
so that

C = C0 + D2 m2
π + g2

A

4F 2
π

. (19)

(2) In each attractive triplet wave where OPE is iterated,
its −r−3 singularity in coordinate space requires a
chiral-symmetric contact interaction for renormaliza-
tion [42,43]. While in the 3S1-3D1 coupled channels
such an interaction is already predicted by NDA,
in other waves it only appears at higher orders in
Weinberg’s power counting. It is at present unclear in
which waves OPE must be iterated. A semianalytical
argument [87] implies that D waves and higher can
be treated perturbatively, while Refs. [88,89] suggest
even 3P2-3F2 is perturbative. Unfortunately, treating
pion exchange perturbatively [77,78] does not work in
the low triplet waves [89,90].

In summary, for the isospin-triplet channels relevant for
0νββ, the LO strong-interaction Lagrangian is

L(0)
χ = 1

2
∂μ �π · ∂μ �π − 1

2
m2

π �π2 + N̄

(

i∂0 + ∇
2

2mN

)

N

− gA

2Fπ

∇ �π · N̄ �τσN

−
(

C0 + m2
πD2

)(

NT �P1S0
N

)† ·
(

NT �P1S0
N

)

−C3P0

(

NT �P3P0
N

)† ·
(

NT �P3P0
N

)

+ · · · , (20)

where �π stands for the pion isospin triplet, the projector P1S0

is defined in Eq. (14), the projector on the 3P0 channel is

�P3P0
= − i√

8
σ2σ · ←→

∇ τ2�τ , (21)

and the dots denote terms with additional pion fields that are
not relevant for our purposes. (Note, however, that these terms
differentiate between m2

πD2 and C0, so in higher orders or
in processes with external pions these LECs do not always
appear in the combination C0 + m2

πD2.) In χPT, as well as in
the nuclear potential, one can demote the nucleon recoil term
to NLO. The remaining terms on the first line of Eq. (20) give
rise to the static OPE potential (18). The LECs C0 and m2

πD2

contribute to Eq. (19), while C3P0
ensures the renormalization

of the 3P0 wave at LO. The scaling C0 = O(4π/(mN Q)) is
the same as in NDA and /πEFT, but the LECs D2 ∼ C3P0

=
O(4π/(mN Q3)) are enhanced with respect to NDA by ǫ−2

χ .
By consideration of the corrections in the 1S0 channel

similar to that done in the previous section, one finds [44]
that a nonvanishing NLO correction—that is, one order down

in the expansion parameter ǫχ—exists despite being expected
only two orders down the expansion in Weinberg’s power
counting. The NLO strong-interaction Lagrangian can thus be
written just as in /πEFT as

L(1)
χ = 1

8C2
(

NT �P1S0

←→
∇

2N
)

·
(

NT �P1S0
N

)† + H.c., (22)

with C2 = O(4π/(mN Q2�χ )). It leads to an NLO correction
to the LO potential in Eq. (11), given by

V
1S0 (1)

NN (p, p′) = C(1) + C2
p2 + p′ 2

2
, (23)

where C(1) = O(4π/(mN�χ )) denotes a subleading compo-
nent of the nonderivative operator defined in Eq. (20). Again
as in /πEFT, this potential and other subleading interactions
can only be renormalized in perturbation theory, in stark
contrast to Weinberg’s prescription.

While the renormalization issues with Weinberg’s pre-
scription have been extensively documented, there has been
relatively little work done in applying properly renormalized
χEFT to nuclear physics. It has in fact been argued that “chi-
ral potentials” derived and treated according to Weinberg’s
prescription give rise to better phenomenology, as long as
the cutoff is chosen somewhat, but not too far, below the
breakdown scale [91]. The drawbacks of Weinberg’s prescrip-
tion have limited impact on our conclusions below about
the renormalization of the 0νββ amplitude. Our main results
concern 1S0 transitions at LO, as discussed in Sec. IV. The
enhancement of D2 has implications on the chiral properties
of the contact in Eq. (12) but does not affect its existence
in the first place. In Sec. V, we show that the presence of
counterterms in attractive triplet channels has no additional
implications for the renormalization of the 0νββ amplitude.
The effects of NLO corrections will be considered in Sec. VI.

C. Lepton-number-violating operators

The quark-level Lagrangian that is relevant to 0νββ transi-
tions induced by a light Majorana neutrino is given in Eq. (2),
and its matching onto χEFT is sketched in Eq. (3). The first
ingredient required to derive the neutrino potential is the weak
current J μ(π, N ). J μ has vector and axial components, and
it is dominated by one-body contributions. Writing

J μ = 1
2 N̄τ+[

J
μ

V + J
μ

A

]

N + · · · , (24)

where · · · denote two- and higher-body contributions, the
expressions of JV and JA through NLO in the chiral expansion
are

J
μ

V = gV (q2)

(

v
μ + pμ + p′μ

2mN

)

+ igM (q2) ǫμναβ vαSβqν

mN

,

J
μ

A = −2gA(q2)

[

Sμ − S · (p + p′)

2mN

v
μ + S · q

q2 + m2
π

qμ

]

.

(25)

Here, p and p′ stand for the momentum of the incoming
neutron and outgoing proton, respectively, qμ = (q0, q) =
pμ − p′μ, and v

μ and Sμ are respectively the nucleon velocity
and spin (vμ = (1, 0) and Sμ = (0, σ/2) in the nucleon rest
frame). Furthermore, ǫμναβ is the totally antisymmetric tensor,
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with ǫ0123 = +1. At LO, the vector, axial, and magnetic form
factors are given by

gV (q2) = gV = 1, gA(q2) = gA ≃ 1.27,

gM (q2) = 1 + κ1 ≃ 4.7, (26)

where κ1 ≃ 3.7 is the nucleon isovector anomalous magnetic
moment. In the literature, the momentum dependence of the
vector and axial form factors and the contribution of weak
magnetism to the neutrino potential are usually included—
see, for example, Ref. [30]. Since these are N2LO effects, we
will neglect them in most of the paper.

Equation (25) can be used to derive the long-range com-
ponent of the 0νββ transition operator given in Eq. (6). The
expression in /πEFT can be obtained by taking the mπ → ∞
limit in Eq. (6). In this limit, the tensor component of Vν

vanishes. The most singular part of Vν , which we denote by Ṽ ,
has a 1/q2 behavior. The projections on the waves discussed
in this paper are

Ṽ
1S0
ν L (q) = Ṽ

1D2
ν L (q) = τ (1)+τ (2)+ 1 + 2g2

A

q2
,

Ṽ
3PJ

ν L (q) = τ (1)+τ (2)+ 1

q2

(

1 − 2

3
g2

A − g2
A

3
S(12)|3PJ

)

, (27)

where the tensor operator in Eq. (27) is meant to be projected
in the appropriate P wave, as discussed in more detail in
Sec. V. In /πEFT, Eq. (27) reduces to

Ṽ
1S0
ν L (q) = Ṽ

1D2
ν L (q) = τ (1)+τ (2)+ 1 + 3g2

A

q2
,

Ṽ
3PJ

ν L (q) = τ (1)+τ (2)+ 1 − g2
A

q2
. (28)

In coordinate space, the long-range neutrino potential de-
fined in Eq. (6) is

Vν L = τ (1)+τ (2)+[

VF (r) − g2
A VGT (r) σ (1) · σ (2)

− g2
A VT (r) S(12)

]

, (29)

where the tensor operator S(12)(r̂) ≡ 3σ (1) · r̂σ (2) · r̂ − σ (1) ·
σ (2) and the radial functions

VF (r) = 1

4πr
, VGT (r) = 1

4πr

[

1 − e−mπ r

6
(2 + mπ r)

]

,

VT (r) = 1

2πr(mπ r)2

{

1 − e−mπ r

[

1 + mπ r + 5

12
(mπ r)2

+ 1

12
(mπ r)3

]}

. (30)

In various channels considered below,

V
1S0
ν L (r) = V

1D2
ν L (r) = τ (1)+τ (2)+[

VF (r) + 3g2
A VGT (r)

]

, (31)

V
3PJ

ν L (r) = τ (1)+τ (2)+[

VF (r) − g2
A VGT (r) + aJg2

A VT (r)
]

,

(32)

where a0 = 4, a1 = −2, and a2 = 2/5.
Of the remaining terms in Eq. (3), the operators schemat-

ically denoted by O induce LNV corrections to β decay pro-

cesses and long-range contributions to 0νββ. O is produced
at tree level by SU(2)L × U(1)Y -invariant LNV operators of
dimension seven and higher [24,25]. If one considers only
LNV induced by a neutrino Majorana mass, however, these
operators are suppressed by electroweak loops with respect to
the leading contributions, and we will neglect them here.

The operators denoted by O′ represent local LNV interac-
tions among nucleons, pions, and electrons, which are induced
either by operators of dimension nine and higher [22–25]
or by the exchange of hard Majorana neutrinos [32]. The
latter operators have the same transformation properties as
the product of two weak currents, and their construction is
detailed in Sec. VII. For 0νββ, the most important interaction
is

LNN
|�L|=2 = −(2

√
2 GFVud )2mββ ēLCēT

L gNN
ν

×
(

NT P +
1S0

N
)(

NT P −
1S0

N
)† + H.c. + · · · , (33)

where interactions with additional pion fields required by
chiral symmetry are not written explicitly. Here, the projectors
P ±

1S0
are defined in terms of those in Eq. (14) as P ±

1S0
= (P 1

1S0
±

iP 2
1S0

)/2. In Weinberg’s power counting, gNN
ν = O((4πFπ )−2)

would contribute to the neutrino potential at N2LO. As we
argued in Sec. II and will discuss in more detail in Sec. IV,
the logarithmic dependence of LNV scattering amplitudes on
the regulator induced by light-neutrino exchange requires gNN

ν

to be promoted to LO, gNN
ν = O(F−2

π ) instead. In addition,
Ref. [86] demonstrated that an m2

π expansion might not be
appropriate for four-nucleon operators. As we will explicitly
show below, the counterterm needed for 0νββ inherits in
χEFT some dependence on the quark mass. We need to
construct |�L| = 2 operators with one and two insertions of
the quark masses, which we discuss in detail in Appendix A.
In the limit of equal up and down quark masses, mu = md ,
considering insertions of the common quark mass leads to
operators in the form of Eq. (33), but differing in the pion
interactions lumped into the ellipsis. The coupling of the
four-nucleon operator is replaced by

gNN
ν =

∑

n

gnm2n
π , (34)

where the coefficients gn scale as �−2n−2, with n = 0, 1, . . .

being an integer. NDA suggests � ∼ �χ , implying that the
mass dependence is suppressed. We will, however, see that
renormalization requires gNN

ν ∝ C2, implying that, at least for
g1 and g2, the scale � should be � ∼ Fπ . In addition to the
operator in Eq. (34), additional mass-dependent operators can
be constructed, but they contain at least two pion fields as
described in Appendix A.

Beyond LO, additional contact interactions contribute to
0νββ. In Sec. VI, we will consider the derivative operator

LNN
|�L|=2 = (2

√
2GFVud )2mββ ēLCēT

L

gNN
2 ν

8

×
[(

NT ←→
∇

2P +
1S0

N
)(

NT P −
1S0

N
)†

+
(

NT P +
1S0

N
)(

NT ←→
∇

2P −
1S0

N
)†] + H.c., (35)
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FIG. 3. Diagrammatic representation of LO and NLO contributions to nn → pp e−e− induced by long-range neutrino exchange. Double,
dashed, and plain lines denote nucleons, pions, and leptons, respectively. Gray circles denote the nucleon axial and vector currents, and the
black square indicates an insertion of mββ . The blue ellipse represents iteration of Vπ , while an unmarked contact interaction stands for C. In
the NLO diagrams, the black circle denotes an insertion of C2. Diagrams analogous to those in the second and fourth rows, but with contact
interactions to the left of neutrino exchange, are not shown. The diagrams for /πEFT are obtained by neglecting pion exchange in the blue
ellipse.

which also acts between two 1S0 waves,3 and we discuss the
power counting for its LEC gNN

2 ν .
The contact interactions in Eqs. (33) and (35) give short-

range contributions to the 0νββ transition operator. Factoring
out GF , mββ and the lepton fields as in Eq. (5), the short-range
potential in the 1S0 channel is

Vν S(p, p′) = −2τ (1)+ τ (2)+
(

gNN
ν + gNN

2ν

p2 + p′ 2

2

)

. (36)

It turns out that the short-distance operators induced by the
exchange of hard neutrinos are related by isospin symmetry
to isospin-two operators induced by the exchange of hard
photons. In Sec. VII, we will discuss this relation in detail,
and explore its implications for 0νββ.

3The two-nucleon part of the operator is, up to an isospin factor,
related to a linear combination of four-nucleon operators 4C1 + C2 −
12C3 − 3C4 − 4C6 − C7 defined in Ref. [92].

IV. THE LNV SCATTERING AMPLITUDE

AT LEADING ORDER

In this section, we study the nn → pp e−e− scattering
amplitude at LO in the 1S0 channel and show how the need
for a short-range component of the neutrino potential arises
in /πEFT and χEFT. The section is based on the results of
Refs. [32,33], which we discuss in greater detail. We start by
examining the amplitude in /πEFT in Sec. IV A. This allows us
to derive an analytic expression for the amplitude. In χEFT,
the iteration of the pion-exchange Yukawa potential makes
it impossible to provide a simple closed expression for the
nn → pp e−e− scattering amplitude, but one can still identify
the leading divergent behavior in dimensional regularization
as we show in Sec. IV B. However, dimensional regularization
is rarely used in few-body calculations. In Sec. IV C, we
therefore perform the same analysis with cutoff schemes that
are widely used in the literature.

The LO contributions to nn → pp e−e− from the exchange
of a light neutrino are shown in the top panel of Fig. 3.
The blue ellipse denotes the iteration of the Yukawa potential
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FIG. 4. Diagrammatic representation of LO and NLO contributions to nn → pp e−e− induced by the short-range operator gNN
ν . The notation

is as in Fig. 3. The diagrams for /πEFT are obtained by neglecting pion exchange in the blue ellipse.

Vπ (q), while the contact interaction comes from the LEC C.
For the diagrams in the second and third rows of Fig. 3,
one has to include an infinite number of bubbles, dressed
with iterations of the Yukawa potential. The diagrams for
/πEFT can be obtained from those in Fig. 3 by neglecting
the pion exchange potential. Without loss of generality for
our arguments, we use the kinematics of Eq. (9), with the
electrons emitted at zero momentum. For incoming neutrons
with |p| = 1 MeV, the relative momentum of the outgoing
protons is |p′| ≃ 38 MeV.

Following Refs. [44,86], from the free Hamiltonian H0

and the pion potential Vπ we introduce4 the retarded (+) and
advanced (−) propagators

Ĝ±
E = 1

E − H0 − Vπ ± iε
,

G±
E (r, r′) =

∫

d3k

(2π )3

∫

d3k′

(2π )3
eik·re−ik′·r′〈k|Ĝ±

E |k′〉, (37)

and the Yukawa “in” (+) and “out” (−) wave functions

χ±
p (r) =

∫

d3k

(2π )3
eik·r〈k|(1 + Ĝ±

E Vπ )|p〉. (38)

Reference [86] shows that the bubble diagrams in Fig. 3 are
related to G+

E (0, 0) = [G−
E (0, 0)]∗, while the triangles dressed

by Yukawas are related to χ+
p (0) and χ−

p′ (0)∗ = χ+
p′ (0) (see

Fig. 5 in Ref. [86]). It is also convenient to introduce

KE = C

1 − CG+
E (0, 0)

. (39)

The divergence in G+
E (0, 0) is absorbed by C−1, so that KE is

well defined and independent of scale and scheme [86].
The chains of bubbles in the second and third rows of Fig. 3

can be resummed, and at LO the amplitude can be expressed
as

ALO
ν = AA + χ+

p′ (0) KE ′ AB + ĀB KE χ+
p (0)

+χ+
p′ (0) KE ′ AC KE χ+

p (0), (40)

4Note the following useful relations: χ−
p (r)∗ = χ+

p (−r) and
G+

E (0, r) = [G−
E (r, 0)]∗.

where AA, AB, and AC denote the first diagram in the first,
second, and third rows of Fig. 3, respectively (without the
wave functions at 0, in the case of B and C), while ĀB stands
for the analog of the second row where contact interactions
come before neutrino exchange.

The contribution of the operator gNN
ν , defined in Eq. (33),

is shown in the first row of Fig. 4. It is easy to sum these
diagrams, which modify the amplitude into

ALO
ν = AA + χ+

p′ (0) KE ′ AB + ĀB KE χ+
p (0)

+χ+
p′ (0) KE ′

(

AC + 2gNN
ν

C2

)

KE χ+
p (0). (41)

Since gNN
ν appears together with C−2, it proves convenient to

define the dimensionless parameter

g̃NN
ν =

(

4π

mNC

)2

gNN
ν . (42)

The amplitude has the same structure in /πEFT and χEFT.
In /πEFT, AA, AB, ĀB, and AC contain a single diagram,
which can be analytically computed in dimensional regular-
ization. In χEFT, on the other hand, they still contain an
infinite series of diagrams. We now examine the two theories
in more detail.

A. Pionless EFT

In /πEFT the Yukawa wave function χ±
p reduces to a

plane wave, with χp(0) = 1. G+
E (r, r′) is the free nucleon

propagator,

(G+
E (0, 0))/π = −I0(p) =

∫

dd−1k

(2π )d−1

mN

p2 − k2 + iε

= −mN

4π
(μ + i|p|) (43)

in d spacetime dimensions, where in the last equality we have
used the PDS scheme [77]. KE reduces to the full strong
scattering amplitude,

(KE )/π = −T
(0)

1S0
= 1

C−1 + I0(p)
= 4π

mN

1

1/a + i|p| . (44)
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Equation (41) then becomes

ALO
ν = AA − AB(p2, p′ 2) T

(0)
1S0

(p′ 2) − T
(0)

1S0
(p2) ĀB(p2, p′ 2)

+ T
(0)

1S0
(p2)

[

AC (p2, p′ 2) + 2gNN
ν

C2

]

T
(0)

1S0
(p′ 2). (45)

Here, AA is the projection of the neutrino potential in the 1S0

channel,

AA = −1 + 3g2
A

2

∫

d cos θ
1

(p − p′)2
, (46)

with θ being the angle between p and p′, while AB and AC

reduce to one- and two-loop integrals,

AB(p′2, p2) = ĀB(p2, p′ 2)

= −mN

∫

dd−1k

(2π )d−1

1

p2 − k2 + iε

1 + 3g2
A

(k − p′)2
,

(47)

AC (p2, p′ 2) = −m2
N

∫

dd−1k

(2π )d−1

∫

dd−1q

(2π )d−1

1

p2 − k2 + iε

× 1 + 3g2
A

(k − q)2

1

p′ 2 − q2 + iε
. (48)

AB is UV finite, and for |p′| > |p| it is given by

ĀB(p2, p′ 2) = mN

4π

1 + 3g2
A

2

i

|p′| ln
|p| + |p′|

|p| − |p′| + iε
. (49)

On the other hand, AC is logarithmically divergent,

AC (p2, p′ 2) = −
(mN

4π

)2 1 + 3g2
A

2

×
(

1

4 − d
− γ + ln 4π + 2Lp,p′ (μ)

)

, (50)

where γ is the Euler-Mascheroni constant and, in the PDS
scheme,5

Lp, p′ (μ) = 1

2

[

ln
μ2

−4(|p| + |p′|)2 − iε
+ 1

]

. (51)

Equations (45) and (50) clearly show that the scattering
amplitude Aν is UV divergent unless gNN

ν appears at LO.
Moreover, Eq. (45) allows one to derive the RGE for gNN

ν or
equivalently for g̃NN

ν [see Eq. (42)]

d

d ln μ
g̃NN

ν = 1 + 3g2
A

2
≡ β. (52)

The solution is

g̃NN
ν (μ) = β ln(μ/μ0) + g̃NN

ν (μ0), (53)

with an initial condition g̃NN
ν (μ0) at some scale μ0. There

might be a scale μ0 for which g̃NN
ν (μ0) ≪ 1 rather than O(1).

However, at a comparable scale μ0 + δμ0 with δμ0 ∼ μ0,
g̃NN

ν (μ0 + δμ0) = O(β ). Thus, it is natural to assume that

5We notice that the sign of the iε prescription in the argument of
the logarithm given in Ref. [33] is incorrect.

gNN
ν = O(1/ℵ2) [32] as expected from the fact that gNN

ν con-
nects two S waves [66].

Similar expressions can be obtained in cutoff schemes,
if loop diagrams are regulated in such a way that multiple
loops with the insertion of contact interactions factorize into
a product of one-loop diagrams, thus allowing the bubbles to
be resummed. This happens for “separable” regulators in the
form of a product of a function of the incoming momentum (p)
and a function of the outgoing momentum (p′). One example,
which will be used in the following sections, is when contact
interactions such as C and C2 are replaced,

C → f (|p′|/�)C f (|p|/�), (54)

where f is a function such that f (0) = 1 and f (∞) = 0, and
� is the cutoff parameter. For separable regulators, ALO

ν still
has the expression given in Eq. (45). It exhibits a logarithmic
dependence on the cutoff �, and the same argument for the
presence of g̃NN

ν at LO goes through.
The nonseparable regulator we will consider here involves

the transferred momentum which produces a regularization of
the three-dimensional δ function in coordinate space,

δ(3)(r) → δ
(3)
RS

(r), (55)

where RS is a cutoff parameter such that limRS→0 δ
(3)
RS

(r) =
δ(3)(r). For nonseparable regulators, one has to resort to nu-
merical calculations even in the two-nucleon sector of /πEFT.
In numerical calculations, where negative powers of � cannot
be isolated and simply dropped, the cutoff parameter should
be taken beyond the EFT breakdown scale so that cutoff
artifacts are no larger than the effects of higher order LECs.
We note that while we have only sketched the calculation of
LNV amplitudes in /πEFT with cutoff regulators, they can be
obtained with the numerical procedure of Sec. IV C, by setting
gA → 0 in the strong potential.

B. Chiral EFT with dimensional regularization

In χEFT, AA, AB, ĀB, and AC contain an infinite sum of
diagrams. In order to study the renormalization of the neutrino
potential, let us discuss the divergence structure of Aν . We
note the following:

(1) All the diagrams in AA are finite. The tree level is
obviously finite, as Eq. (46) in /πEFT. Each iteration of
the Yukawa interaction brings in a factor of d3k/(k2)2,
where one k−2 comes from the pion propagator and the
other from the two-nucleon propagators after integrat-
ing over k0. So, every Yukawa insertion improves the
convergence.

(2) All the diagrams in AB and ĀB are finite as well. The
first loop is similar to the result in /πEFT, Eq. (47),
which is finite. Again, insertions of the Yukawa inter-
action improve the convergence.

(3) The first two-loop diagram in AC is logarithmically
divergent. The divergence arises from insertion of the
most singular component of the neutrino potential,
namely Ṽ

1S0
ν defined in Eq. (27). This is analogous

to Eq. (48) in /πEFT. The two-loop diagram with an
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insertion of Vν − Ṽν and higher loop diagrams with one
or more Yukawa insertions are convergent.

We thus focus on AC ≡ A
sing
C + δAC . The singular two-

loop diagram A
sing
C is the same as in /πEFT, with 1 + 3g2

A →
1 + 2g2

A due to the pion contribution to the induced pseu-
doscalar form factor. The renormalized amplitude in the PDS
and MS schemes is obtained by the replacement

AC + 2gNN
ν

C2
→

(mN

4π

)2
[

2g̃NN
ν (μ) −

(

1 + 2g2
A

)

Lp, p′ (μ)
]

+ δAC (56)

in Eq. (41). Instead of Eq. (52), the renormalized coupling
obeys the RGE

d

d ln μ
g̃NN

ν = 1 + 2g2
A

2
. (57)

The above argument shows that, as in /πEFT, the counterterm
gNN

ν = O(1/Q2) must be included at LO in Eq. (41).
The finite part of the coupling can be obtained in principle

by matching the S-matrix element in Eqs. (41) and (56) to a
LQCD calculation, performed at the same kinematic point. In
order to carry out this program, one needs a nonperturbative
calculation of the S-matrix element in χEFT, which amounts
to a resummation of the infinite number of Feynman diagrams
building up to AA, AB, and δAC . This is equivalent to solving
the Schrödinger equation [86], as we recall below.

One can re-express the amplitudes in Fig. 3 as

AA = −
∫

d3r χ−
p′ (r)∗ V

1S0
ν L (r) χ+

p (r), (58)

AB + ĀB = −
∫

d3r
(

G−
E ′ (r, 0)∗ V

1S0
ν L (r) χ+

p (r)

+χ−
p′ (r)∗ V

1S0
ν L (r) G+

E (r, 0)
)

, (59)

AC = −
∫

d3r G−
E ′ (r, 0)∗ V

1S0
ν L (r) G+

E (r, 0). (60)

The three sets of diagrams combine to give

Aν = −
∫

d3r ψ−
p′ (r)∗ V

1S0
ν L (r) ψ+

p (r) (61)

in terms of the solutions

ψ±
p (r) = χ±

p (r) + χ±
p (0) KE G±

E (r, 0) (62)

of the Schrödinger equation with the potential in Eq. (10).
The expression (61) simply represents first-order perturbation
theory in the very weak �L = 2 operator V

1S0
ν L acting on the

wave functions of the LO strong potential (10).
In this coordinate-space picture, the UV convergence or di-

vergence of the amplitudes can be simply recovered from the
r → 0 behavior. For r → 0, the long-range neutrino potential
goes as 1/r, while the Yukawa wave function χ±

p (r) tends to
a constant. This confirms that AA is finite. On the other hand,
for the propagator G±

E (r, 0) one has

G±
E (r, 0) → mN

4πr
+ · · · (63)

AB and ĀB are still finite, but AC is logarithmically divergent.
The singular component Asing

C is obtained by using the free
Green’s functions, namely

A
sing
C = −

∫

d3r G
(0)−
E ′ (r, 0)∗ Ṽ

1S0
ν L (r) G

(0)+
E (r, 0),

G
(0)±
E (r, 0) = − mN

4πr
e±ipr . (64)

Defining δG±
E (r) ≡ G±

E (r, 0) − G
(0)±
E (r, 0), the finite part can

be expressed as

δAC = −
∫

d3r G
(0)−
E ′ (r)∗ V

1S0
ν L (r) δG+

E (r)

−
∫

d3r δG−
E ′ (r)∗ V

1S0
ν L (r) G

(0)+
E (r)

−
∫

d3r δG−
E ′ (r)∗ V

1S0
ν L (r) δG+

E (r)

−
∫

d3r G
(0)−
E ′ (r)∗

(

V
1S0
ν L (r) − Ṽ

1S0
ν L (r)

)

G
(0)+
E (r). (65)

As discussed above, renormalization requires that we con-
sider also the diagrams of Fig. 4, which lead to Eq. (61) with
the replacement in Eq. (12). For given E and mπ (and corre-
sponding phase shifts), χ±

p (r) and G±
E (r, 0) can be obtained in

a straightforward way by numerically solving the Schrödinger
equation [86] (see Appendix B), so that AA,B and δAC can be
readily computed numerically. One can then use our represen-
tation of the amplitude in Eq. (41) to match to future LQCD
calculations and extract the short-range coupling g̃NN

ν .

C. Chiral EFT with cutoff regularization

The analysis of the �L = 2 nn → pp e−e− scattering am-
plitude in the PDS and MS schemes is theoretically clean,
and it unambiguously shows the need for enhanced short-
range LNV operators. Furthermore, it can be easily matched
to future LQCD calculations. Such an analysis, however,
would yield a value of g̃NN

ν in a regularization scheme that is
distinct from what is used in many-body nuclear calculations.
We therefore repeat the analysis utilizing different regulators
for the short-range part of the internucleon potential. These
regulators are not only appropriate for use in other channels
(see Sec. V) and heavier nuclei (see Sec. VIII), but also the
corresponding calculations can be matched to LQCD (see, for
example, Refs. [71,73,75]).

We extend the analysis of χEFT in Sec. IV B by in-
troducing two additional schemes, which effectively work
as momentum cutoffs. The first scheme is a nonseparable
regulator of the type (55) with

δ
(3)
RS

(r) = 1

(
√

πRS )3
exp

(

− r2

R2
S

)

, (66)

where r = |r|. This was used, for example, in the definition
of the chiral potential in Refs. [38,84,85]. The wave functions
ψ±

p (r) are now solutions of the Schrödinger equation with the
δ function in the strong potential regulated using Eq. (66) and
therefore depend on the cutoff RS . With the short-range LNV
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interaction, the amplitude (61) becomes

Aν = −
∫

d3r ψ− ∗
p′ (r)

[

Vν L(r) − 2gNN
ν δ

(3)
RS

(r)
]

ψ+
p (r). (67)

The second scheme is analogous to the cutoff scheme
introduced in Eq. (54) in /πEFT and is applied to a momentum-
space solution of the Lippmann-Schwinger (LS) equation.
The LS equation for the T matrix can be written in short-hand
notation as

T = V + V G0T, G0 = (E − p 2/mN + iε)−1, (68)

where integration is implied. In more detail, in the 1S0 channel

T1S0
(p′, p, E ) = V1S0

(p′, p) +
∫ ∞

0
d p′′ V1S0

(p′, p′′)

×
[

p′′ 2

E − p′′ 2/mN + iε

]

T1S0
(p′′, p, E ), (69)

in terms of the partial-wave projection

V1S0
(p′, p) = 1

(2π )3
〈1S0, p′ |V 1S0

NN (q)|1S0, p〉

= 1

(2π )3

[

C − πg2
Am2

π

2F 2
π

∫ 1

−1
dx

× 1

p2 + p′2 − 2pp′x + m2
π

]

(70)

of the potential V
1S0

NN (q) given in Eq. (10). Here, and in what
follows, we denoted p = |p| and p′ = |p′|. The on-shell T

matrix is linked to the S matrix and the phase shifts via

S1S0
(E ) = e

2i δ1S0
(E ) = 1 − iπmN q0 T1S0

(q0, q0, E ), (71)

where q0 = √
mN E is the relative momentum of the inter-

acting nucleons in the center-of-mass frame. The momentum
integral in the LS equation is divergent and we regulate the
potential via a separable regulator of the form (54),

V1S0
(p′, p) → exp

[

−
(

p′ 2

�2

)n]

V1S0
(p′, p) exp

[

−
(

p2

�2

)n]

,

(72)

in terms of a momentum cutoff �. For this paper, we choose
n = 2. The LS equation is solved numerically for different
values of �. For details of the numerical solution, see, e.g.,
the Appendix of Ref. [93].

In both schemes, we determine C by fitting to the scattering
length in the 1S0 channel for a given value of the regulator,
as described in Sec. II. χEFT at LO reproduces the phase

FIG. 5. Phase shifts for np scattering in the 1S0 channel,
computed in χEFT with a momentum space (�) cutoff and in
dimensional regularization (μ), as function of the center-of-mass
momentum |p|. The solid blue and dashed red lines denote the
momentum-cutoff results at LO and NLO, respectively. The bands
are obtained by varying � between 2 and 20 fm−1. The dotted
green and dash-dotted orange lines are the LO and NLO results
in dimensional regularization. The bands in the MS scheme are
obtained by varying the regulator of the intermediate scheme, as
discussed in Appendix B, between 1/λ = 0.05 and 1/λ = 0.7 fm. C

is fit to the scattering length, and C2 is fit to the phase shift at |p| = 30
MeV. The black line shows the Nijmegen partial-wave analysis [94].

shifts in the 1S0 channel only up to moderate values of
the nucleon center-of-mass momentum [86]. For the present
discussion, however, what is more important is the regulator
dependence of the phase shifts. As shown in Fig. 5, the regula-
tor dependence in the momentum-space scheme is small, and
similar results hold in the RS scheme. Results for dimensional
regularization are given as well. NLO corrections to the phase
shifts, which improve the agreement with data, are discussed
in Sec. VI.

After this renormalization exercise, we have a consistent
description of the NN system in the 1S0 channel. We can now
turn to the calculation of the nn → pp e−e− amplitude. In
coordinate space, the LNV scattering amplitude is obtained
by evaluating Eq. (61). In the momentum-space scheme, we
use its analog,

Aν = −2π2 −〈1S0, p′ |V 1S0
ν (p′, p)|1S0, p〉+ (73)

where

V
1S0
ν (p′, p) =

∫ 1

−1

dx

(2π )2

1

p2 + p′ 2 − 2pp′x

[

1 + 2g2
A + g2

Am2
π

(

p2 + p′ 2 − 2pp′x + m2
π

)2

]

− gNN
ν

π2
(74)

is the partial-wave-projected neutrino potential and the ± superscripts indicates that we sandwich Vν between scattered wave
functions. We then calculate Aν via the explicit expression

Aν = −2π2

{

V
1S0
ν (p′, p) +

∫

d p′′
[

V
1S0
ν (p′, p′′)

mN p′′ 2

p2 − p′′ 2 + iε
T1S0

(p′′, p, E ) + T1S0
(p′, p′′, E ′)

mN p′′ 2

p′ 2 − p′′ 2 + iε
V

1S0
ν (p′′, p)

]

+
∫

d p′′
∫

d p′′′ T1S0
(p′, p′′, E ′)

mN p′′ 2

p′ 2 − p′′ 2 + iε
V

1S0
ν (p′′, p′′′)

mN p′′′ 2

p2 − p′′′ 2 + iε
T1S0

(p′′′, p, E )

}

(75)
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FIG. 6. Dimensionless counterterm g̃NN
ν in χEFT as a function

of the coordinate- and momentum-space cutoffs RS (red) and �

(blue) and of the dimensional-regularization scale μ (green). Red
and blue points denote the results of numerical calculations, while
the corresponding lines are logarithmic fits, as explained in the text.
The counterterm is determined by imposing the (arbitrary) condition
Aν exp [−i(δ1S0

(E ) + δ1S0
(E ′))] = −0.05 MeV−2 at |p| = 1 MeV.

or, in short-hand notation,

Aν = −2π2(Vν + VνG0T + T G0Vν + T G0VνG0T ). (76)

The solution is graphically depicted in Figs. 3 and 4.
As illustrated in the right panel of Fig. 2, the amplitude

Aν computed only with the long-range neutrino-exchange
potential is cutoff dependent. The cutoff dependence is cured
by introducing gNN

ν at LO. Figure 6 shows the values of the
dimensionless coupling g̃NN

ν , defined in Eq. (42), as a function
of RS , �, and the dimensional-regularization scale μ. Because
of the lack of data on �L = 2 processes, g̃NN

ν was determined
here by requiring that the scattering amplitude at |p| = 1 MeV
be equal to an arbitrarily chosen value,

Aν (|p| = 1 MeV, |p′| = 38 MeV)e−i(δ1S0
(E )+δ1S0

(E ′ ))

= −0.05 MeV−2. (77)

The values of g̃NN
ν obtained numerically with the � and RS

regulators are fitted with

g̃NN
ν (�) = −12.0 − 2.2 ln(mπ/�),

g̃NN
ν (RS ) = −9.4 − 2.2 ln(mπRS ), (78)

g̃NN
ν (μ) = −7.9 − 2.1 ln(mπ/μ).

The coefficients of the logarithms in Eq. (78) are close to each
other and close to the dimensional-regularization expectation
(1 + 2g2

A)/2 ≃ 2.1. While intriguing, there is no proof that
the coefficient of the logarithm should be universal, and
counterexamples exist in the literature [46].6

6As discussed in Sec. III B, the pion-exchange potential in the
1S0 channel induces a divergence in the strong scattering amplitude
proportional to m2

π ln � [86], which is absorbed by promoting D2 to

FIG. 7. Magnitude of the LNV scattering amplitude Aν as a
function of the neutron center-of-mass momentum |p| at LO. The
red, blue, and green lines represent the results in χEFT with
coordinate-space, momentum-space, and dimensional regularization,
respectively, using gNN

ν from Fig. 6. The bands indicate residual
regulator dependence and are obtained by varying RS between 0.05
and 0.7 fm, � between 2 and 20 fm−1, and 1/λ between 0.05 and
0.7 fm. The dashed black line is the result in /πEFT with dimensional
regularization. Since the /πEFT amplitude can be made exactly μ

independent at this order, there is no band associated with the μ

variations.

In Fig. 7, we show the renormalized Aν as a function of p

in χEFT with momentum- and coordinate-space cutoffs and
in dimensional regularization. The cutoff bands are obtained
by varying � between 0.4 and 2 GeV and varying RS between
0.05 and 0.7 fm. The dimensional-regularization band is ob-
tained by varying the regulator of the intermediate scheme
introduced in Appendix B between 1/λ = 0.05 and 1/λ = 0.7
fm. Also shown is the outcome in /πEFT with dimensional
regularization. In /πEFT, the LO amplitude can be made μ

independent, so that no band from scale variation appears.
Of course, there is an uncertainty from missing higher-order
corrections. All results are in excellent agreement. The regu-
lator dependence is negligible at small momenta and is small
even at |p| = 150 MeV: about 15% in the momentum-space
scheme and smaller in the other schemes. This dependence is
significantly reduced if we vary � between 0.6 and 2 GeV,
indicating that 0.4 GeV might be too low compared to the
breakdown scale.

Note that treating pion exchange perturbatively [77,78],
which might be sufficient at low energies [89,90], does not
avoid the presence of gNN

ν at LO, since in this case LO in the
strong sector is identical to /πEFT. The conclusion is that after
inclusion of gNN

ν the nn → pp e−e− amplitude is properly
renormalized over the whole EFT momentum range.

LO. The coefficient of the logarithm can be computed analytically
in the scheme defined in Ref. [46], and differs from the dimensional
regularization value of Ref. [86].
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V. NEUTRINO POTENTIAL IN HIGHER PARTIAL WAVES

In the previous sections we have demonstrated in various
schemes the need to introduce an LO short-range counterterm
for the nn → pp e−e− process for 1S0 → 1S0 transitions. We
now investigate whether this problem also occurs for transi-
tions involving higher partial waves. In /πEFT, nucleons do
not interact in these waves until higher orders, but in χEFT,
as we discussed in Sec. III B, there are renormalization issues
already in the strong sector. We limit ourselves to two P-wave
transitions 3P0,1 → 3P0,1, which allows us to examine the
effects from the singular NN tensor force generated by OPE
while avoiding complications involved in the 3P2-3F2 coupled

channel. In the 3P1 channel, this force is repulsive and one
might expect no UV problems. However, in the 3P0 channel
it is attractive and similar problems as in the 1S0 channel
might occur. We also study the 1D2 channel as representative
of a singlet channel (where the OPE tensor force vanishes)
with higher angular momentum j. In this section, we stick to
a single scheme, where we regulate the LS equation with a
momentum cutoff.

We begin by describing the strong force in the P and D

waves. We perform a partial-wave decomposition of the OPE
potential (18) and obtain

〈(l ′s′) j′ p′|Vπ |(ls) j p〉 = 2π
∑

f

f̂ 3/2 (1 1 f ; 000)
∑

λ1+λ2= f

√

f̂ !

λ̂1!λ̂2!
(p)λ2 (−p′)λ1

∑

k

(−1)k k̂ 3/2 g
f

k
(p, p′)

⎛

⎝

k k 0
λ1 λ2 f

l ′ l f

⎞

⎠

×
√

λ̂1λ̂2 (k λ1 l ′; 000) (k λ2 l; 000)6(−1)l

√

ŝŝ′ ĵ

⎛

⎝

l ′ l f

s′ s f

j′ j 0

⎞

⎠

⎛

⎝

1/2 1/2 1
1/2 1/2 1
s′ s f

⎞

⎠ × (4t − 3)δtt ′
,

(79)

where t (t ′) is the total initial (final) isospin and ẑ ≡ 2z + 1. We introduced the function

g
f

k
(p, p′) =

∫ 1

−1
dx Pk (x)V (q(x)) q2− f (x), (80)

in terms of the Legendre polynomials Pk (x), q2(x) ≡ p2 + p′ 2 − 2pp′x, and the function

V (q) = − g2
A

4F 2
π

1

q2 + m2
π

. (81)

We solve the LS equation (68) for the potentials

V{3P0,
3P1,

1D2}(p′, p) = 1

(2π )3
〈{3P0,

3P1,
1D2}, p′|Vπ |{3P0,

3P1,
1D2}, p〉, (82)

where

〈3P0, p′|Vπ |3P0, p〉 = 2π

3

[

g0
1(p, p′) − 4(p2 + p′ 2)g2

1(p, p′) + 4

3
pp′(g2

2(p, p′) + 5g2
0(p, p′)

)

]

,

〈3P1, p′|Vπ |3P1, p〉 = 2π

3

[

g0
1(p, p′) + 2(p2 + p′ 2)g2

1(p, p′) − 2

3
pp′(g2

2(p, p′) + 5g2
0(p, p′)

)

]

, (83)

〈1D2, p′|Vπ |1D2, p〉 = −2π g0
2(p, p′),

and extract the phase shifts from the solution of the T matrix.

As was found in Ref. [42], the pure OPE potential leads
to cutoff-independent phase shifts in the (repulsive) 3P1 and
(mildly attractive) 1D2 channels, but not in the (attractive) 3P0

channel. This behavior is illustrated in the left panel of Fig. 8,
where the 1D2 and 3P1 phase shifts at p = 100 MeV are flat,
but the 3P0 phase shift shows a limit-cycle-like behavior as a
function of �. Following Ref. [42], we promote a counterterm
to LO in the 3P0 channel—the coupling C3P0

in Eq. (20)—and
fit it to the phase shift at a center-of-mass energy ECM =
25 MeV. The resulting phase shifts are essentially cutoff
independent as depicted in the left panel of Fig. 8. The phase
shifts as a function of the relative momentum of the nucleons

are depicted in the right panel of Fig. 8 and compared to the
Nijmegen partial-wave analysis [94]. After promoting the 3P0

counterterm, the phase shifts in all three channels are well
described at LO in χEFT.

Having renormalized the strong interaction in the P-wave
channels, we now turn to the nn → pp e−e− amplitude. We
calculate Eq. (76) for 3P0,1 → 3P0,1 and 1D2 → 1D2 tran-
sitions. We only consider the long-range neutrino potential
and do not include additional short-range LNV countert-
erms. We observe in the left panel of Fig. 9 that the re-
sulting amplitudes are cutoff independent for the repulsive
3P1 channel and the attractive 3P0 channel, as well as the
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(a) (b)

FIG. 8. Left panel (a): Phase shifts in the 3P0,1 and 1D2 channels as a function of the momentum-space cutoff �. The green triangles, red
squares, and blue circles denote respectively the 3P1, 1D2, and 3P0 phase shifts from the OPE potential. The blue line is the 3P0 phase shift
with an additional counterterm. Right panel (b): the 1D2 (red squares), 3P1 (green triangles), and renormalized 3P0 (blue circles) phase shifts as
functions of the relative momentum of the nucleon pair |p|, compared to the Nijmegen partial-wave analysis (solid lines) [94].

mildly attractive 1D2 channel. Despite the attractive singu-
lar nature of the strong NN interaction in the 3P0 channel,
the neutrino amplitude is UV finite. We conclude we do
not need to promote additional counterterms to LO. In the
right panel of Fig. 9, we plot the neutrino amplitude as a
function of the neutron momentum and observe that the P-
wave amplitudes are small compared to the S-wave ampli-
tude. The D-wave amplitude becomes relatively important at
higher values of |p|, where the 1S0 contribution has decreased
significantly.

VI. THE LNV SCATTERING AMPLITUDE AT

NEXT-TO-LEADING ORDER

In this section, we study NLO corrections to the LNV
amplitude nn → pp e−e−. The main motivation to go to sub-
leading order is the poor agreement between the observed
phase shifts in the 1S0 channel and the LO χEFT predictions,
shown in Fig. 5. The agreement improves by including the
contribution of the NLO operator C2, and we want to study
its impact on the nn → pp e−e− amplitude. In particular, we
address the question whether a single counterterm gNN

ν is

(a) (b)

FIG. 9. Left panel (a): absolute value of neutrino amplitude Aν for the 1S0 (black), 1D2 (red), 3P1 (green), and 3P0 (blue) channels as a
function of momentum-space cutoff �. Solid (dashed) lines correspond to |p| = 50 MeV (|p| = 100 MeV). Right panel (b): absolute value
of neutrino amplitude Aν in the 1S0 (black stars), 1D2 (red squares), 3P1 (green triangles), and 3P0 (blue dots) as functions of the neutron
center-of-mass momentum |p|. The bands (all except blue are nearly invisible) represent cutoff variation in the range 2 to 20 fm−1.
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sufficient to renormalize the �L = 2 scattering amplitude up
to NLO.

At NLO, /πEFT and χEFT contain a single momentum-
dependent contact interaction in the 1S0 channel, the C2 de-
fined in Eqs. (15) and (22). All other corrections in the singlet
channels are expected to be of higher order. To study the
strong and LNV scattering amplitudes in a generic scheme,
it is convenient to split the nonderivative contact interactions
C and gNN

ν into LO and NLO pieces,

C = C(0) + C(1), gNN
ν = gNN (0)

ν + gNN (1)
ν , (84)

with

C(0) = O

(

4π

mN Q

)

, C(1) = O

(

4π

mN�

)

,

gNN (0)
ν = O

(

1

Q2

)

, gNN (1)
ν = O

(

1

Q�

)

. (85)

Here � = �/π in /πEFT and � = �χ in χEFT, while Q

denotes the soft scale, that is, Q ∼ ℵ in /πEFT and Q ∼ mπ

in χEFT. This splitting does not lead to new LECs; it simply
ensures that the LO fitting conditions are not affected by
NLO corrections. C(1) and gNN (1)

ν absorb power divergences
induced by C2 = O(4π/(mN Q2�)) that appear both in /πEFT
and χEFT when using a cutoff scheme. In χEFT, C(1) absorbs
divergences induced by the pion-exchange potential. To sim-
plify the notation, we will continue to drop the superscript (0)
from the LO counterterms.

The diagrams entering the LNV scattering amplitude at
NLO are shown in the lower panels of Figs. 3 and 4. In the
notation of Sec. IV A, the NLO scattering amplitude takes the
form

ANLO
ν = AA + χ+

p′ (0)
(

KE ′ + K
(1)
E ′

)

AB

+ ĀB

(

KE + K
(1)
E

)

χ+
p (0) + χ+

p′ (0)
(

KE ′ + K
(1)
E ′

)

×
(

AC + 2gNN
ν

C2

)

(

KE + K
(1)
E

)

χ+
p (0)

+χ+
p′ (0) KE ′ A

(1)
B + Ā

(1)
B KE χ+

p (0)

+χ+
p′ (0) KE ′ A

(1)
C KE χ+

p (0), (86)

where the superscript (1) denotes NLO corrections, and terms
quadratic in K

(1)
E , E ′ should be discarded. The first two lines in

Eq. (86) subsume NLO corrections to the strong scattering
amplitude and yield a finite, regulator-independent result once
the strong amplitude is renormalized. However, regulator
dependence might appear in the remaining terms, shown in
the third line.

To address this possible regulator dependence, we will also
include the derivative operator gNN

2ν , defined in Eq. (35). This
operator only involves the S wave, so when it is inserted into a
bubble chain it will not cause any mixing with other partial
waves. We therefore expect [66] gNN

2ν to be proportional to

C2 in the same way as gNN
ν [32], and we define the rescaled

coupling

g̃NN
2ν =

(

4π

mNC

)2

gNN
2ν (87)

in analogy to Eq. (42). On the basis of the NDA [66], we
expect the ratio of couplings to scale as

gNN
2ν

gNN
ν

= O

(

1

�2

)

, (88)

implying that gNN
2ν contributes at N2LO. We will examine

whether the renormalization of the full neutrino potential
fulfills this expectation.

In /πEFT, the diagrams can be analytically resummed in
any scheme where additional loops arising from insertions of
contact interactions factorize. One example is the momentum
scheme introduced in Eq. (54). In χEFT, because of the
iteration of the pion-exchange potential, loop diagrams in
general do not factorize, and we require a numerical solution.
In dimensional regularization, however, the structure of the
diagrams is simple enough that it is possible to give analytical
expressions, which closely resemble those of /πEFT. We start
by discussing the amplitude at NLO in /πEFT in Sec. VI A and
extend the discussion to χEFT with dimensional and cutoff
regularization in Secs. VI B and VI C, respectively.

A. Pionless EFT

In /πEFT, KE + K
(1)
E corresponds to the full 1S0 NLO

scattering amplitude,

(

KE + K
(1)
E

)

/π
= 1

C−1 + I0(p)

[

1 +
(

C2

C2
p2 + C2

C
δI0 + C(1)

C2

)

× 1

C−1 + I0(p)

]

, (89)

where I0 is defined in Eq. (43) and δI0 is an integral that
vanishes in dimensional regularization but is nonzero when
using a momentum cutoff,

δI0 = −mN

∫

d3k

(2π )3
exp

[

−2
(k2)2

�4

]

∝ mN�3. (90)

Its precise value is not important because the choice

C(1) = −C2 C δI0 (91)

exactly cancels its contribution. With this choice, the scatter-
ing length is not affected by NLO corrections, while C2 is
fixed by the effective range. Using Eq. (17), we obtain

(

KE + K
(1)
E

)

/π
= 4π

mN

1

1/a + i|p|

(

1 + r0p2

2

1

1/a + i|p|

)

,

(92)

which is regulator independent. Thanks to g̃NN
ν , which com-

pensates for the regulator dependence of AC , the first two
lines of Eq. (86) are indeed independent of the regularization
scheme.
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The remaining corrections to the LNV amplitude in
Eq. (86) are given by

A
(1)
B = C2

2C
I1(p′ 2), Ā

(1)
B = C2

2C
I1(p2), (93)

A
(1)
C =

(

−4gNN
ν

C2

C2

C
+ 2gNN

2ν

C2

)

p2 + p′ 2

2
+ 2gNN (1)

ν

C2

+ 2

(

C2
gNN

ν

C2
+ gNN

2ν

C

)

δI0 − C2

C
I2(p2, p′ 2), (94)

where we used Eq. (91) and defined the cutoff-regularized
integrals

I1(p2) = mN

∫

d3k

(2π )3

1 + 3g2
A

(p − k)2
exp

[

−
(

k2

�2

)2
]

,

I2(p2, p′ 2) = −m2
N

2

∫

d3k1

(2π )3

∫

d3k2

(2π )3

1 + 3g2
A

(k1 − k2)2

1

p2 − k2
2

× exp

[

−
(

k2
1

�2

)2
]

exp

[

−
(

k2
2

�2

)2
]

+ (p → p′).

(95)

In dimensional regularization, these integrals vanish. There
is, as a consequence, no scale dependence other than in the
p2 + p′ 2 term of A(1)

C , and we can take

gNN (1)
ν = 0. (96)

Since in the absence of the derivative counterterm gNN
2ν the

p2 + p′ 2 term in Eq. (94) is μ dependent, the two-derivative
operator in Eq. (35) is required to appear at NLO. It obeys the
RGE

d

d ln μ

(

g̃NN
2ν − 2ηC g̃NN

ν

)

= 0, (97)

where we used Eq. (17) and introduced the dimensionless
combination

η = mN r0

8π
. (98)

The solution of this RGE is

g̃NN
2ν (μ) = 2ηC(μ) g̃NN

ν (μ) + g̃0
2ν, (99)

where g̃0
2ν is an integration constant, and Eqs. (93) and (94)

reduce to

A
(1)
B = 0, Ā

(1)
B = 0, (100)

A
(1)
C = A

(1)
C =

(mN

4π

)2
2g̃0

2ν

p2 + p′ 2

2
, (101)

which are independent of the renormalization scale. NDA
rules modified to take into account S-wave enhancements [66]
imply that

g̃0
2ν = O

(

1

�2
/π

)

, (102)

so that Eq. (101) is actually an N2LO correction. So we
find that in dimensional regularization with PDS scheme the
coupling gNN

2ν involves an NLO piece fixed in terms of LO

quantities by Eq. (97) and an N2LO piece parameterized
by the constant g̃0

2ν , whose scaling is determined by NDA.
This nonhomogeneous scaling of gNN

2ν is analogous to the one
of the four-derivative operator C4 in the strong-interaction
Lagrangian, which enters the NN scattering amplitude with
a fixed coefficient at N2LO, while a new LEC related to
the shape parameter appears at N3LO [77,80]. As with an
infinite number of other LECs, we cannot a priori exclude an
enhancement of g̃0

2ν over NDA, which could make it NLO or
even LO, but currently we lack evidence for it. Equations (99)
and (102) imply that the only NLO corrections to Aν come in
through the strong scattering amplitude T1S0

.
We will now see that this argument is corroborated by a

different choice of regularization. With a momentum cutoff,
I1 contains a momentum-independent linear divergence, while
I2 has a logarithmic divergence proportional to the energies in
addition to a momentum-independent quadratic divergence:

I1(p2) ∝ mN�, (103)

I2(p2, p′ 2) ∝ m2
N

(

�2 + κ
p2 + p′ 2

2
ln

�2

�2
0

)

, (104)

where κ is a dimensionless constant and �0 is a constant with
dimensions of momentum. We can thus write

I1(p2) = I1(0) + O

(

mN p2

�

)

, (105)

I2(p2, p′ 2) = I2(0, 0) + p2 + p′2

2

×
[(

∂

∂p2
+ ∂

∂p′2

)

I2(p2, p′ 2)

]

p2=p′ 2=0

+O

(

m2
N

�2

(

p2 + p′ 2

2

)2
)

. (106)

In a cutoff scheme, Eq. (17) holds with μ → c�, the value
of c depending on the choice of regulating function. With
C ∝ (mN�)−1 and C2 ∝ (mN�2)−1, we see that A(1)

B is finite
as � → ∞. The regulator dependence in the momentum-
independent terms of A(1)

C ,

2gNN (1)
ν

C2
+ 2

(

C2
gNN

ν

C2
+ gNN

2ν

C

)

δI0 − C2

C
I2(0, 0), (107)

can be absorbed by a shift in the NLO LEC gNN (1)
ν . The

terms proportional to p2 + p′ 2 converge as the cutoff is sent
to infinity, albeit slowly,

p2 + p′ 2

2

{

−4C2

C

gNN
ν

C2

− C2

C

[(

∂

∂p2
+ ∂

∂p′2

)

I2(p2, p′ 2)

]

p2=p′ 2=0

}

∝ p2 + p′ 2

2

ln �

�
.

(108)

Since higher powers of p2 + p′ 2 converge as well, we con-
clude that in a cutoff scheme there is also no need to include
an independent parameter at NLO. gNN

2ν can be included at this
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order with a fixed coefficient (as in dimensional regulariza-
tion) as part of an “improved action” where cutoff artifacts
scale more favorably as 1/� [instead of ln(�)/�] and is thus
of the same size as corrections that scale with the inverse of
the breakdown scale.

In conclusion, the NLO analysis of Aν in both dimensional
and cutoff regularizations shows that there appears no new
independent LEC in the NLO neutrino potential. In dimen-
sional regularization, gNN

2ν must be introduced to guarantee that
Aν is scale independent, but its value is fixed by Eq. (99) in
terms of gNN

ν , the 1S0 scattering length, and the 1S0 effective
range. In a cutoff scheme, Eq. (108) guarantees that for large
� the amplitude is correctly renormalized, after momentum-
independent power divergences are absorbed by a redefinition
of the LEC gNN

ν . However, gNN
2ν with a cutoff dependence

fixed by the same parameters as in dimensional regularization
ensures that the error from � at the breakdown scale is not
unusually large.

B. Chiral EFT with dimensional regularization

In χEFT, the NLO correction to the strong scattering
amplitude encoded in

K
(1)
E = K2

E

{

C(1)

C2
+ C2

C2
[p2 − mNVπ (0)]

}

(109)

contains the additional contribution from the dimensionally
regulated pion potential in coordinate space evaluated at the
origin,

Vπ (0) = − g2
A

4F 2
π

∫

dd−1k

(2π )d−1

m2
π

k2 + m2
π

= − g2
Am2

π

16πF 2
π

(μ − mπ ).

(110)

The μ dependence signals that the integral is linearly diver-
gent in the PDS scheme. The μ independence of the strong
scattering amplitude implies

d

d ln μ

(

C2

C2

)

= 0, (111)

but C2 no longer has the simple expression in terms of the
effective range given in Eq. (17) due to explicit pion-exchange
contributions. Since Vπ (0) does not depend on the nucleon
momenta, we can choose

C(1) = mN C2 Vπ (0) (112)

to cancel the linearly divergent terms. This choice ensures that
NLO corrections do not change the scattering length.

As in /πEFT, the renormalization of the strong scattering
amplitude implies that the first two lines in Eq. (86) are scale
independent. The functions A(1)

B and A
(1)
C are now given by

A
(1)
B = Ā

(1)
B = 0, (113)

A
(1)
C =

(

−4C2

C

gNN
ν

C2
+ 2gNN

2ν

C2

)

p2 + p′2

2
+ 2gNN(1)

ν

C2

− 2mNVπ (0)
gNN

2ν

C2
+ C2

C2
mNVν L(0), (114)

where

Vν L(0) =
∫

dd−1k

(2π )d−1
V

1S0
ν L (k) = g2

Amπ

8π
(115)

is the dimensionally regulated neutrino-exchange potential
evaluated at the origin. Vν (0) is finite in MS and PDS, but
would be linearly divergent in a cutoff scheme.

The subleading, momentum-independent gNN (1)
ν can be

chosen to cancel the last three terms in Eq. (114). This choice
implies that once gNN

ν is fitted to reproduce Aν at p = 0,
its value is not affected by NLO corrections. Finally, the
momentum-dependent piece leads to the same RGE as in
/πEFT,

d

d ln μ

(

g̃NN
2ν − 2C2

C
g̃NN

ν

)

= 0. (116)

We conclude that also in χEFT gNN
2ν is completely determined

at NLO by gNN
ν (in terms of C2 and C), and new independent

parameters appear only at N2LO or higher.

C. Chiral EFT with cutoff regularization

Depending on the subtraction scheme, certain positive
powers of a momentum cutoff have no analog in dimensional
regularization. As a consequence, the need for a LEC at
a given order might not be apparent in this regularization
scheme, while it is in a cutoff scheme. We now check that the
conclusion reached about gNN

2ν in χEFT does not depend on di-
mensional regularization. We repeat the analysis of Sec. VI B
for the cutoff schemes introduced in Sec. IV C.

In coordinate space, the amplitude at NLO is obtained by
computing the integral (67) where now ψ+

p (r) = ψ+ (0)
p (r) +

ψ+ (1)
p (r), with ψ+ (0)

p (r) the LO wave function and

ψ+ (1)
p (r) = 1

E − H + iε

[

− C2

2

(←−
∇

2δ
(3)
RS

(r) + δ
(3)
RS

(r)
−→
∇

2
)

+C(1)δ
(3)
RS

(r)

]

ψ+ (0)
p (r) (117)

the NLO correction, where H is the LO Hamiltonian. To work
consistently at NLO, we expand Eq. (67) and neglect terms
quadratic in ψ

±(1)
p,p′ . As in the momentum-space treatment

below, C2 and C(1) induce power-divergent corrections in the
amplitude, which can be absorbed by introducing gNN (1)

ν in
perturbation theory.

We also consider a momentum cutoff, where we start by
solving the LS equation (68). Schematically, in first order in
the NLO strong-interaction potential (23),

T (1) = V (1) + V (1)G0T + T G0V
(1) + T G0V

(1)G0T, (118)

where T denotes the LO T matrix. This NLO correction to the
T matrix induces a correction

S
(1)
1S0

(E ) = −iπmN q0 T
(1)

1S0
(q0, q0, E ) (119)

in the S matrix in the 1S0 channel. We introduce the NLO
phase shifts as

e
2i(δ1S0

(E )+δ
(1)
1S0

(E )) = S1S0
(E ) + S

(1)
1S0

(E )

→ δ
(1)
1S0

(E ) = 1

2i

S
(1)
1S0

(E )

S1S0
(E )

, (120)

where S1S0
(E ) is the LO S matrix given by Eq. (71).
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FIG. 10. Magnitude of the LNV matrix element Aν at various values of the neutron center-of-mass momentum: |p| = 10, 20, 50, 80, 100,
and 150 MeV. Left and right panels show Aν as function of coordinate- and momentum-space regulators, respectively. Circles and triangles
denote results at, respectively, LO and NLO. For the purpose of illustration, the LNV counterterm is determined by imposing the (arbitrary)
condition |Aν | = 0.05 MeV−2 at |p| = 1 MeV.

We now fit C2 and C(1) by demanding that the scattering
length, which was already correctly described at LO, be
unaffected and, simultaneously, by fitting the 1S0 phase shift at
|p| = 30 MeV. More details of this procedure can be found in
Ref. [44]. The resulting np phase shifts with momentum and
dimensional regularizations are shown in Fig. 5. Compared to
LO, significantly better agreement with the Nijmegen partial-
wave analysis [94] is obtained, but there is plenty of room
for further improvement at higher orders. Results for the
coordinate-space regulator are similar.

Having obtained the NLO T matrix, T (1), the calculation
of the NLO neutrino amplitude is straightforward. Expanding
Eq. (76) to first order

A(1)
ν = −2π2

(

VνG0T (1) + T (1)G0Vν + T (1)G0VνG0T

+ T G0VνG0T (1) + V (1)
ν + V (1)

ν G0T

+ T G0V
(1)
ν + T G0V

(1)
ν G0T

)

, (121)

one sees that there are two types of corrections. The first
type comes from the perturbative insertion of the NLO T

matrix. The contributions from C2 and C(1) to T (1) induce
power-divergent corrections to the amplitude. These can be
absorbed by introducing gNN (1)

ν , the momentum-independent
NLO counterterm that corresponds to the NLO neutrino po-

tential V (1)
ν . This piece then gives a second type of correction

to the NLO amplitude.
The NLO counterterm gNN (1)

ν is fitted by demanding that
A(1)

ν (|p| = 1 MeV) = 0, such that the (arbitrary) LO fit con-
dition at this energy employed in Sec. IV is not affected.
We stress that gNN (1)

ν does not correspond to a new LEC but
simply to a perturbative shift in the LO LEC. Only the sum
gNN

ν + gNN (1)
ν is relevant. In practice, gNN

ν + gNN (1)
ν is quite

different from gNN
ν : Even in the limited range of cutoffs com-

monly used in the literature, RS ≈ 0.5–0.7 fm, they differ by
a factor of 2. While such variation is not unexpected in cutoff
schemes and has no effect on the observable Aν , it highlights
the importance of using consistent nuclear interactions in the
extraction of gNN

ν and the calculation of 0νββ nuclear matrix
elements.

The magnitude of the resulting �L = 2 scattering ampli-
tude,

|Aν | =
∣

∣A(0)
ν

∣

∣ + 1
∣

∣A
(0)
ν

∣

∣

Re
(

A(0)∗
ν A(1)

ν

)

+ · · · , (122)

is shown in Fig. 10 up to NLO for six values of |p| (namely
10, 20, 50, 80, 100, 150 MeV). The left panels correspond
to the coordinate-space regulator and the right panels to the
momentum-space regulator. Both schemes agree very well.
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LO results are the same as in Fig. 7 and given for comparison.
NLO corrections to the amplitude are small and, more impor-
tantly, cutoff independent for sufficiently large cutoff. There
is no numerical evidence for the need of an NLO counterterm.
This observation is in agreement with the analysis in /πEFT
with a hard cutoff, which showed that gNN

2ν is not needed for
convergence as the cutoff increases. It is also consistent with
the analysis in dimensional regularization in both /πEFT and
χEFT, where it was concluded that no new LNV parameters
appear until N2LO.

Of course, in the absence of data one cannot be sure
gNN

2ν is not numerically large because of some fine tuning
at small distances. Our arguments only show that there is
no renormalization-group reason for it to be enhanced with
respect to the estimate (88). In cutoff-regulated χEFT too,
gNN

2ν could be included to accelerate convergence, but given
the numerical nature of the calculation it could only be
determined after the slow-converging results are obtained for
one nucleus. Such an improved action would only be useful as
input for calculations on a different nucleus.

VII. THE CONNECTION TO CHARGE-INDEPENDENCE

BREAKING

The analysis of Sec. IV shows that matrix elements of
the long-range neutrino potential Vν L, defined in Eq. (6), are
ultraviolet divergent. The amplitude can be made independent
of the UV regulator only by including at LO a short-range neu-
trino potential parametrized by gNN

ν . While one can determine
the dependence of gNN

ν on the renormalization scale μ or on
the cutoff � or RS , knowledge of the finite piece of the LEC is
necessary to make predictions for the 0νββ half-lives in terms
of the effective neutrino Majorana mass mββ . The argument
in Sec. VI then shows that gNN

ν is the only LNV input needed
up to NLO. It can in principle be extracted by matching the
scattering amplitude for nn → pp e−e− in χEFT to LQCD.
Such LQCD calculations are extremely challenging [58] but
are beginning to be investigated. For instance, Ref. [57] cal-
culated the LEC associated to an N2LO LNV pion-electron
coupling. In the absence of LQCD results, we discuss here
how the size of LNV LECs, including gNN

ν , can be estimated
by studying their relation to analogous counterterms that are
needed to describe isospin-breaking effects.

A. The I = 2 electromagnetic Lagrangian

In Sec. III C, we derived the long-range neutrino potential
and discussed the form of short-range operators mediated
by hard-neutrino exchange. We now explore the formal re-
lation between LNV interactions and electromagnetic charge-
independence breaking (CIB).

The starting point is the quark-level electromagnetic and
weak Lagrangian

L = q̄Lγ μ(lμ + l̂μ)qL + q̄Rγ μ(rμ + r̂μ)qR, (123)

where q denotes the quark doublet q = (u d )T , and we defined

lμ = e

2
Aμ τ 3 − 2

√
2 GF [Vud ēLγμνL τ+ + H.c.],

l̂μ = e

6
Aμ, (124)

rμ = e

2
Aμ τ 3, r̂μ = e

6
Aμ. (125)

We neglect weak neutral-current interactions that are not
relevant to the present discussion. This Lagrangian gives rise
to long-distance effects through couplings of photons and
leptons to nucleons and pions. It induces the following one-
body isovector amplitude

A = N̄

[

lμ + rμ

2
J

μ

V + lμ − rμ

2
J

μ

A

]

N, (126)

where J
μ

V and J
μ

A are the vector and axial currents of Eq. (25).
In addition, short-range operators are generated by the in-
sertion of two currents connected by the exchange of hard
photons (in the electromagnetic case) or neutrinos (in the
case of 0νββ). For 0νββ, this mechanism gives rise to the
NN interactions of Sec. III C and additional πN and ππ

interactions, while electromagnetism (EM) induces very sim-
ilar isospin I = 2 interactions. This analogy between the two
cases can be made precise by noticing that the insertion of
two weak currents connected by a neutrino propagator with
a single insertion of mββ leads to a massless (up to neutrino-
mass corrections) boson propagator (in the Feynman gauge).
The exchange of hard neutrinos therefore leads to identical
contributions as photon exchange, up to an overall factor [32]:
Hard-neutrino exchange is multiplied by 8G2

FV 2
ud mββ ēLec

L

compared to the usual e2 in the EM case. To elucidate this
relation, we first construct the chiral Lagrangian in the ππ

and πN sectors for the LNV and EM cases, before discussing
the short-range NN interactions.

To construct operators that transform like two insertions
of the weak and electromagnetic currents, we introduce the
spurion fields for the left- and right-handed currents

QL = u†QLu, QR = uQRu†, (127)

where u2 = U = exp(i�τ · �π/Fπ ) incorporates the pion fields.
Under left- and right-handed chiral rotations L and R, respec-
tively, the meson u and nucleon N fields transform as u →
LuK† = KuR† and N → KN , where K is an SU(2) matrix
that depends nonlinearly on the pion field. (For a review of
chiral symmetry, see, for example, Ref. [95]). The spurions
QL,R transform like currents,

QL → LQLL†, QR → RQRR†, (128)

QL → KQLK†, QR → KQRK†. (129)

One then writes the most general Lagrangian involving QL,R

that is invariant under chiral symmetry. The way weak cur-
rents break the symmetry is recovered by taking Q → Qw

with

Qw
L = τ+, Qw

R = 0. (130)
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In the EM case, Q → Qem with

Qem
L = Qem

R = τ3/2. (131)

Because two insertions of Qw
L give rise to I = 2 interactions

in the 0νββ case, in the EM case we will investigate I = 2
operators that induce CIB interactions.

In the mesonic sector, the only operator that can be con-
structed with two insertions of QL,R and no derivatives is the
I = 2 interaction

Lππ
e2 = Ze2F 4

π Tr
[

Qem
L Qem

R

]

, (132)

where, at LO in χPT, Z is related to the pion-mass (squared)
splitting by

Ze2F 2
π = 1

2δm2
π = 1

2

(

m2
π± − m2

π0

)

. (133)

There is no interaction of the type Q2
L that would lead to

|�L| = 2. The first such interaction contains two chiral-
covariant derivatives of the pion field,

uμ = −u†[i∂μ + (lμ + l̂μ)]u + u[i∂μ + (rμ + r̂μ)]u†, (134)

and it is given by [32,96,97]

Lππ
e2 =−e2F 2

π κ3

[

Tr
(

Qem
L uμ

)

Tr
(

Qem
L uμ

)

− 1

3
Tr

(

Qem
L Qem

L

)

Tr(uμuμ) + (L → R)

]

,

Lππ
|�L|=2 = (2

√
2 GFVud )2mββ ēLCēT

L

5gππ
ν

3(16π )2
F 2

π

×
[

Tr
(

Qw
L uμ

)

Tr
(

Qw
L uμ

)

− 1

3
Tr

(

Qw
LQ

w
L

)

Tr(uμuμ)

]

+ H.c., (135)

where we used the notation of Ref. [97] for the EM operator.7

gππ
ν is a LEC of O(1), so that the operator in Eq. (135)

contributes to the neutrino potential at N2LO, together with
the pion-neutrino loops discussed in Ref. [32]. The factors of
e2 and (2

√
2GFVud )2mββ ēLCēT

L appear due to two insertions
of EM and weak currents, respectively. This allows us to
identify [32]

gππ
ν = − 3

5 (16π )2κ3. (136)

The model estimate of Ref. [98] for κ3 gives gππ
ν (μ = mρ ) =

−7.6, in agreement with a recent LQCD extraction that found
gππ

ν between −12 and −8.5 [57,99,100].
In the single-nucleon sector, the lowest-order |�L| = 2

interaction involves one derivative. Focusing on terms with

7Unlike Ref. [97], we subtracted the trace part of the κ3 operator to
isolate the I = 2 representation. This shift in the I = 0 part can be
absorbed in a redefinition of the isospin-invariant operator κ1 defined
in Ref. [97].

only Qem
L (Qw

L ) or Qem
R , one can write [32,96,97,101]8

LπN
e2 = e2F 2

π

g4 + g5

4

[

Tr
(

uμQ
em
L

)

N̄SμQem
L N

− 1

3
Tr

(

Qem
L Qem

L

)

N̄SμuμN + (L → R)

]

,

LπN
|�L|=2 = (2

√
2GFVud )2mββ ēLCēT

L

gAgπN
ν

4(4π )2

×
[

Tr
(

uμQ
w
L

)

N̄SμQw
L N − 1

3
Tr

(

Qw
LQ

w
L

)

N̄SμuμN

]

+ H.c., (137)

where the LEC gπN
ν = O(1) is related to the EM LEC g4 + g5

by [32]

gπN
ν = (4πFπ )2 g4 + g5

gA

≡ − 2

gA

(

4π

e

)2

β̄10. (138)

The EM interactions induce CIB in the pion-nucleon cou-
plings, but at the moment there exist no good estimates be-
sides NDA. There is only a bound β̄10 = 5(18) × 10−3 [101]
extracted from the Nijmegen partial-wave analysis [94,102] of
NN scattering, which translates to |gπN

ν | � 61. This introduces
a source of uncertainty at N2LO in the chiral expansion of the
neutrino potential.

We now come to the NN sector, where the failure of
Weinberg’s power counting requires the |�L| = 2 contact
interaction in Eq. (33) at LO. The associated EM operators
were constructed in Ref. [103]. In the mu,d → 0 limit, there
are only two rank-2 isospin operators with two insertions of
QL,R [32,96],

LNN
e2 = e2

4

{

N̄Qem
L N N̄

(

C1Q
em
L + C2Q

em
R

)

N

− 1

6
Tr

[

Qem
L

(

C1Q
em
L + C2Q

em
R

)]

N̄ �τN · N̄ �τN

}

+ (L → R),

LNN
|�L|=2 = (2

√
2GFVud )2mββ ēLCēT

L

gNN
ν

4

×
[

N̄Qw
L N N̄Qw

L N − 1

6
Tr

(

Qw
L Qw

L

)

N̄ �τN · N̄ �τN

]

+ H.c. (139)

As before, the LECs gNN
ν and C1 are related, gNN

ν = C1.
When expanded in powers of the pion field, the |�L| = 2
Lagrangian generates the contact interaction in Eq. (33). As
we have seen, operators related to those in Eq. (139) but
containing insertions of the quark masses are also needed at
LO. The full set of such NN operators with up to two mass
insertions is constructed in Appendix A. In the isospin limit

8We again subtracted the trace terms compared to the O4 and O5

operators in Ref. [97], such that the operators in Eq. (137) have I = 2.
These redefinitions would be absorbed by shifting the couplings of
the O1 and O2 operators of Ref. [97].
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mu = md , we can include quark-mass corrections by replacing
C1 and C2 by the combinations

gNN
ν = C1 =

∑

n

c(1)
n m2n

π , C2 =
∑

n

c(2)
n m2n

π , (140)

where c(1,2)
n are the couplings of the EM operators with n

mass insertions. The equality gNN
ν = C1 relies only on isospin

symmetry and is not spoiled by insertions of the average quark
mass.

If C1 and C2 can be fixed separately from CIB processes,
then gNN

ν can be determined independently of LNV data. In
Weinberg’s power counting, the LECs C1 and C2 scale as
C1,2 = O((4πFπ )−2). In the following subsection, we will
show that renormalization requires C1,2 = O(F−2

π ), consis-
tently with the enhancement of gNN

ν . Unfortunately we cannot
fix C1 and C2 separately at present, but we will discuss how
CIB in the NN system can be used to extract C1 + C2.

B. CIB in NN scattering

We now determine the coefficient C1 + C2 from NN scat-
tering data. By expanding the pion fields in the operators
in Eq. (139), we see that C1 and C2 only differ at the
multipion level. Any CIB observable that is not sensitive
to multipion contributions therefore only constrains the sum
C1 + C2. In particular, NN scattering data are not sufficient
to determine C1, and thus gNN

ν , separately as required for
0νββ. Nevertheless, the analysis of CIB in NN scattering does
convincingly demonstrate the need for short-range operators
to absorb divergences of Coulomb-like potentials acting in
the 1S0 channel. It provides a concrete data-driven example
of the breakdown of Weinberg’s power counting. In addition,
the extraction of C1 + C2 will provide an estimate of the
importance of the short-range neutrino potential by assuming
gNN

ν ∼ (C1 + C2)/2.
We start our discussion by demonstrating the need for

CIB counterterms. Charge-independence breaking is evident
in the difference among the 1S0 np, pp, and nn scattering

FIG. 11. Long-range contributions to the CIB NN potential. The
wavy line represents a photon and the star denotes an insertion of the
electromagnetic pion-mass splitting. Other symbols are as in Fig. 1.

lengths. In the pp channel, Coulomb photon exchange is an
LO effect at small center-of-mass momenta and the Coulomb
potential must be iterated to all orders. We can define aC as
the pp scattering length after subtraction of the pure Coulomb
contribution to pp scattering. We will use the empirical deter-
mination of the scattering lengths [35]

anp = −23.74 ± 0.02 fm, ann = −18.90 ± 0.40 fm,

aC = −7.804 ± 0.005 fm. (141)

While we have subtracted long-range photon-exchange con-
tributions, aC still contains short-range contributions from
hard-photon exchange. These two types of contributions can
be separated within specific models by defining a Coulomb-
subtracted pp scattering length [104], which is estimated to
be app = −17.3 ± 0.4 fm. From anp, ann, and app, we can
construct the combination

aCIB = 1
2 (app + ann) − anp = 5.6 ± 0.6 fm, (142)

which demonstrates that CIB effects are sizable in the 1S0

channel even after subtracting Coulomb contributions [105].
Since the separation between app and aC depends (mildly) on
the model of the nuclear force, we will not use the Coulomb-
subtracted scattering length and instead fit to aC .

The most important pion-range CIB interaction stems from
the pion-mass splitting, Eq. (132). Together with Coulomb-
photon exchange, it gives rise through the diagrams in Fig. 11
to the long-range CIB potential [96,106]

VCIB = e2

4

(

τ
(1)
3 τ

(2)
3 − 1

3
�τ (1) · �τ (2)

)

1

q2

[

1 − g2
A

3

δm2
π

e2F 2
π

(

σ (1) · σ (2) − S(12)
)

(

1 − m2
π

q2 + m2
π

)2
]

. (143)

In the 1S0 channel, it reduces to

V
1S0

CIB = e2

4

(

τ
(1)
3 τ

(2)
3 − 1

3

)

1

q2

[

1 + g2
A

δm2
π

e2F 2
π

(

1 − m2
π

q2 + m2
π

)2
]

. (144)

Since by NDA δm2
π = O(e2F 2

π ), the pion-mass-splitting term
is expected to contribute sizably to CIB for momenta Q ∼ mπ .

Equations (143) and (144) can be directly compared to,
respectively, Eqs. (6) and (7). VCIB has a very similar structure
to the long-range neutrino potential Vν , with the difference that
Eq. (6) contains contributions from the couplings of nucleons
and pions to the weak axial current. In addition, there is no
analog of the pion-mass-splitting term in Vν . The Coulombic

nature of V
1S0

CIB at short distances implies that the same diver-
gence we encountered in the LNV scattering amplitude Aν

also affects CIB observables, requiring a CIB four-nucleon
operator at LO in e2.

The Coulombic nature of V
1S0

CIB also determines its im-
portance relative to the LO strong interactions represented
by V

1S0
π in Eq. (11). For momenta Q ∼ mπ , V

1S0
CIB/V

1S0
π ∼
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(a) (b)

FIG. 12. Proton-proton scattering length aC (a) and neutron-neutron scattering length ann (b), as a function of the coordinate-space cutoff
RS . The points are computed with the long-range potentials Vpp and Vnn defined in Eq. (145), and with a charge-independent short-range
potential with LEC C = Cnp fitted to the np scattering length in the 1S0 channel, anp. The dashed lines indicate the experimental values of aC

and ann.

(eFπ/mπ )2 ≪ 1 and V
1S0

CIB can be treated in perturbation theory.
In this region, the argument of Sec. IV for the need of a
counterterm goes through essentially unchanged for the CIB
amplitude, if we replace the neutrino-exchange diagrams by
Coulomb plus pion-mass-splitting OPE. The case of pertur-
bative Coulomb in /πEFT has been examined in Ref. [68].
In contrast, at momenta Q � eFπ CIB is no longer a small
correction since V

1S0
CIB/V

1S0
π � 1, but pion-mass-splitting OPE

is �(Q/mπ )4 ≪ 1 compared to Coulomb. At even smaller
momenta, Q � αemmN ∼ e2Fπ , Coulomb-photon exchange is
nonperturbative. The need for a counterterm for nonperturba-
tive Coulomb in /πEFT was shown in Ref. [64]. We generalize
this argument now to χEFT including pion-mass splitting.

In order to interpolate smoothly between the three regions,
we treat the CIB potential nonperturbatively. This is what is
done in all chiral-potential calculations we are aware of. The
iteration of the CIB potential does not affect the presence
of a logarithmic divergence, which is due to diagrams
where a single photon exchange or a single insertion of the
pion-mass splitting is sandwiched between two short-range
operators, analogous to the diagrams shown in the third row of
Fig. 3. The iteration, however, affects the finite pieces of the
counterterms by including corrections suppressed by powers
of e2 ≈ 1/10. Since the equality C1 = gNN

ν is valid at LO in
e2, we expect the counterterms extracted from NN scattering
to be a good representation of the LNV counterterms up to
10% corrections. In summary, we replace the long-range
potential Vπ in Eq. (38) by different potentials in the pp, nn,
and np channels,

Vpp = Vπ (mπ0 ) + e2

4πr
, Vnn = Vπ (mπ0 ),

Vnp = 2Vπ (mπ± ) − Vπ (mπ0 ), (145)

with mπ± = 139.57 MeV and mπ0 = 134.98 MeV.

In Weinberg’s power counting, the contact interaction C is
charge independent at LO. As discussed in Sec. VII A, charge
dependence only enters at O(e2/(4π )2), which is suppressed
by (4π )−2 with respect to the terms in Eq. (145). This implies
that once C is determined in one isospin channel, for example,
np, the phase shifts in the remaining channels, pp and nn,
should be independent of the regulator. We test this prediction
of Weinberg’s power counting in Fig. 12. We determine C by
fitting to anp in the np channel and define the resulting value
as Cnp. We then calculate aC and ann using the long-range po-
tentials in Eq. (145) combined with the short-range interaction
with LEC Cnp. Figure 12 shows that aC and ann have a strong
dependence on the cutoff RS , and for no RS in the plotted range
there is agreement between the calculated and the measured
values. As was the case for 0νββ decay, our calculations
explicitly demonstrate that Weinberg’s power counting is
inadequate for Coulomb-like potentials in the 1S0 channel.

The regulator dependence can be removed by introduc-
ing isospin-breaking counterterms Cnp, Cnn, and Cpp. This
amounts to including short-range charge-symmetry breaking
(CSB) as well as CIB. According to NDA, OPE with a CSB
pion-nucleon coupling [96,101,107] contributes at the same
order as short-range CSB. The value of the CSB pion-nucleon
coupling is unknown [101,102], but its inclusion would not
affect the conclusions drawn below that short-range CSB is
enhanced over NDA, just as short-range CIB. For simplicity,
we do not include CSB OPE. We determine Cnp, Cnn, and Cpp

by reproducing the observed scattering lengths in Eq. (141).
We then extract the CIB combination

C1 + C2

2
≡

(

mNC

4π

)2
C̃1 + C̃2

2
= 1

e2

(

Cnp − Cnn + Cpp

2

)

,

(146)
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FIG. 13. Phase shifts for the different isospin components in
the 1S0 channel as function of the center-of-mass momentum |p|.
Orange, blue, and green bands represent an MS calculation of
np, pp, and nn scattering, respectively, where the regulator of the
intermediate scheme, as discussed in Appendix B, is varied between
1/λ = 0.05 fm and 1/λ = 0.7 fm. The red and blue dashed lines
show the Nijmegen partial-wave analysis for np and pp phase shifts,
respectively [94].

with C = (Cnp + Cnn + Cpp)/3. At small RS , the dimension-
less sum C̃1 + C̃2 shows the expected logarithmic behavior,

C̃1 + C̃2

2
≃ 0.4 − 1.95 ln(mπRS ). (147)

The fit in Eq. (147) is accurate up to RS ≈ 0.3 fm, at which
point power corrections become important. Note that for the
values of RS commonly used in the literature, 0.5–0.8 fm,
the numerical value of F 2

π (C1 + C2) is in the range 0.15–0.2,
much larger than the (4π )−2 predicted by Weinberg’s power
counting.

The logarithmic divergence induced by the long-range
potential VCIB can be seen explicitly using the MS scheme.
The analysis follows that in Sec. IV A. The RGEs for Cnp, Cpp,
and Cnn are modified by the isospin-breaking interactions:

d

d ln μ
C−1

pp =
(

mN

4π

)2
(

e2 − g2
Am2

π0

4F 2
π

)

,

d

d ln μ
C−1

np =
(

mN

4π

)2 g2
A

(

m2
π0 − 2m2

π±
)

4F 2
π

,

d

d ln μ
C−1

nn = −
(

mN

4π

)2 g2
Am2

π0

4F 2
π

, (148)

which are solved to reproduce the scattering lengths in
Eq. (141). The resulting phase shifts are shown in Fig. 13.
Since we iterated the Coulomb potential in the pp channel, we
get a good description of the phase shifts at small momentum.
For simplicity, we also iterated the pion-mass splitting by con-
sidering the physical pion masses in Eq. (145). In agreement
with the expectation from NDA, isospin-breaking effects are
relatively small at momenta comparable to the pion mass.

The RGEs in Eq. (148) imply

d

d ln μ
C̃1 = 1

2

(

1 + 2g2
A

)

≃ 2.1, (149)

d

d ln μ
C̃2 = 1

2

(

1 − 2g2
A + 2g2

A

δm2
π

e2F 2
π

)

≃ 1.5. (150)

Equation (149) agrees with Eq. (57), as it should. Using the fit
values for Cnn,np,pp, we obtain

C̃1 + C̃2

2
≃ 2.5 − 1.8 ln(mπ/μ). (151)

As for the nn → pp e−e− case, Eq. (78), the coefficient of
the logarithms in MS and RS schemes agree at the 10%
level. The coefficients of the logarithms in (C̃1 + C̃2)/2 and
g̃NN

ν are numerically similar, while C̃1 − C̃2 runs more slowly.
This appears to be consequence of the numerical accident
δm2

π ≈ 2e2F 2
π , for which we are not aware of an underlying

physical reason.
Finally, we comment on the possibility of using a sim-

ilar analysis for the two-derivative short-range 0νββ oper-
ator. In Sec. VI, we argued, based on a combination of
renormalization-group arguments and NDA, that we expect
a new LEC only to enter at N2LO in both pionless and
chiral EFT. Focusing for simplicity on pionless EFT, we are
concerned whether we can confirm the size of the LEC g̃0

2ν in
Eq. (102). This LEC is connected to the CIB combination of
1S0 effective ranges [64,108]

(r0)CIB = (r0)pp + (r0)nn − 2(r0)np

2
∼ e2 mN

4π
g̃0

2ν . (152)

Using the scaling in Eq. (102), we obtain (r0)CIB/r0 =
O(e2). This scaling agrees with NN scattering data that
give [35] (r0)CIB/r0 ∈ [−0.04, 0.06]. An NLO scaling of
g̃0

2ν would predict much larger CIB corrections, (r0)CIB/r0 =
O(e2�/π/ℵ), which are not supported by data.

C. Impact on the two-body LNV amplitude

We can use the value of C1 + C2 to estimate the numerical
impact of the short-range component of the neutrino potential
on Aν . Since NN scattering alone does not allow one to isolate
C1, and thus the contribution to 0νββ, we will first assume
that C̃1(R̄S ) = C̃2(R̄S ) at a given scale R̄S . Since C1 and C2

have different runnings, the renormalization point at which
this choice is made influences the value of the amplitude.
We assess this dependence by varying R̄S in a wide range,
between 0.05 and 0.7 fm. The corresponding results for Aν

are shown in Table I. With the subscripts L and S, we denote
the matrix elements of the long- and short-range neutrino
potentials defined in Eqs. (6) and (36) (with gNN

2ν set to zero),
respectively. We observe for nn → pp transitions, where the
initial and final states have the same total isospin, a reduction
of the total amplitude by 10–30% due to inclusion of the
short-range potential.

While significant, the influence of the short-range poten-
tial is somewhat smaller than the O(1) expectation. This
smallness can be understood by examining the matrix-element
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TABLE I. nn → pp e−e− scattering amplitude Aν , divided by
the factor − exp(i(δ1S0

(E ) + δ1S0
(E ′))), evaluated at |p| = 1 MeV

and |p′| = 38 MeV for selected values of the coordinate-space cutoff
R̄S , where C1(R̄S ) is assumed equal to C2(R̄S ). The subscripts L and
S label the matrix elements of the long- and short-range components
of the neutrino potential.

R̄S (fm) (Aν )L (MeV−2) (Aν )S (MeV−2) Aν (MeV−2)

0.05 0.046 −0.014 0.032
0.1 0.043 −0.012 0.031
0.3 0.037 −0.007 0.030
0.7 0.032 −0.004 0.028

density C(r) defined as

CL,S(r) =
∫

d3r′ ψ−
p′ (r′)∗ Vν L, S(r′) δ(r − r′) ψ+

p (r′). (153)

We see in Fig. 14 that the long-range matrix element CL(r) has
support over a wide range of r. In contrast, CS(r) is essentially
zero for r � 1 fm. Only for the smaller cutoff values does the
short-range component become sufficiently large to partially
compensate for the smaller range. Therefore, even if formally
LO, the impact of gNN

ν is somewhat diluted. We will see in
Sec. VIII that this is not the case for transitions in which the
nuclear isospin changes by two units, which is the case for all
nuclei of experimental interest.

We stress that the choice C1 = C2 was made for illus-
tration purposes only, and other choices can be made. This
arbitrariness leads to an uncontrolled theoretical uncertainty.
We can illustrate the effect of varying the assumption C1 =
C2, by considering the more general situation C2 = αC1, or,
equivalently,

g̃NN
ν (μ0) = κ

C̃1(μ0) + C̃2(μ0)

2
, (154)

FIG. 14. Matrix-element densities for the nn → ppe−e− transi-
tion as a function of the radial coordinate. Curves are shown for
the long-range (blue) and short-range (red) components of the 0νββ

transition operator for two choices of the cutoff RS , 0.7 (solid) and
0.3 (dashed) fm.
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FIG. 15. Dependence of the sum of the short- and long-range
nn → pp e−e− amplitudes at p = 1 MeV, on the parameter κ that
parametrizes the relation between g̃ν and the CIB counterterms
C̃1 + C̃2 at a given scale μ0. The bands are obtained by varying μ0

between 10−3 and 1 fm−1.

with κ = 2/(1 + α) and μ0 the (arbitrary) scale where
Eq. (154) holds. We show the result of varying κ between
−1 and 2 in Fig. 15. The point κ = 0 corresponds to no
counterterm in the neutrino potential, while κ = 2 to the
situation in which C2 = 0 and all CIB arises from C1. The red
bands are obtained by changing the renormalization point μ0

at which the choice in Eq. (154) is made. Figure 15 highlights
that CIB in NN scattering, while providing strong evidence for
the existence of a counterterm in 0νββ, unfortunately does
not allow us to draw robust quantitative conclusions about its
impact in the magnitude of renormalized amplitude. It does
demonstrate that a better understanding of the short-range
contributions is crucial, since reasonable O(1) choices for κ

lead to variations of the nn → pp e−e− amplitude of roughly
an order of magnitude. This uncertainty must be reduced to
reliably extract the effective Majorana neutrino mass from
0νββ decay experiments.

VIII. PHENOMENOLOGICAL IMPLICATIONS

In the previous sections, we have demonstrated the need to
include a counterterm to absorb divergences induced by the
long-range neutrino potential: in coordinate space,

Vν S = −2gNN
ν τ (1)+τ (2)+δ

(3)
RS

(r), (155)

with δ
(3)
RS

(r) a regularization of the delta function such as
Eq. (66). The value of gNN

ν depends on nonperturbative QCD
dynamics, and, lacking a measurement of the nn → pp e−e−

cross section, could be determined by matching to LQCD cal-
culations of LNV processes. In Sec. VII, we have established
a relation between the contact interactions appearing in the
LNV and in the EM Lagrangian, which leads to gNN

ν = C1.
The electromagnetic counterpart of the LNV contact potential
Vν S,

VCIB, S = −e2

6

C1 + C2

2
T (12) δ

(3)
RS

(r), (156)
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TABLE II. Values of C1 + C2 obtained from the CIB contact interactions in various chiral potentials.

Model Ref. RS (fm) CIT
0 (fm2) (C1 + C2)/2 (fm2) Model Ref. � (MeV) (C1 + C2)/2 (fm2)

NV-Ia* [38] 0.8 0.0158 −1.03 Entem-Machleidt [34] 500 −0.47
NV-IIa* [38] 0.8 0.0219 −1.44 Entem-Machleidt [34] 600 −0.14
NV-Ic [38] 0.6 0.0219 −1.44 Reinert et al. [39] 450 −0.67
NV-IIc [38] 0.6 0.0139 −0.91 Reinert et al. [39] 550 −1.01

NNLOsat [37] 450 −0.39

where the isotensor operator reads T (12) = 3 τ
(1)
3 τ

(2)
3 − �τ (1) ·

�τ (2), is included in all high-quality phenomenological [40,41]
and chiral potentials [34–39], as it was recognized that just
including the Coulomb interaction and the pion-mass splitting
does not reproduce the CIB in the NN scattering lengths. In
the previous section, we have seen that renormalization of the
amplitude with Coulomb-photon exchange in fact demands
the presence of this short-range interaction. In this section, we
extract the value of (C1 + C2)/2 from the phase-shift analysis
performed in Refs. [35,38]. We then study the impact of the
counterterm on 0νββ matrix elements in light nuclei, whose
wave functions are consistently computed with the same chiral
potential.

A. CIB in high-quality NN potentials

In Sec. VIII B, we will replace

gNN
ν → C1 + C2

2
(157)

with a value determined by the corresponding potential. The
expression in Eq. (156) corresponds to the short-range charge-
dependent (CD) contact potential given by the momentum-
independent terms in Eq. (2.7) of Ref. [35], namely

v
CD
12, S = CIT

0 T (12) δ
(3)
RS

(r), (158)

from which

C1 + C2

2
= − 6

e2
CIT

0 . (159)

The values of CIT
0 and the corresponding (C1 + C2)/2 for two

choices of cutoff RS in Eq. (66) are reported in Table II. The
two interactions NV-I and NV-II are fitted to NN scattering
data in the ranges [0–125] and [0–200] MeV, respectively, of
laboratory energies. Models a and c differ by the choices of
the cutoff RS and RL, where the second cutoff regulates, for
example, the pion-exchange tensor potential. In the models
denoted by an asterisk, the three-nucleon interaction is con-
strained by the tritium β-decay width and trinucleon binding
energies [109], but this choice does not affect CIT

0 . In addition
to CIT

0 , the interactions in Refs. [35,38] contain four CIB
operators with two derivatives, whose effects manifest in the
dependence of CIT

0 on the energy range of the fits.
The potentials constructed in Refs. [34,37] use the mo-

mentum regulator in Eq. (72) with n = 3 for both short-
range and long-range potentials. Reference [39] constructed
a semilocal potential in which short-range interactions are
regulated also as in Eq. (72), but with n = 1. The conversion

to the coefficients defined in Refs. [34,37,39] is

C1 + C2

2
= 1

4πe2

(

C
np
1S0

−
C

pp
1S0

+ Cnn
1S0

2

)

. (160)

The values of (C1 + C2)/2 obtained from the C
pp

1S0
, Cnn

1S0
, and

C
np
1S0

of Refs. [34,37,39] for a few choices of � are also
reported in Table II. While the LECs are not observable and
depend on the scheme, we notice that the values of F 2

π (C1 +
C2) in Table II are consistently larger than the prediction of
Weinberg’s counting.

Phenomenological potentials such as Argonne v18 or CD-
Bonn also include CIB effects of range � m−1

π . In the Argonne
v18 potential, the short-range component of the CIB potential
is given in the notation of Ref. [40] by

v
cd
S1 (r) = − 1

6

{

v
c
S1,np(r) − 1

2

[

v
c
S1,pp(r) + v

c
S1,nn(r)

]}

T (12).

(161)

The functions v
c
S1,NN contain a medium-range component,

which models two-pion contributions, and a genuine short-
range component,

v
c
S1,NN (r) = Ic

S1 T 2
μ (r) +

[

Pc
S1,NN + μr Qi

S1,NN

+ (μr)2 Ri
S1,NN

]

W (r), (162)

where μ = (2mπ± + mπ0 )/3 denotes the average pion mass.
The function T 2

μ (r) is of two-pion-exchange range, while
W (r) is a Woods-Saxon function with radius r0 = 0.5 fm and
surface thickness a = 0.2 fm, representing the short-range
core. The parameters I , P are fit to data in the 1S0 channel,
while Q and R are determined theoretically, as discussed in
Ref. [40]. While the potential in Eq. (161) is not purely short
ranged, when computing nuclear matrix elements with the
Argonne v18 wave functions, we will replace

gNN
ν δ

(3)
RS

(r) → − 6

e2
v

cd
S1 (r). (163)

This is justified since our long-range neutrino potential does
not include the two-pion effects mimicked by T 2

μ (r), which
were computed in χEFT in Ref. [32].

B. LNV amplitudes in light nuclei

In what follows—since we lack observables to disentangle
C1 from C2—we make the assumption that C1 = C2, in which
case the replacements (157) and (163) are justified. We stress
again that this assumption is arbitrary (see Sec. VII B), but
it exemplifies the potential impact of short-range physics on
0νββ matrix elements.
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(a) (b)

FIG. 16. VMC calculations of the Fermi (F), Gamow-Teller (GT), and tensor (T) densities ρ(r) for 6He → 6Be (a) and 12Be → 12C
(b) decays with two potentials, labeled AV18 and χEFT.

We studied two transitions corresponding to the cases in
which the initial and final nucleus have the same isospin,
�I = 0, or the nuclear isospin changes by two units, �I =
2. The latter is the case for all the experimentally relevant
0νββ emitters. We consider 6He → 6Be as a �I = 0
example, and 12Be → 12C for the �I = 2 case. In both
cases, we provide results obtained from a phenomenological
potential and a chiral potential. In the former, nuclear wave
functions are derived from a many-body Hamiltonian with
two- and three-body forces corresponding to the Argonne
v18 [40] and Illinois-7 [110] potentials. In the figures and
in what follows, we will denote these calculations with the
label “AV18.” Details on the procedure adopted to construct
the variational Monte Carlo (VMC) wave functions can be
found in Ref. [111] and references therein. The second set of
calculations is based on nuclear wave functions obtained from
chiral two- and three-body forces developed and constrained
in Refs. [35,38,109]. The A = 6 calculation uses the model
NV-IIa*, while the A = 12 calculation is based on the NV-Ia*
model. We will refer to this set of calculations with the label
“χEFT.”

In Fig. 16, we plot the Fermi (F), Gamow-Teller (GT), and
tensor (T) radial densities ρ, defined as

4πr2ρF (r) = 〈� f |
∑

a<b

τ (a)+τ (b)+ δ (rab − r)|�i〉,

4πr2ρGT (r) = 〈� f |
∑

a<b

τ (a)+τ (b)+ σ (a) · σ (b) δ (rab − r) |�i〉,

4πr2ρT (r) = 〈� f |
∑

a<b

τ (a)+τ (b)+ S(ab) δ (rab − r) |�i〉,

(164)

where �i, f denote the initial- and final-state wave functions,
and rab is the distance between two nucleons. Figure 16
shows an excellent level of agreement between the densities
computed with the AV18 and χEFT formulations. The �I =
2 F and GT densities exhibit the typical node due to the
orthogonality of the initial and final wave functions, and the
integrated F density gives the correct, vanishing result.

In order to compare the long- and short-range contribu-
tions, we define, similarly to Eq. (153), the transition densities

CL,S(r) = 4πRA 〈� f |
∑

a,b

Vν L,S(rab) δ (rab − r)|�i〉,

ML,S =
∫

dr CL,S(r), (165)

where the conventional factor ∝ RA = 1.2 A1/3 fm was intro-
duced to make the A-nucleon matrix element dimensionless.
These densities are plotted in Fig. 17. Integrating CL,S(r)
over r yields the values for the matrix elements Mi shown in
Table III, where we split the long-range neutrino potential in

TABLE III. VMC results for the dimensionless matrix elements
of the long-range (L) and short-range (S) neutrino-exchange po-
tentials, defined in Eqs. (165) and (166). For each row, the to-
tal long-distance entry ML is obtained via the combination MF −
g2

A(MGT + MT ) of its Fermi (F), Gamow-Teller (GT), and tensor (T)
components.

A Model MF MGT MT ML MS

6 AV18 1.56 −3.66 0.03 7.45 0.48
χEFT 1.62 −3.85 0.03 7.82 1.15

12 AV18 0.198 −0.349 0.068 0.653 0.518
χEFT 0.223 −0.394 0.083 0.725 0.533
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(a) (b)

(c) (d)

FIG. 17. VMC calculations of the long-range (L) and short-range (S) transition densities C(r) for 6He → 6Be [(a), (b)] and 12Be → 12C
[(c), (d)] decays with two potentials, labeled χEFT [(a), (c)] and AV18 [(b), (d)].

its Fermi, Gamow-Teller, and tensor components

Mi = 4πRA

∫

dr Vi(r)[4πr2ρi(r)], i ∈ {F, GT, T }. (166)

The neutrino potentials VF, GT,T (r) are defined in Eq. (30), and
ML = MF − g2

A(MGT + MT ).
The matrix elements of the long-range neutrino potentials

obtained with the AV18 and χEFT models are in good agree-
ment with each other, and with the results of Ref. [111], which
used the same AV18 model described above for the nuclear
Hamiltonian and “clusterized” wave functions obtained by
allowing for the formation of clusters in the p shell [112]. In

contrast, the profile of the matrix element of the short-range
neutrino potential is sensitive to the model, which for the
�I = 0 transition translates into an uncertainty of a factor 2
in the integrated density. For �I = 2, the integrated density is
much less sensitive to the model.

With the assumption gNN
ν = C1 = C2, the short-range com-

ponent of the neutrino potential amounts to only 5–15% of
the long-range component in the total 6He → 6Be amplitude.
As for the nn → pp transition discussed in Sec. VII C, the
smallness is mostly due to the monotonic long tail of the
distribution seen in the top panel of Fig. 17, which is a feature
of �I = 0 transitions.
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In contrast, for the �I = 2 transition the orthogonality
of the wave functions implies a cancellation between the
long-range contributions from r � 2 fm and r � 2 fm, seen
in the lower panel of Fig. 17. In this case, the contribution
of gNN

ν = C1 = C2 is a sizable 75–80% of the total long-range
contribution. Figure 17 appears to show a higher degree of
cancellation than many-body calculations in experimentally
relevant nuclei [113–115]. To what degree this is due to the
difference between the ab initio method described here and the
quasiparticle random phase approximation and shell model
employed in calculations of Refs. [113–115] remains to be
understood. Nevertheless, the node in the density is a robust
feature of �I = 2 transitions. We thus expect the contribution
of the short-range operator gNN

ν to be non-negligible, but its
exact size requires further study.

We caution that these results are based on the arbitrary
choice C1 = C2 dictated by the current undetermined value
of C2. Using the more general assumption C2 = α C1 as in
Eq. (154) leads to a simple rescaling of the last column of
Table III by κ = 2/(1 + α). For the 12Be → 12C transition,
the short-range component of Vν can be reduced to a 20%
(−20%) correction only for large values for α ≈ 6 (α ≈ −8),
which would require a sizable deviation from the power-
counting expectation C1 ∼ C2.

Standard derivations of the 0νββ transition operator in-
clude short-range effects by introducing the axial, vector, and
weak magnetic form factors of the nucleon. We stress that in
the analysis of CIB in NN scattering the vector form factor is
included in both AV18 and χEFT photon-exchange potentials.
However, it does not capture the entire short-range dynamics,
which results in nonzero CIT

0 and v
cd
S1 (r). The contribution

of weak magnetism induces corrections to the GT and T
potentials [116], which neglecting the momentum dependence
of the magnetic form factor are [111]

VGT,MM (r) = (1 + κ1)2

6g2
Am2

N

δ(3)(r),

VT,MM (r) = (1 + κ1)2

16πg2
Am2

N

1

r3
. (167)

VGT,MM provides a shift in gNN
ν , with coefficient determined

by the isovector magnetic moment. The matrix element of
VGT,MM is, however, much smaller than the short-range com-
ponent shown in Table III. Using the χEFT wave functions,
we find, for example,

MGT,MM (6He → 6Be) = −0.10,

MGT,MM (12Be → 12C) = −0.060, (168)

where MGT,MM is defined as in Eq. (166), with VGT →
VGT,MM . Equation (168) is to be compared to the contributions
of gNN

ν in Table III. This result is a reflection of the fact
that CIB data in NN scattering indicate the need for an
independent local operator, whose coefficient is large and not
determined by couplings in the single-nucleon sector. While
the extrapolation from CIB to 0νββ relies on the uncontrolled
assumption C1 = C2, the results provide strong evidence for
the importance of short-range dynamics in 0νββ.

IX. CONCLUSION

Neutrinoless double-β decay is the most sensitive labora-
tory probe of the Majorana nature of neutrinos. The limits
on the electron-neutrino Majorana mass from current data, or
its extraction from future observations, rely on calculations
of 0νββ nuclear matrix elements. The calculation of these
transition matrix elements in nuclei such as 76Ge or 136Xe
starting from QCD is a daunting task. Nuclear EFTs can
help bridge this gap by deriving interactions and transition
operators that capture the symmetries of QCD and providing a
theoretically consistent framework that can be improved order
by order. Nuclear matrix elements of light nuclei, while not
directly experimentally accessible, play an important role in
establishing such a framework. The first ab initio calculations
of 0νββ matrix elements, in which nuclear wave functions
are computed using chiral interactions that are fitted to the
properties of two- and three-nucleon systems, are starting to
appear as part of a concerted effort toward the reduction of
theoretical uncertainties in 0νββ. In this paper, we derived the
0νββ transition operator consistent with these interactions for
the case of LNV mediated by light Majorana neutrinos.

Our main findings can be summarized as follows:

(1) The 0νββ transition operator mediated by light Ma-
jorana neutrinos has both long- and short-range com-
ponents at leading order in χEFT. The long-range
component can be expressed in terms of the couplings
of nucleons and pions to the axial and vector weak cur-
rents, while the short-range component is parametrized
by a contact operator whose coefficient, gNN

ν , encodes
nontrivial QCD dynamics and is at the moment un-
known. The need for a short-range component of the
0νββ transition operator emerges clearly by study-
ing the nn → pp e−e− scattering amplitude in vari-
ous regularization schemes, as done in Sec. IV. The
matrix element of the long-range neutrino potential,
Vν , between two incoming neutrons and two outgoing
protons in the 1S0 channel depends logarithmically
on the short-range regulator. Observables can only be
made regulator independent by inclusion of a leading-
order short-range LNV operator. Similar sensitivity
to UV physics appears in other processes involving
potentials with Coulombic behavior that act in the 1S0

channel, for instance, charge-independence breaking.
The analysis of Sec. VII shows that to reproduce
the observed combination of scattering lengths ann +
app − 2anp in the 1S0 channel, charge-independence-
breaking counterterms need to appear at O(e2). They
are thus enhanced by (4π )2, or two powers in the
χEFT power counting, with respect to Weinberg’s
power counting. The enhanced contribution of short-
range dynamics to charge-independence breaking is
observed in both chiral and phenomenological NN

potentials [36,38,40,41].
(2) There is no need for the enhancement of short-range

LNV operators in higher partial waves, such as the 3PJ

or 1D2. This can be expected in channels where the
pion-exchange tensor force is absent or repulsive, like
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the 1D2 and 3P1 channels. While the attractive nature
of the tensor force requires the promotion of an NN

contact operator to leading order [42], once strong
interactions are properly renormalized, the matrix el-
ement of the long-range neutrino potential is cutoff
independent and does not require additional renormal-
ization. We thus expect short-range LNV operators in
P and D waves to follow Weinberg’s counting.

(3) There is no evidence for a short-range momentum-
dependent counterterm at next-to-leading order in
χEFT. The NLO analysis of the scattering amplitude
was discussed in Sec. VI, in a variety of schemes. In
dimensional regularization, the scale invariance of the
amplitude requires inclusion of the derivative operator
gNN

2ν at NLO, but its coefficient is not independent and
is determined in terms of known couplings. The NLO
corrections to Aν then purely stem from NLO correc-
tions to the 1S0 strong scattering amplitude. In a cutoff
scheme, we similarly showed that Aν at NLO becomes
cutoff independent as the cutoff is removed without the
inclusion of a momentum-dependent counterterm. The
residual cutoff dependence of the NLO nn → pp e−e−

scattering amplitude exhibits a ln(�)/� behavior,
which might lead to sizable corrections at moderate
values of the cutoff, unless gNN

2ν is introduced with fixed
coefficients as in dimensional regularization. Our anal-
ysis indicates that an independent gNN

2ν enters the neu-
trino potential at N2LO, or O(Q2/�2

χ ), the same order
as contributions from nucleon form factors, closure
corrections, and pion-neutrino loops [32]. We must
say, however, that we cannot completely exclude an
independent finite LEC at NLO. While NDA predicts
such a term at N2LO, it should be kept in mind that
NDA only provides a guide to what should be included
in a calculation. A possible way to verify the presence
(or lack thereof) of an independent NLO LEC would
be by connecting gNN

2ν to a CIB-breaking combinations
of nucleon-nucleon effective ranges, similar to the
connection between gNN

ν and CIB scattering lengths
[see (4)].

(4) The determination of the LEC gNN
ν requires an LQCD

calculation of the nn → pp e−e− scattering amplitude
and its matching to /πEFT or χEFT. In the absence
of an LQCD calculation, we can get an order of
magnitude estimate of gNN

ν using symmetry arguments.
Isospin symmetry relates gNN

ν to the component of the
short-range charge-independence-breaking operators
that transform as the product of two left- or two right-
handed currents, denoted by C1 in Sec. VII. However,
the short-range charge-independence-breaking opera-
tors also have a left-right component, C2, and NN

scattering data cannot completely determine gNN
ν . Us-

ing the naturalness assumption C1 ∼ C2, we showed
the potential impact of the short-range neutrino po-
tential on 0νββ matrix elements in light nuclei. In
Sec. VIII, we computed the matrix elements for the
6He → 6Be (�I = 0) and 12Be → 12C (�I = 2)
transitions using wave functions obtained with the
χEFT interactions of Ref. [38], and a consistent ex-

traction of C1 + C2. While its impact on �I = 0 transi-
tions is moderate, gNN

ν can significantly affect �I = 2
transitions. This observation reinforces the need for a
first-principle calculation of gNN

ν , in particular because
relative factors in the relation between C1 and C2 have
O(1) impact on the final results.

(5) We cannot at this point address the relatively large
uncertainty [30] in the calculation of the matrix el-
ements of heavier nuclei, which are of experimental
interest. Once this issue is resolved, the extraction of
the effective neutrino mass mββ could be significantly
affected by the short-range LEC gNN

ν . If the effect is
similar to that calculated in 12Be → 12C with the
assumption C1 ∼ C2, the nuclear neutrinoless double-β
decay amplitude would double. With another natural
assumption, it might instead be halved. Or it could also
be that the small range suppresses its effects for larger
A. It would be of great interest to calculate the effects
of the leading short-range current in heavier nuclei. We
suggest using, as a starting point, the relation gNN

ν →
C1+C2

2 and the values of C1 + C2 as given in Table II
corresponding to the strong potential applied to obtain
the nuclear wave functions.

The EFT framework presented here can be extended in
several directions. One of them involves the inclusion of next-
to-next-to-leading-order corrections to the nuclear potential.
Such terms play an important role in high-quality descrip-
tions of the NN database. At this order, the LNV potentials
obtain additional corrections [32] that should be consistently
included. Three-body LNV operators have been identified as
a potential source of “gA quenching” [48,117]. It would be in-
teresting to extend our χEFT framework to three-nucleon pro-
cesses. Our work here has been limited to LNV arising from
a light-Majorana-neutrino mass term, but in well-motivated
scenarios of beyond-the-standard-model physics, 0νββ decay
rates can be dominated by higher-dimensional LNV operators
[22,24,25,118]. It was argued in Ref. [25] that short-range
operators must be promoted to leading order for several higher
dimension LNV operators, but the impact of higher order
corrections has not been investigated so far. Most importantly,
calculations of the leading short-range contributions must be
carried out for heavier nuclei.
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APPENDIX A: LNV AND �I = 2 OPERATORS WITH

MULTIPLE MASS INSERTIONS

In this Appendix, we consider the most important LNV
operators with insertions of the quark mass mentioned in
Sec. VII: one (Appendix A 1) and two (Appendix A 2) mass
insertions. A summary is given in Appendix A 3.

1. One mass insertion

The LNV operators involving one quark-mass insertion can
be built with the elements QL,R and M = diag (mu, md ), as
well as u, u†, N , and N̄ . We can choose to work with the
slightly different spurions QL,R and M± = u†Mu† ± uM†u,
after which all the building blocks transform only under the
diagonal subgroup (i.e., N → KN , QL,R → KQL,RK†, and
M± → KM±K†) apart from u and u†. Thus, whenever an op-
erator includes u and/or u†, their indices have to be contracted
with each other, giving rise to factors of u†u = uu† = 1. As a
result, we can forget about the u matrices and use only the
spurions and nucleon fields.

We are interested in the operators that give rise
to �I = 2 transitions in NN scattering which can be
built from QX × QY × M± (where X,Y ∈ L, R). We will
therefore need all the 5̄ representations that reside in
the generic tensor, T abc

i jk = (QX )a
i (QY )b

j (M±)c
k , which trans-

forms as T abc
i jk → Kaa′Kbb′Kcc′T a′b′c′

i′ j′k′ (K†)i′i(K†) j′ j (K†)k′k . This

tensor can be rewritten as T̄ abc i jk = ǫii′ǫ j j′ǫkk′
T abc

i′ j′k′ , so

that all indices transform in the same way, T̄ abc i jk →
Kaa′Kbb′Kcc′ T̄ a′b′c′ i′ j′k′

Kii′K j j′Kkk′ . One can then show that the
largest dimensional representation, the 7̄, is given by T̄ with
completely symmetrized indices, the next-largest irrep is the
one with two antisymmetrized indices (keeping the rest fully
symmetric), while the second largest has two pairs of anti-
symmetrized indices, etc. Thus, to find all the 5̄ irreps we
need to find all the ways in which to contract T̄ with a single
ǫIJ tensor. There are five independent ways of doing this, in
agreement with the decomposition of 2̄ ⊗ 2̄ ⊗ 2̄ ⊗ 2̄ ⊗ 2̄ ⊗ 2̄.

One can then choose to contract the indices of T̄ abc i jk with
the following tensors—after using T abc i jkǫab = T acb i jkǫab +
T cba i jkǫab, which follows from pIǫJK + pJǫKI + pKǫIJ = 0,
to move indices around:

ǫck, ǫ jc, ǫic, ǫak, ǫbk, (A1)

where we pick combinations that lead to multiplication of the
matrices in T (without leaving any explicit ǫi js). In terms of
T , this leads to the combinations

(QX )a
i (QY )b

j Tr M±, (QX )a
i (M±QY )b

j, (QX )a
i (QY M±)b

j,

(QY )a
i (M±QX )b

j, (QY )a
i (QX M±)b

j . (A2)

One then still needs to project the remaining indices onto the
5̄ representation, by demanding the upper and lower indices to

be symmetric and traceless (or simply fully symmetric in the
case of T̄ ). An explicit form of this projection is

Aa
i Bb

j

∣

∣

5̄ = 1
2 Aa

i Bb
j + 1

24 (Tr A Tr B − 2Tr AB)(τ I )a
i (τ I )b

j

− 1
4 Tr A

(

Ba
i δ

b
j + Bb

jδ
a
i

)

+ 1
8 Tr A Tr Bδa

i δ
b
j

+ (A ↔ B). (A3)

After projecting, one then has to make sure that the combi-
nations of QL,R and M+,− have the correct properties under
charge conjugation (C), parity (P), and time reversal (T ).

All in all, this leads to the following operators:

O
(1)
M1 = O1 Tr M+, O

(2)
M1 = O2 Tr M+,

O
(1)
M2 = N̄QLN N̄[QL, M−]N − (L ↔ R),

O
(2)
M2 = N̄QLN N̄[QR, M−]N − 1

6 Tr(QL[QR, M−])

× N̄τ I N N̄τ I N − (L ↔ R), (A4)

where O1,2 are the operators without any M insertions,

O1 = N̄QLN N̄QLN − 1
6 Tr(QLQL )N̄τ I N N̄τ I N + (L ↔ R),

O2 = N̄QLN N̄QRN − 1
6 Tr(QLQR)N̄τ I N N̄τ I N + (L ↔ R).

(A5)

There are no operators similar to O
(1,2)
M1 with M− instead of

M+ since TrM− = 0. In addition, operators of the form of
O

(1,2)
M2 involving M+ instead of M− necessarily contain an

anticommutator {M+, QX }, which can be rewritten in terms
of O

(1,2)
M1 thanks to the fact that the QX are traceless.

For the NN vertices without any pions, only the O
(1,2)
M1

operators contribute, simply giving the original operators
multiplied by Tr M. Instead, the O

(1,2)
M2 operators only induce

vertices with two additional pions.

2. Two mass insertions

We can use a similar process to find the 5̄ representations
in T abcd

i jkl = (QX )a
i (QY )b

j (M±)c
k (M±)d

l . One now has to contract
with two ǫ tensors, which can be done in 20 independent
ways. However, after choosing a set of ways to contract the
indices, not all possibilities contribute, for example, due to P,
T , or C properties, or because some of our building blocks are
traceless. The operators involving two insertions of the same
M± take the schematic form

O
(1,2)
M2

±1
= Tr M2

±O1,2, O
(1,2)
M2

+2
= Tr (M+)2O1,2,

O
(1)
M2

±3
: A = QLM±QL, B = M± + (L ↔ R),

O
(2)
M2

±3
: A = QLM±QR, B = M± + (L ↔ R),

O
(1)
M2

±4
: A = QL Tr(M±QL ), B = M± + (L ↔ R),

O
(2)
M2

±4
: A = QL Tr(M±QR), B = M± + (L ↔ R),

O
(1)
M2

±5
: A = M±QL, B =M±QL + (L↔R) + (M± ↔QL,R),

O
(2)
M2

±5
: A = M±QL, B =M±QR + (L↔R) + (M± ↔QL,R).

(A6)
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One should use the above expressions for A and B to construct
the corresponding operators by projecting them onto the 5̄ rep-
resentation using Eq. (A3) and subsequently contracting with
N̄aN̄bN iN j . After doing so, the O

(1,2)
M2

+3,4
operators do not con-

tribute to (N̄N )2 and (π N̄N )2 vertices, while O
(1,2)
M2

+5
= O

(1,2)
M2

+2
/2

(at least up to two-pion vertices, for mu = md ). Instead, the
O

(1,2)
M2

−3,4,5
operators only give rise to (πN̄N )2 vertices.

The remaining operators are proportional to M−M+ and
take the form

O
(1)
M+M−1 : A=QLM+, B=QLM−− (L↔R) −(M± ↔QL,R),

O
(2)
M+M−1 : A=QRM+, B=QLM−− (L↔R) −(M± ↔QL,R),

O
(1)
M+M−2 : A = [M−, QL], B = QL Tr M+ − (L ↔ R),

O
(2)
M+M−2 : A = [M−, QR], B = QL Tr M+ − (L ↔ R)

O
(2)
M+M−3 : A = M−, B = QRM+QL − (L ↔ R). (A7)

After projecting, these operators turn out to be similar to the
ones with one M insertion, we have 2O

(1,2)
M+M−1 = −O

(1,2)
M+M−2 =

O
(1,2)
M2 Tr M+ and 2O

(2)
M+M−3 = O

(2)
M2 Tr M+, up to two-pion

vertices (for mu = md ).
To get the operators in Eqs. (A6) and (A7), we again used

identities like the one above Eq. (A1) to pick combinations
that lead to multiplication of the matrices in T (to avoid
explicit ǫi js). In addition, we used the fact that QX and M−
are traceless. Apart from those assumptions, Eqs. (A6) and
(A7) provide a complete basis of operators.

3. Mass-insertion summary

With the above results in hand, the effective C1,2 couplings
defined in Sec. VII become

Ceff
1,2 = C1,2 + 4m̄C

(1,2)
M1 + 4m̄2

(

2C
(1,2)
M2

+1
+ 4C

(1,2)
M2

+2
+ 2C

(1,2)
M2

+5

)

,

(A8)

where we set mu,d = m̄. Here, the second term should absorb
the divergence proportional to D2, while the third term (in
brackets) should do so for the D2

2 term.

The procedure can be extended to a larger number of mass
insertions straightforwardly but painfully.

APPENDIX B: THE MS SCHEME

Although one can in principle calculate the NN amplitudes
analytically in MS within /πEFT, this is no longer the case
in χEFT. Here, one needs to numerically evaluate quanti-
ties such as χ±

p (r), G±
E (r, 0), and KE , which all involve an

arbitrary number of pion exchanges. To do so, we closely
follow the method described in Ref. [86], to which we refer
for further details.

The strategy is to first use an intermediate scheme in
which one solves the Schrödinger equation by imposing the
boundary conditions at r = 1/λ, where λ is a regulator. This
results in a regular and an irregular solution, the latter of
which will depend on the regulator, λ. The regular solution
obtained in this way allows one to determine χ±

p (r), while a
combination of the regular and irregular solutions give rise
to G±

E (r, 0) and KE . Because the latter of these quantities is
regulator and scheme independent, it can be used to translate
from the λ scheme to the MS scheme. In particular, we have

1

C̃(λ)
− G±

E (0, 0)
∣

∣

λ
= 1

C̃(μ)MS

− G±
E (0, 0)

∣

∣

MS. (B1)

In addition, one knows that differences between the G±
E (0, 0)

in the two schemes can only arise from their divergent parts,
and only the first two diagrams in G±

E (0, 0) [i.e., the parts that
have zero and one insertion of Vπ after expanding Eq. (38)]
lead to divergences. This allows one to relate both C̃ and
G±

E (0, 0) in MS to terms that can be analytically computed and
quantities that can be numerically obtained in the λ scheme.

For example, applying this procedure to NN scattering in
the 1S0 channel leads to

1

C̃(μ)
+ απm2

N

8π
ln

μ2

m2
π

≃ −0.24 fm−2, (B2)

which is in agreement with the results of Ref. [86]. The same
procedure can be used to evaluate the �L = 2 amplitudes in
Eqs. (61) and (86), as well as the nn, pp, and np amplitudes in
the presence of isospin violation as discussed in Sec. VII B.
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