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Antiferromagnets with weak spin anisotropy under Gaussian random fields are shown to 
exhibit just the same bicritical and tetracritical behaviors as those without random fields. 
Second order transitions occur only for unphysical space dimensionality 4< d< 6 and multi· 
critical points are also subject to d .... d-2 rule. It is predicted that weakly anisotropic 
antiferromagnets such as La-doped GdAIO. will have 2nd·order bicriticalline surrounding 1st
order spin flop plane. 

§ 1. Introduction 

Nelson-KosterIitz-Fisherl) showed that models of weakly anisotropic anti
ferromagnets are reduced to the following Hamiltonian density: 

+ .J!:l.A.. 4+ Uz A.. 4+ 2U3 A.. ZA.. Z 
4! '/-'1 4 ! '/-'z 4! '/-'1 '/-'z • 0-1) 

Transverse spin field has n-components; ¢I = ¢I (x) = ( ¢II, ¢IZ, "', ¢I n), and longi
tudinal spin field is continuous Ising-like; ¢z = ¢z(x). In the previous paper,Z),*) 
this model was analyzed by renormalized field theory and the results obtained by 
Nelson-KosterIitz-Fisher were confirmed up to O(e) [e=4-d]. 

In this paper, we study the multicritical phenomena of weakly anisotropic 
antiferromagnets under Gaussian random fields described by the Hamiltonian 
density: 

0-2) 

where local random fields hl=hl(X)=(h/, hlZ
, "', hln) and hz=hz(x) are 

assumed to be Gaussian random variables, that is, their Fourier transforms hfq 
and hzq into momentum space satisfy the following properties: 

(a, 13=1, 2, "', n) 0-3a) 

t) Fellow of the Japan Society for the Promotion of Science. 
*) Since Ref. 2) is unpublished, we add a brief summary of Ref. 2) as the Appendix. 
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1354 M.Oku 

and 

0·3b) 

Here random average is represented by < ... >. 
In § 2 we extend the ordinary renormalized field theory to the system with 

random fields and determine renormalization constants up to O( c) [c = 6 - d]. In 
§ 3 we show that 2nd-order phase transitions occur only for 4 < d < 6, but just the 
same multicritical phenomena as 0·1) are observed and well-known d--> d-2 
rule for crossover exponents remain valid even in this case. Existence of bi
critical line for weakly anisotropic antiferromagnets under Gaussian random 
fields is predicted in Discussion (§ 4). 

§ 2. Renormalizations for the system with random fields 

In order that renormalized masses iiii (i = 1, 2) are proportional to the 
deviation from a true transition temperature of ¢i(X) near multicritical points 
( iiii ~ 0), including the deviation of transition temperatures due to random fields, 
we should adopt the following renormalization procedures. 

In the first place, we renormalize masses and spin fields as usual :3) 

(i= 1,2) (2·1) 

and 

(i = 1,2) (2·2) 

with spin field renormalization constants ZSi (i = 1, 2). Accordingly random 
fields are normalized: hi = Z~i2 hi (i = 1, 2). 

Next we eliminate hi¢i (i = 1,2) terms by translating a variable ¢i by ¢i: ¢i 
--> ¢i+Vri (i=l, 2). To eliminate hla¢la, for example, there are two alternative 
ways: 

(a=1,2,···,n) (2·3a) 

or 

If we determine 'I/rla via (2·3a), other terms in the left-hand side of (2·3b) are 
driven to the terms as thermal fluctuations. Then deviation of transition tem
peratures due to random fields is renormalized into mass counter term oml2, so 
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Renormalized Field Theory of Weakly Anisotropic Antiferromagnets 1355 

that renormalized mass iii I given by iiiI2=ZSlm/-iJmI2 becomes a natural 
definition of the deviation from a true transition temperature of if.!} (x), which 
involves the deviation of transition temperatures due to random fields. As a 
consequence, renormalized masses iiii (i = 1, 2) become zero at a true multicritical 
temperature. 

On the other hand, if we choose (2·3b) to determine 'I/I1a, renormalized mass 
iiil does not become zero at a true transition temperature. We must redefine iii I 
so as to include the deviation due to random fields. In order to avoid these 
inconveniences, we should select (2' 3a) as the definition of '1/11 a. In this case '1/11 a 

and '1/12 are defined as Gaussian random variables: 

<ffq>=O, 

<ffqffq,)= fliJ al1iJ(q+q')/(q2+iiiI2)2, 

and 

(i=1,2) 

(2'4a) 

(2'4b) 

(2'5a) 

(2'5b) 

by the use of (1·3a) and (1·3b). Here the intensity of random fields is normal
ized as fi = ZSiSi (i= 1,2). 

Thus Hamiltonian density (1. 2) becomes 

+ Z~IUI ;;: 4+ Z~2U2;;: 4+ 2ZS1ZS2U3;;: 2;;: 2 
4! 'PI 4! 'P2 4! 'PI 'P2 

+ Z~6 UI [ ¢12( ¢1'l/l1)+ ( ¢l t/rI Y+ ~ ¢/'1/112+ ( ¢l '1/11 )'1/112+ ~ '1/11 4] 

+ Z~~U2 [¢23'1/12+ ~ ¢22'1/122+ ¢2'1/123+ ~ '1/12 4
] 

+ ~ (ZSI-l)( /7 ¢1)2+ ~ iJm/¢12+ ~ (Zs2-1)( /7 ¢d+ ~ iJm/¢22 

+ (ZSI -1)( 17 ¢d( 17 '1/11)+ iJml2 ¢1'l/l1 + (ZS2 -1)( 17 ¢2)( 17 '1/12)+ iJm/ ¢2'1/12 
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1356 M.Oku 

Since we assume that random fields are weak and of the same strength, we 
set Si ~ S (i = 1, 2). According to the dimensional analysis,4),5) kinematical 
dimensions of Ui (i=1, 2, 3) and S are dim[u;]=4-d (i=l, 2, 3) and dim[S] = 2. 
Hence perturbational parameters for weak random fields are SUi whose dimen
sions are all £ = 6 - d. 6

),7) Diagrams such as Fig. l( a) become irrelevant and 
diagrams as Fig. l(b) are relevant. Therefore from the viewpoint of universali
ty, assumption of Si ~ S (i = 1, 2) is reasonable, for at a fixed point Ui * = 0, Si * = = 
and (SUi)* is of O( e). 

Bare 4-point vertex functions are defined as 

(i=1,2) (2 0 7a) 

and 

r ( )- 4;.. s¢h(pd¢h(P2)¢2(P3)¢2(P4)~ 
P PlP2P3P4 - In~l4;..l¢l(pjW~II1~34;..1¢2(pjW~o(pl+P2+P3+P4) , 

(2 0 7b) 

where statistical-mechanical aVffage is shown by 4;.. ... ~. Renormalized cou
pling constants are given by 

(i= 1,2) (2 0 8a) 

and 

V3= SZSlZS2Zi l u3 (2 0 8b) 

by the use of renormalization constants Zi (i = 1, 2, 3). Here we set fi = S for 

ZSi = 1 + O( £2), (i=1,2) (2°9) 

as is shown in what follows. 
Renormalization constants at a multicritical point (ml = m2 = 0) are uniquely 

determined up to O( £) by imposing the following conditions: 

o o 
(a) (b) 

Fig.1. Typical examples of diagrams which are irrelevant (a) and relevant (b) under 
Gaussian random fields. 
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"(2)1 -0 1 i p=o- , (i=1,2) 

(i= 1,2) 

(2-10) 

(2-11) 

(2-12) 

where sp stands for renormalization point (p2=jJ.2). From (2-6) together with (2 
-11), Eq. (2-9) is self-consistently derived. 

If we drop out terms contributing only to free energy and canceling out in the 
statistical-mechanical average, terms smaller than O( ~) and terms disappeared 
in the random average, we finally obtain reduced renormalized Hamiltonian 
density: 

(2-13) 

Renormalization constants are self-consistently determined up to O(c) by 
imposing the conditions (2-12). It follows that Zi=l + O(c) (i=1, 2, 3), so that 
we can set Zi=l in Ziv;j6~ (i=1, 2, 3). 

Diagrammatic equations of renormalized 2-point vertices rp) (i = 1,2) and 4-
point vertices rei (i=1, 2, 3) are sketched in Figs. 2 and 3 respectively. From 
diagrams of rP) (i = 1,2), results (2-9) are confirmed. These results are un
altered even when the relations fi=ZSi~ (i=1,2) are preserved in (2-13). 
Polarization parts at a multicritical point ( iii! = iii2 = 0) are given by2),4) 

- 1 n(f-l/ A) = - 647r3 In(jJ./ A), (i=1,2,3) (2-14) 

where A is the upper cutoff of momentum. Renormalization constants Zi (i = 1, 
2,3) are determined via diagrammatic equations (Fig. 3) to give the following 
results: 
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----+n~2~+t~ 

+ + • 2 

Fig. 2. Diagrammatic equations of renormalized 2·point vertex functions 1',(2) (i= 1. 

2) up to O(e) and O(n. Four lines --. ~~. -0- and ~O~ represent i,. 
i2. </Y1/> and </Y2/>' respectively. 

X=X-nts>e::x-i>CX+ X 
(Zl-1)V1 

X=X- 3 >C:X-%>CX+X 

X X n+2~~ = --3-~-~ 

Fig. 3. Diagrammatic equations of renormalized 4·point vertex functions rr' (i = 1. 
2.3) up to O(e) and O( n. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/67/5/1353/1834138 by guest on 21 August 2022



Renormalized Field Theory 0/ Weakly Anisotropic Antijerromagnets 1359 

Zl = 1- 19~7[3 [( n+8)gl + g/ /grlln(Ji/ A), (2·15a) 

(2·15b) 

and 

(2·15c) 

Note that (2·15a)~(2·15c) differ from (A·1a)~(A·lc) in the Appendix only by 
multiplicative constant 1/1927[3. 

§ 3. P functions and the stability of fixed points 

Dimensionless renormalized coupling constants gi (i = 1, 2, 3) are given by 
(2·9). On the other hand, dimensionless bare coupling constants giO (i=1, 2, 3) 
are defined as 

(i=1,2,3) (3·1) 

From (2·8a), (2·8b), (2·12), (2·15a)~(2·15c) and (3·1), we derive j3 functions 
given by 

(i=l, 2, 3) (3·2) 

It follows that 

j3 _ + n+8 2+ 1 2 
1 - - Egl 1927[3 gl 1927[3 g3 , (3·3a) 

(.) + 3 2+ n 2 
j.n = - Eg2 647[3 g2 1927[3 g3 (3·3b) 

and 

(3·3c) 

In order to examine the stability of fixed points of j3 functions, we should 
evaluate the following matrix here: 
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o 

3 n o - c:+ 32Jr3 g2 96Jr3 g3 . (3·4) 

n+2 
192Jr3 g3 

1 
64Jr3 g3 

n+2 1 1 
- c: + 192Jr3 g1 + 64Jr3 g3 + 24Jr3 g3 

Setting /3i =0 (i= 1,2,3) in (3·3a)~(3·3c), we find the following six fixed 
points. Let us inquire the stability of them in turn. 
[A] g1 * = g2 * = g3 * = 192Jr3 c:/ (n + 9) 

Obviously Hamiltonian density (1·2) restores O( n + 1) symmetry in this case. 
To examine the stability, we seek eigenvalues of 93: 

(

n+7 0 2) 
93= n~9 0 9-n 2n . 

n+2 3 4 

(3·5) 

Apart from the coefficient c:/ ( n + 9), solutions of secular equation of (3·5) are A 
= n+9, 8, 3- n. Thus all eigenvalues are positive for 3> n and one eigenvalue is 
negative for n>3. Judging from Liu and Fisher's criterion,8) an inequality g;2 
~ g/ g2 * of bicriticality is satisfied. Therefore bicritical point is stable for n < 3.1) 

The following three cases are all infrared unstable. 
[B] g1*=g2*=g3*=0 [C] g1*=g3*=0 g2*=64Jr3c:/3 
[D] g2*=g3*=0 g1*=192Jr3c:/(n+8) 
[E] g1*=1927r3c:/(n+8) g2*=647r3c:/3 g3*=0. 

An inequality of tetraciiticality g1 * g2 * > g;2 8) holds in this case. 93 matrix 
becomes 

(

c: 0 

93= 0 c: 
o 0 

o ) o . 
(n-10)c:/3( n+8) 

-
Thus the decoupled tetracritical point is stable for n > 10. 
[F] /31=/32=0 (n+2)g/+3g2*+4g3*=1927r3c: 

(3·6) 

Coefficients of these three algebraic equations differ from those of Nelson· 
Kosterlitz· Fisher by multiplicative constants arising from the difference of the 
definitions of gi. Solutions are found to be in agreement with (12) and (14) in 
Ref. 1), when we replace nand E in (12) and (14) by n+1 and 7687r 3 c: respective· 
ly. This case is known to satisfy the tetracritical inequality g1 * g2 * > g!.2 for 
n>-l.1) 

To sum up the above results, for n<3 bicritical point is dominant, for 3< n 
< 10 coupled tetracritical behavior is observed and for n > 10 the decoupled 
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Renormalized Field Theory of Weakly Anisotropic Antijerromagnets l361 

tetracritical point of doubly ordered phase consisting of O( n) Heisenberg and 
Ising systems is stable. This conclusion is consistent with the one of Nelson
Kosterlitz-Fisher,l) although these transitions exist only for 4<d<6. 

§ 4. Discussion 

In the previous sections, we have verified that, even if Gaussian random fields 
are applied to antiferromagnets with 

PARA 

c _--

n T 

Fig. 4. Anticipated phase diagram of weakly 
anisotropic antiferromagnets under Gauss
ian random fields. Line AB is a 2nd-order 

bicritical line and a plane ABC is a 1st-

order spin flop plane. 

weak spin anisotropy, they experience 
just the same multi critical behaviors for 
4<d<6 as those for 2<d<4 without 
random fields. As for the validity of d 
--> d - 2 rule, it is not necessary that we 
estimate crossover exponents explicitly. 
Comparing renormalization constants 
Zi (i=1,2,3) in (2·15a)~(2·15c) with 
(A·la)~(A·lc), we conclude that the 
well-known d--> d-2 rule7J.*) holds in the 
case of multicritical points. We showed 
one example supporting this conclusion 
in this paper. 

Experiments of GdAl03,9) which is a 
good sample of weakly anisotropic 
antiferromagnets, show the existence of 
a bicritical line. On the other hand, La
doped GdAl03,1O) which is a sample 
realizing weakly anisotropic antiferro
magnets with uniaxially random fields, 11) 

is theoretically6) and experimentally 10) 

known to have a bicritical point at Sl = 0 
plane. Our results extend these results 

and predict that, if transverse random fields as well as longitudinal ones are 
applied, second-order (although smeared) bicritical line will be observed around 
the 1st-order spin flop plane (Fig. 4). 

*) Aharony-Imry-Ma7l derived a general relation [Eq. (5)] between most divergent diagrams with 
weak Gaussian random fields and those for pure system: i/(qi, r,) = (J..!47r)Il- 2(qi, r,). A coefficient 
47rA in their results may be misprinted and a correct coefficient is J..! 47r. This is also pointed out by 
Young.7) When we compare the results in §§ 2 and 3 with those in the Appendix, our results satisfy the 
above general relation, i.e., !;/1927r3 = (!;/ 47r)/ 487r 2

• 
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Appendix 

-- Antijerromagnets with Weak Spin Anisotropy--

The Nelson-Kosterlitz-Fisher modeF)'*) 0°1) is analyzed via renormalized 
field theory.3) With the application of the usual renormalized field theory to 
(1°1), we obtain diagrammatic equations up to O(E) [E=4- d] of renormalized 2-
point and 4-point vertex functions rp> (i=1, 2) and r i (i=1, 2, 3) pictured in 
Figs. 5 and 6, respectively. These equations yield the results: 

and 

Zl=l- 48
1
7[2 [(n+8)gl+g//gdln(fL/A), 

Z2 = 1 - 48
1
7[2 [9g2 + ng32 !g2] In(fL/ A) 

(Ao1a) 

(A °lb) 

(A ole) 

where gi (i = 1,2,3) are dimensionless renormalized coupling constants defined as 
rilsp= ui=fLegi (i=1, 2, 3). 

---=---

Fig. 5. Diagrammatic equations of renormalized 2-point vertex functions up to O( E). 

*) More general case that </>2 field has m( ~l) components is argued independently by Lyuksyutov
Pokrovskii-Khmel'nitskii 12) and Kosteriitz-N elson-FisheL l2

) 
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Renormalized Field Theory of Weakly Anisotropic Antijerromagnets 1363 

x = X_ nS2 p 

Fig. 6. Diagrammatic equations of renormalized 4-point vertex functions up to O( c). 

(3 functions and!/3 matrix are derived from (A °la) ~ (A °lc) in the same 
manners as in § 3. Results are summarized as follows: 

(A °2a) 

(A °2b) 

(A °2c) 

and 
n+8 0 1 

-E+ 487[2 g1 247[2 g3 

!/3= 0 
3 n 

- E+ 87[2 g2 247[2 g3 

n+2 1 n+2 1 1 
487[2 g3 167[2 g2 - E+ 487[2 g1 + 167[2 g2 + 67[2 g3 

(Ao3) 
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1364 M.Oku 

Through (A·2a)~(A·3), we see just the same multicritical phenomena for 2< d 
< 4 as [A] ~ [F] in § 3, by replacing 192;r3 with 48;r2. Thus we confirm the results 
of Nelson-Kosterlitz-Fisher1

) simply and explicitly in the framework of renormal
ized field theory. 
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