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any choice of the coordinate system gives the same form of the counter terms, since they
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the HSC in the asymptotically AdS5 geometry under relevant perturbations with operators
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with d > 4.

Keywords: Gauge-gravity correspondence, Renormalization Regularization and

Renormalons

ArXiv ePrint: 2001.10937

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP07(2020)137

mailto:dongmin@skku.edu
mailto:yoonbai@skku.edu
mailto:okab@skku.edu
mailto:ddtolla@skku.edu
https://arxiv.org/abs/2001.10937
https://doi.org/10.1007/JHEP07(2020)137


J
H
E
P
0
7
(
2
0
2
0
)
1
3
7

Contents

1 Introduction 1

2 Renormalized HEE under relevant perturbations 4

2.1 Renormalized HEE in asymptotically AdS4 geometry 4

2.2 Renormalized HEE in asymptotically AdS5 geometry 9

2.3 Comments on the case of asymptotically AdSd+1>5 geometry 12

3 Renormalized HSC under relevant perturbations 15

3.1 Renormalized HSC in asymptotically AdS4 geometry 15

3.2 Renormalized HSC in asymptotically AdS5 geometry 18

3.3 Comments on the case of asymptotically AdSd+1>5 geometry 20

4 An example: the LLM geometry 21

4.1 The LLM geometry 21

4.2 Renormalized HEE and HSC in the mABJM theory 23

5 Conclusion 27

A Renormalized HEE in pure AdSd+1 geometry 29

B Renormalized HSC in pure AdSd+1 geometry 31

1 Introduction

The holographic realizations of the entanglement entropy and the quantum complexity

have established a connection between the gravity theory and quantum information the-

ory through gauge/gravity duality [1–3]. The Ryu-Takanayagi (RT) conjecture [4–6] laid

out a holographic way of calculating the entanglement entropy for a subregion A in a d-

dimensional field theory on the boundary of a (d + 1)-dimensional bulk geometry of the

dual gravity theory. According to the RT conjecture, the holographic entanglement entropy

(HEE) is proportional to the area of (d − 1)-dimensional bulk minimal hyper-surface ΣA,

which is homologous to the subspace A in a d-dimensional constant time slice. The quan-

tum complexity is also an important quantity in the information theory, which measures

how many minimum simple gates to reach from a simple reference state to a target state.

However, the notion is not well-defined in quantum field theory generally. There have

been two proposals to calculate the quantum complexity in terms of the gauge/gravity,

which are referred to as the CV (Complexity=Volume) conjecture [7] and the CA (Com-

plexity=Action) conjecture [8, 9]. These correspond to the complexity of a pure state in

the whole boundary space of the dual quantum field theory. Natural generalizations of the
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CV and CA conjectures are holographic complexities of a mixed state for the reduced den-

sity matrix for a subregion A. These are known as the holographic subregion complexity

(HSC) for the CV conjecture [10] or the CA conjecture [12]. Other studies on the HSC

include [10–27]. In this paper, we construct renormalized HEE and HSC by focusing on the

CV conjecture and hence the HSC in this paper refers to the quantity obtained through

the CV conjecture.

The HSC states that the quantum complexity of a mixed state, which is produced by

reducing the boundary state to a specific subregion A, is proportional to the volume of

the extremal hyper-surface BA enclosed by the boundary subregion A and corresponding

RT surface ΣA. See figure 1. Therefore, in order to calculate the HSC, one has to fix

the RT surface at first by solving equations of motion to minimize the codimension two

hyper-surface ending on the boundary of the subregion A. Then the HSC is computed by

CA =
V (BA)

8πLGd+1
, (1.1)

where L and Gd+1 are the AdS radius and the Newtonian constant in (d+ 1)-dimensions,

respectively. It was also suggested that the quantity CA in (1.1) can be interpreted as the

fidelity susceptibility in the quantum information theory [10, 28].

The HEE and HSC involve integration over extremal subspaces that are extending to

the asymptotic boundary. As a result, they are divergent due to the infinite area/volume

of the extremal subspaces on the boundary. In the dual boundary field theory, these

divergences correspond to the UV divergences, which are related to the short distance cor-

relations, and it is necessary to renormalize those holographic quantities. One well-known

method to renormalize the HEE is to cancel out the divergent terms by using differentiation

with respect to a characteristic length scale of the entangling subregion [29]. See also [30].

However, this method depends on the shape of the entangling region and the choice of

coordinate system. In order to overcome the disadvantages of the differentiation method,

a systematic renormalization method known as the holographic renormalization [31–34]

was applied to the renormalization of the HEE [35]. See also [36, 37]. Application of this

method to the HSC for pure AdS spaces was also discussed in [12]. Renormalization of the

holographic complexity for pure states in terms of the holographic renormalization method

was studied in [38].

In this paper, we construct renormalized HEE and HSC with arbitrary entangling

subregions for asymptotically AdS4 and AdS5 geometries1 under relevant perturbations by

introducing a scalar field. We determine covariant counter terms on the cut-off boundary

in terms of the holographic renormalization method. Our construction also can be applied

to generic asymptotically AdS geometries, such as AdS black holes and AdS solitons, etc.

In the case of the HEE, recalling that the RT minimal hyper-surface ΣA is homologous

to the subspace A, its boundary ∂ΣA is independent of the bulk stress tensor. However, the

subleading divergences in the HEE are determined by the back reaction of the stress tensor

1We omit the case of the AdS3 geometry, which is similar to the case of the AdS5 geometry, however, we

show the general procedure of how to cancel few leading divergences in the case of asymptotically AdSd+1

geometries, with d > 4.
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on the geometry. In order to account for these subleading divergence, the counter terms

should contain invariants of the matter fields in addition to the curvature invariants on ∂ΣA.

We determine the exact forms of these counter terms in asymptotically AdS4 and AdS5
geometries under relevant perturbations. The renormalized HEE with a disk entangling

subregion in asymptotically AdS4 geometry under relevant perturbations was obtain in [35].

This result is also obtained from our result of the asymptotically AdS4 geometry.

In the case of the HSC, the curvature invariants on the cut-off boundary are dependent

on the bulk stress tensor. Therefore, the counter terms to cancel the leading as well as

subleading divergences can be just the integrals of the curvature invariants on the (d− 1)-

dimensional cut-off boundary. Like the HEE case, one can also include counter terms which

explicitly contain invariants of the matter fields. However, they are redundant, because the

nature of divergences obtained from those terms is the same as those obtained from the

counter terms built from the curvature invariants on the (d−1)-dimensional cut-off bound-

ary. Actually, this is expected due to the back reaction of the matter field deformations on

the cut-off boundary geometry. Keeping this in mind, we express the counter terms explic-

itly in terms of the matter fields by replacing the contributions from the curvature invariants

on the (d − 1)-dimensional space by the appropriate matter field invariants. In addition,

since the (d−1)-dimensional cut-off boundary meets the (d−2)-dimensional boundary ∂ΣA
of the RT hyper-surface, there are always divergent terms, which are expressed in terms of

integrals of curvature invariants on ∂ΣA. We show that the complete counter terms for the

HSC are expressed as integrals of the curvature invariants on the (d−1)-dimensional cut-off

boundary plus integrals of the curvature invariants on the (d − 2)-dimensional boundary

of the RT hyper-surface. We apply this procedure to a particular example of an asymp-

totically AdS4 geometry obtained from the non-linear KK reduction of the 11-dimensional

LLM geometry [39] and obtain coordinate independent finite results.

Intriguingly, we find that there exist a divergent term O(ǫα−1) with the range 0<α<1,

which cannot be cancelled out by adding any curvature invariant, in the renormalization

procedure of the HSC in the asymptotically AdS5 geometry under relevant perturbations.

This implies that there is no renormalized HSC in the range 0 < α < 1, with this range of

α corresponding to the conformal dimension of the relevant operators in the 4-dimensional

dual field theory to be in the range 0 < ∆ < 1
2 and 7

2 < ∆ < 4. Here we also notice that

the latter case does not violate the unitary bound (∆ ≥ 1) for primary operators. It will be

interesting if one figures out the physical reason of this phenomenon. To do that, one needs

more investigations for other HSC, such as in the CA conjecture and other dimensions to

resolve this problem.

The remaining parts of this paper are organized as follows. In section 2, we discuss

the renormalization of HEE in an asymptomatically AdS4 and AdS5 geometries, which are

obtained from the perturbation of the AdS geometries with a scalar field. We show the

counter terms are determined by the curvature invariants on the boundary of the RT hyper-

surface as well as the scalar field. We comment on the generalization to higher dimensions

as well. In section 3, we renormalize the HSC. We point out that the counter terms built

just from the curvature invariants on the cut-off boundary are not enough to cancel the

divergences and show the need for including the curvature invariants on the boundary of
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the RT hyper-surface. We obtain the forms of the counter terms in the asymptomatically

AdS4 and AdS5 geometries. In the case of asymptomatically AdSd+1>5 geometries, we

obtain the counter terms that are needed to cancel few leading divergences and summarize

the complete renormalization procedure for the simple case of pure AdS geometry in the

two appendices at the end. In section 4, we apply the general results of sections 2 and 3

to the KK reduction of the LLM geometry. We draw our conclusions in section 5.

2 Renormalized HEE under relevant perturbations

The UV divergences in the EE and the quantum complexity naturally appear due to the

strong entanglement near the boundary of entangling regions in quantum field theory. In

the dual gravity theory, the corresponding HEE and HSC also have UV divergences, which

should be renormalized before we associate physical phenomenon with the entanglement

and the quantum complexity. In this section, we focus on the renormalization of the HEE

in asymptotically AdSd+1 geometries, which are obtained by relevant perturbations that

correspond to insertion of scalar fields in the dual gravity. A simple well-known way to

renormalize the HEE is to use the differentiation for the HEE with respect to a charac-

teristic length scale [29], for instance, the radius of the disk or the width of the strip of

entangling regions. However, this method cannot be applicable for some entangling regions

and depends on the choice of the spacetime coordinate. To overcome these drawbacks, a

systematic way was proposed [35] by adopting the method of the holographic renormaliza-

tion [31–34] in the gauge/gravity duality. For the relevant perturbation near the asymptotic

region, the renormalized HEE for a disk in the asymptotically AdS4 geometry was obtained.

Here we briefly review the method of ref. [35], and extend the method to some entangling

regions for the asymptotically AdS4 and AdS5 geometries under relevant perturbations and

also comment on higher dimensions.

In the next section, we consider the renoramalization of the HSC with arbitrary shapes

of entangling regions on asymptotically AdS4 and AdS5 geometries. We propose new

counter terms, which are genuine in the renormalization of the HSC.

2.1 Renormalized HEE in asymptotically AdS4 geometry

In the field theory, the relevant deformation of the d-dimensional CFT refers to inserting

gauge invariant operators with conformal dimension ∆ < d, whereas in the dual gravity, this

relevant perturbation is achieved by introducing a scalar field of mass M2 = ∆(∆−d) with
∆ < d. Therefore, for the holographic description of the EE under relevant perturbations

in d-dimensional CFT, we start from the (d+ 1)-dimensional gravity action with negative

cosmological constant coupled to a scalar field φ,

Sgφ =
1

16πGd+1

∫

dd+1x
√−g

(

R− 2Λ− 1

2
∂pφ∂

pφ− 1

2
M2φ2 − V (φ)

)

, (2.1)

whereGd+1 is the (d+1)-dimensional Newton’s constant, xp=(z, xµ) with the d-dimensional

boundary coordinates xµ, are the bulk coordinates with the holographic radial direction z,

Λ = −d(d−1)
2L2 is the cosmological constant, and V (φ) denotes the potential with higher order
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self-couplings of the scalar field. Under the assumption of the Poincaré invariance for the

coordinate xµ, the metric of an asymptotically AdSd+1 geometry in the Fefferman-Graham

coordinate system is given by

ds2 = gpqdx
pdxq =

L2

z2

(

dz2 +
(

1 + h(z)
)

ηµνdx
µdxν

)

. (2.2)

The metric fluctuation h(z), which vanishes at the boundary (z = 0), measures the devia-

tion from the pure AdSd+1 geometry, due to the nonvanishing contribution of the Poincaré

invariant scalar field φ = φ(z).

Plugging (2.2) and the scalar field ansatz φ = φ(z) into the Einstein equation and the

equation of motion for the scalar field in 4-dimensions, we obtain

2z(1 + h)h′′ − 2zh′2 + 2(1 + h)h′ + z(1 + h)2φ′2 = 0,

z2(1 + h)φ′′ − 2z(1 + h)φ′ +
3

2
z2h′φ′ − L2M2(h+ 1)φ+ · · · = 0, (2.3)

where the ellipses denote contributions from the potential V (φ). In the asymptotic region

(z → 0), there are two independent solutions of the equations in (2.3),

φa(z) = s0z
3−∆ + s1z

3(3−∆) + · · · =⇒ ha(z) = −s
2
0

8
z2(3−∆) + h1z

4(3−∆) + · · · ,

φb(z) = v0z
∆ + v1z

3∆ + · · · =⇒ hb(z) = −v
2
0

8
z2∆ + h̃1z

4∆ + · · · , (2.4)

where ∆ = 1
2

(

3 +
√
9 + 4M2L2

)

is the conformal dimension of a gauge invariant operator

dual to the scalar field φ. The operator is relevant for ∆ < 3. According to the GKP-W

relation [2, 3] in the gauge/gravity duality, we have the relations

s0 ∼ JO∆ , v0 ∼ 〈O∆〉, (2.5)

where JO∆ and 〈O∆〉 are the source and the vacuum expectation value of a gauge invariant

operatorO∆ with conformal dimension ∆, respectively. The coefficients (s1, h1, · · · ) in (2.4)

are determined in terms of s0 and (v1, h̃1, · · · ) are determined in terms of v0, by inserting

these solutions into (2.3) and solving order by order in z. We will show that, the way these

solutions depend on the holographic coordinate z, determines the forms of the divergent

terms in the HEE and HSC as well as the forms of the appropriate counter terms.

The RT conjecture states that the HEE of a subregion A and its complement Ac, which

lies on the boundary of (d+1)-dimensional bulk geometry, is given by

SA =
Min(AΣA

)

4Gd+1
=

1

4Gd+1

∫

dz

∫

dd−2σa
√
γ, (2.6)

where Min(AΣA
) denotes the minimal area of a bulk static hyper-surface ΣA, which has

the same boundary with the subregion A. The induced metric on ΣA with the target

space metric gpq in (2.2) is defined as γαβ = ∂xp

∂σα
∂xq

∂σβ gpq with the worldvolume coordinate

σα = {z, σa}, a = 1, · · · , d − 2. In [35], the authors introduced a parametrization of the

– 5 –
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embedding of the static surface ΣA at a constant time t = t0 with arbitrary entangling

region into the bulk space by setting

xa = σa and xd−1 ≡ y = w(z, xa). (2.7)

It seems that the embedding (2.7) with (d − 1)-dimensional independent parameters can

express most shapes of entangling subregions, since the resulting hyper-surfaces ΣA’s are

also (d − 1)-dimensional geometries. In this sense, the embedding (2.7) is applicable to

arbitrary shapes of entangling subregions.

For d = 3, this embedding is written as

xp =
(

t = t0, z, x, y = w(z, x)
)

. (2.8)

The induced metric on the surface ΣA is then given by

γzz =
L2

z2

(

1 + w′2(1 + h)
)

, γzx =
L2

z2
ẇw′(1 + h), γxx =

L2

z2
(1 + h)

(

1 + ẇ2
)

, (2.9)

where σα = (z, x) are coordinates on the surface, and we have used the notations w′ = ∂zw,

ẇ = ∂xw. Then the area of the surface ΣA is calculated as

AΣA
=

∫

dx

∫

dz
√

det γαβ = L2

∫

dx

∫

dz
(1 + h)1/2

z2

√

1 + ẇ2 + (1 + h)w′2. (2.10)

The following Euler-Lagrange equation derived from this action determines the minimal

area surface:

z(1+h)w′′+zẅ−2(1+h)w′+
3

2
zh′w′

− z

1+ẇ2+(1+h)w′2

(

ẇ2ẅ+
1

2
(1+h)h′w′3+2(1+h)ẇw′ẇ′+(1+h)2w′2w′′

)

=0. (2.11)

Near the asymptotic limit z → 0, the equation (2.11) is solved order by order in z by

inserting the expansion

h(z) = h0z
α + h1z

2α + · · · ,
w(x, z) = w0(x) + w2(x)z

2 + wα+2(x)z
α+2 + w4(x)z

4 + · · · , (2.12)

where we read from (2.4) that α > 0 and α is the smaller of 2(3 −∆) and 2∆. From the

leading order of (2.11), one can determines w2 in terms of w0 as

w2 =
ẅ0

2
(

1 + ẇ2
0

) . (2.13)

Similarly, the higher order coefficients can also be determined, however, those are not

required to obtain the gauge invariant counter term in the asymptotically AdS4 geometry.

Plugging the expansion (2.12) into (2.10) and introducing a cut-off z = ǫ shown in figure 1,

we obtain the regularized HEE,

Sreg
A =

L2

4G4

∫

dx

∫ zm

ǫ
dz

(1+h)1/2

z2

√

1+ẇ2
0

(

1+
2w2

2+ẇ0ẇ2

1+ẇ2
0

z2+O(zα+2,z4)

)

, (2.14)
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z

z =

xa

y =w(z,xa)

Σ

∂Σ

∂Σ
A

A

B

A

A

A

A

c

Figure 1. The RT surface and the subregion volume embedded into the asymptotically AdSd+1

geometry.

where zm denotes the maximum value of z and is determined from the boundary condition

w′(zm, x) → ∞. Using the expansion of h(z) in (2.12), one can rewrite the regularized

HEE in (2.14) as

Sreg
A =

L2

4G4

∫

dx

∫ zm

ǫ
dz
√

1 + ẇ2
0

(

z−2 +
h0
2
zα−2 +O(z2α−2)

)

. (2.15)

Evaluating the z integral, we obtain

Sreg
A =



























L2

4G4

∫

dx
√

1 + ẇ2
0

(

1
ǫ − h0ǫα−1

2(α−1) +O(ǫ2α−1) + · · ·
)

, 0 < α < 1

L2

4G4

∫

dx
√

1 + ẇ2
0

(

1
ǫ − h0

2 ln
(

ǫ
ℓ

)

+ · · ·
)

, α = 1

L2

4G4

∫

dx
√

1 + ẇ2
0

(

1
ǫ + · · ·

)

, α > 1

, (2.16)

where for the α = 1 case, we have introduced an arbitrary length scale ℓ, which implies

that the renormalized HEE will be renormalization scheme dependent. From now onwards

the ellipses denote less divergent terms and finite terms. The ranges of α in the above

equation refers to the following ranges of the conformal dimension ∆,

0 < α < 1 ⇐⇒ 0 < ∆ <
1

2
or

5

2
< ∆ < 3,

α = 1 ⇐⇒ ∆ =
1

2
,
5

2
,

α > 1 ⇐⇒ 1

2
< ∆ <

5

2
. (2.17)

Based on the value of the conformal dimension ∆, the value of h0 in (2.16) is determined,

for instance, h0 = − s20
8 ∼ J2

O∆ for 3
2 < ∆ < 3 and h0 = −v20

8 ∼ 〈O∆〉2 for 0 < ∆ < 3
2 , where

we have used the GKP-W relations in (2.5).
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In general, the divergences in HEE are cancelled by counter terms which are composed

of the invariant quantities built by the scalar field φ, the induced metric γ̃ab, and the

extrinsic curvature K̃ab on the boundary ∂ΣǫA of the regularized minimal surface ΣǫA [35].

See figure 1. In our case, the boundary ∂ΣǫA is a one dimensional curve and its embedding

into the cut-off surface z = ǫ is parametrized as xi =
(

x, y = w(ǫ, x)
)

. The induced metric

and the extrinsic curvature are given by

γ̃xx =
L2(1 + h)

ǫ2

(

1 + ẇ2
)

, K̃xx =
L(1 + h)

1

2 ẅ

ǫ(1 + ẇ2)5/2
,

K̃xy =
L(1 + h)

1

2 ẅẇ

ǫ(1 + ẇ2)5/2
, K̃yy =

L(1 + h)
1

2 ẅẇ2

ǫ(1 + ẇ2)5/2
. (2.18)

The trace of the extrinsic curvature is

K̃ = gijK̃ij =
ǫ

L
√
1+h

(

ẅ0

(1+ẇ2
0)

3/2
+O(ǫ2)

)

=
ǫ

L
√
1+h

(

2w2

(1+ẇ2
0)

1/2
+O(ǫ2)

)

, (2.19)

where we have used the result in (2.13) in the last step. We notice that non of the

divergences in (2.16) are related to K̃. Actually, such extrinsic curvature plays a role

in the renormalized HEE if one consider the d > 3 cases. See d = 4 case in the next

subsection. Therefore, in the case at hand the counter terms contain only the invariants of

φ and γ̃ab.

The counter term required to cancel the leading divergence for α>0 in (2.16) is given by

S
(1)
ct = − L

4G4

∫

dx
√

γ̃ = − L2

4G4

∫

dx
√

1 + ẇ2
0

(

1

ǫ
+
h0
2
ǫα−1 +O(ǫ2α−1)

)

. (2.20)

Adding this counter term to (2.16), we obtain

Sreg
A + S

(1)
ct =



























L2

4G4

∫

dx
√

1 + ẇ2
0

(

−αh0ǫα−1

2(α−1) +O(ǫ2α−1) + · · ·
)

, 0 < α < 1

L2

4G4

∫

dx
√

1 + ẇ2
0

(

−h0
2 ln

(

ǫ
ℓ

)

+ · · ·
)

, α = 1

L2

4G4

∫

dx
√

1 + ẇ2
0

(

finite terms
)

, α > 1

. (2.21)

From the solutions in (2.4) we note

φ2 = φ20z
α + · · · = −8h0z

α + · · · , (2.22)

where φ0 = s0 for the first solution and φ = v0 for the second solution in (2.4). Therefore,

the counter terms that cancel the subleading divergences in (2.21) are given by

S
(2)
ct =















− αL
64(α−1)G4

∫

dx
√
γ̃φ2 = L2

4G4

∫

dx
√

1 + ẇ2
0

(

αh0ǫα−1

2(α−1) + · · ·
)

, 0 < α < 1

− L
64G4

ln
(

ǫ
ℓ

)

∫

dx
√
γ̃φ2 = L2

4G4

∫

dx
√

1 + ẇ2
0

(

h0
2 ln

(

ǫ
ℓ

)

+ · · ·
)

, α = 1
,

(2.23)
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where we notice that the renormalized HEE for α > 1 was already obtained in (2.21). For

0 < α < 1, there is still remaining divergence of the order ǫ2α−1. This divergence and other

less divergent terms O(ǫnα−1) are cancelled by the counter terms built from higher powers

of K̃ and φ. From (2.21) and (2.23), we define a coordinate independent renormalized HEE

of entangling regions with the embedding (2.7) under relevant perturbations

Sren
A = Sreg

A + S
(1)
ct + S

(2)
ct . (2.24)

These renormalized HEEs under relevant perturbations reproduce those for the disk en-

tangling region in [35].

2.2 Renormalized HEE in asymptotically AdS5 geometry

In order to test the generality of the renormalization procedure we discussed in the previous

subsection, lets extend it to the case of an asymptotically AdS5 geometry under relevant

perturbations. Similarly with the case of the asymptotically AdS4 geometry, we start from

the action (2.1). Under assumption of the Poincaré invariance for the coordinate xµ, the

asymptotically AdS5 metric in the Fefferman-Graham coordinate system is given by

ds2 =
L2

z2

(

dz2 +
(

1 + h(z)
)

ηµνdx
µdxν

)

with xµ = (t, x1, x2, y). (2.25)

Then one can write the two independent solutions to equations of motions for the metric

fluctuation and the corresponding scalar field as

φa(z) = s0z
4−∆ + s1z

3(4−∆) + · · · =⇒ ha(z) = − s
2
0

12
z2(4−∆) + h1z

4(4−∆) + · · · ,

φb(z) = v0z
∆ + v1z

3∆ + · · · =⇒ hb(z) = −v
2
0

12
z2∆ + h̃1z

4∆ + · · · . (2.26)

The RT minimal area of the hyper-surface ΣA with entangling regions denoted in (2.7)

for the asymptotically AdS5 geometry is a three dimensional manifold parametrized by the

embedding

xp =
(

z, t = t0, x1, x2, y = w(z, x1, x2)
)

. (2.27)

See figure 1. The induce metric on ΣA is given by

γzz =
L2

z2

(

1 + w′2(1 + h)
)

, γza =
L2

z2
∂aww

′(1 + h),

γab =
L2

z2
(1 + h)

(

δab + ∂aw∂bw
)

, (2.28)

where ∂a = (∂x1 , ∂x2), w
′ = ∂zw. Then the HEE is determined by the minimum value of

the area of this hyper-surface given by

AΣA
= L3

∫

d2x

∫

dz
(1 + h)

z3

√

1 + (∂aw)
2 + (1 + h)w′2. (2.29)
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The minimum area equation derived from this action is read as

z(1+h)w′′+z∂2aw−3(1+h)w′+2zh′w′

− z

1+∂cw
2+(1+h)w′2

[

∂aw∂bw∂a∂bw+(1+h)2

(

w′2w′′+
1
2h

′w′3+2w′∂aw∂aw′

1+h

)]

=0.

(2.30)

We introduce the asymptotic expansion of w(z, x1, x2) and solve this equation order by

order in z. In this case the iteration breaks down at zd=4 order, and one needs to intro-

duce logarithmic term at this order. We can also read the asymptotic expansion of h(z)

from (2.26),

h(z) = h0z
α + h1z

2α + · · · ,

w(z, xa) =

{

w0(x
a) + w2(x

a)z2 + wα+2(x
a)zα+2 + · · · , 0 < α < 2

w0(x
a) + w2(x

a)z2 + w4(x
a)z4 + w̃4(x

a)z4 ln(z) + · · · , α ≥ 2
, (2.31)

where α is the smaller of 2(4−∆) and 2∆, and then α and ∆ have the relations

0 < α < 2 ⇐⇒ 0 < ∆ < 1 or 3 < ∆ < 4,

α = 2 ⇐⇒ ∆ = 1, 3,

α > 2 ⇐⇒ 1 < ∆ < 3. (2.32)

The wn’s in (2.31) are determined in terms of w0 by solving the minimal area equa-

tion (2.30). For our purpose in this and the next subsections, we only need w2 and

wα+2 (0 < α < 2). They are expressed as

w2 =
1

4

(

∂2aw0 −
∂aw0∂bw0∂a∂bw0

1 + (∂cw0)2

)

, wα+2 = −4h0(α− 1)w2

α2 − 4
. (2.33)

Plugging the expansion (2.31) into (2.29) and introducing the cut-off surface z = ǫ,

the HEE is given by

Sreg
A =

L3

4G5

∫

d2x

∫ zm

ǫ
dz

(1+h)
√

1+(∂cw0)2

z3

[

1+
2w2

2+∂aw0∂aw2

1+(∂cw0)2
z2+O(zα+2)

]

. (2.34)

Integrating by parts the second term in the square bracket in (2.34) and then using the

result in (2.33), we obtain

Sreg
A =

L3

4G5

∫

d2x

∫ zm

ǫ
dz
√

1+(∂cw0)2
[

1

z3
− 2w2

2

1+(∂cw0)2
1

z
+h0z

α−3+O(zα−1)

]

, (2.35)

where h0 = − s20
12 ∼ J2

O∆ for 2 < ∆ < 4 and h0 = −v20
12 ∼ 〈O∆〉2 for 0 < ∆ < 2, and w2 is

expressed in terms of w0 in (2.33). We carry out the z integration and obtain

Sreg
A =



























L3

4G5

∫

d2x
√

1 + (∂cw0)2
[

1
2ǫ2

+
2w2

2

1+(∂cw0)2
ln
(

ǫ
ℓ

)

− h0ǫα−2

α−2 + · · ·
]

, 0 < α < 2

L3

4G5

∫

d2x
√

1 + (∂cw0)2
[

1
2ǫ2

+
2w2

2

1+(∂cw0)2
ln
(

ǫ
ℓ

)

− h0 ln
(

ǫ
ℓ

)

+ · · ·
]

, α = 2

L3

4G5

∫

d2x
√

1 + (∂cw0)2
[

1
2ǫ2

+
2w2

2

1+(∂cw0)2
ln
(

ǫ
ℓ

)

+ · · ·
]

, α > 2

,

(2.36)
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where we also introduce some length scale ℓ like the case of the asymptotically AdS4 in the

previous subsection. Next we fix the counter terms which are composed of the invariant

quantities of the scalar field φ, the induced metric, and extrinsic curvature on the boundary

space ∂ΣǫA. In this case the boundary space is a 2-dimensional surface embedded in the

cut-off surface z = ǫ as xi = (x1, x2, y = w(ǫ, x1, x2)). The induced metric and the extrinsic

curvature are obtained as

γ̃ab=
L2

ǫ2
(

1+h
)(

δab+∂aw∂bw
)

,

K̃ab=
L(1+h)1/2

ǫ
√

1+(∂cw)2

(

∂a∂bw− ∂aw∂b∂dw∂dw+∂bw∂a∂dw∂dw

1+(∂cw)2
+
∂aw∂bw∂dw∂ew∂d∂ew

(1+(∂cw)2)2

)

,

K̃ay =
L(1+h)1/2

ǫ
√

1+(∂cw)2

(

∂a∂b∂bw

1+(∂cw)2
− ∂aw∂bw∂dw∂b∂dw

(1+(∂cw)2)2

)

,

K̃yy =
L(1+h)1/2

ǫ
√

1+(∂cw)2

(

∂aw∂bw∂a∂bw

(1+(∂cw)2)2

)

. (2.37)

Using the asymptotic expansion in (2.31), the trace of the extrinsic curvature is given by

K̃ =
ǫ(1 + h)−1/2

L
√

1 + (∂cw0)2

(

∂2aw0 −
∂aw0∂bw0∂a∂bw0

1 + (∂cw0)2

)

+O(ǫ3) =
4ǫ(1 + h)−1/2

L
√

1 + (∂cw0)2
w2 +O(ǫ3),

(2.38)

where in the last step we have used the expression of w2 in (2.33).

The first counter term that cancels the leading order divergence in (2.36) is

S
(1)
ct = − L

8G5

∫

d2x
√

γ̃ = − L3

4G5

∫

d2x
√

1 + (∂cw0)2
[

1

2ǫ2
+
h0
2
ǫα−2 + · · ·

]

. (2.39)

Adding the counter term (2.39) to (2.36), we obtain

Sreg
A + S

(1)
ct =



























L3

4G5

∫

d2x
√

1 + (∂cw0)2
[

2w2
2

1+(∂cw0)2
ln
(

ǫ
ℓ

)

− αh0ǫα−2

2(α−2) + · · ·
]

, 0 < α < 2

L3

4G5

∫

d2x
√

1 + (∂cw0)2
[

2w2
2

1+(∂cw0)2
ln
(

ǫ
ℓ

)

− h0 ln
(

ǫ
ℓ

)

+ · · ·
]

, α = 2

L3

4G5

∫

d2x
√

1 + (∂cw0)2
[

2w2
2

1+(∂cw0)2
ln
(

ǫ
ℓ

)

+ · · ·
]

, α > 2

.

(2.40)

The universal logarithmic divergences [40] which are present in the all the three ranges of

α are cancelled by the counter term composed of trace of the extrinsic curvature in (2.38).

As we mentioned in the previous subsection this term is absent for d < 4. The required

counter term is2

S
(2)
ct = − L3

32G5
ln
(ǫ

ℓ

)

∫

d2x
√

γ̃K̃2 = − L3

4G5
ln
(ǫ

ℓ

)

∫

d2x

[

2w2
2

√

1 + (∂cw0)2
+O(ǫ2) + · · ·

]

.

(2.41)

2In [35], it was argued that odd powers of K̃ can not enter the counter terms because the renormalized

HEE for the subspace A and its complement A
c, which has opposite sign of the extrinsic curvature, must

be the same.
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Then we obtain

Sreg
A + S

(1)
ct + S

(2)
ct =



























L3

4G5

∫

d2x
√

1 + (∂cw0)2
[

−αh0ǫα−2

2(α−2) + · · ·
]

, 0 < α < 2

L3

4G5

∫

d2x
√

1 + (∂cw0)2
[

−h0 ln
(

ǫ
ℓ

)

+ · · ·
]

, α = 2

L3

4G5

∫

d2x
√

1 + (∂cw0)2 (finite terms) , α > 2

. (2.42)

The third counter term to cancel the remaining two divergences is composed of the scalar

field (φ2 = −12h0z
α + · · · ),

S
(3)
ct =











− αL
96(α−2)G5

∫

d2x
√
γ̃ φ2, 0 < α < 2

− L
96G5

ln
(

ǫ
ℓ

)

∫

d2x
√
γ̃ φ2, α = 2

. (2.43)

This counter term cancels all the divergences except for α < 1 where there are less divergent

terms O(ǫ2α−2), which can be removed by counter terms containing higher powers of φ and

K̃. Then from (2.42) and (2.23), one can define the renormalized HEEs under relevant

perturbations for entangling regions in the asymptotically AdS5 geometry.

2.3 Comments on the case of asymptotically AdSd+1>5 geometry

As we increase the space-time dimensions, more diverging terms will enter the HEE formula.

In order to exhaustively determine the forms of those divergences and fix the corresponding

counter terms, one needs to solve the equation of motion of the embedding function w(z, xa)

to greater order in z. In this subsection, to comment on the case of higher dimensions, we

solve those equations up to quadratic order in z, which is enough to obtain the counter terms

to cancel the three leading divergences in the renormalization of HEE in asymptotically

AdSd+1 geometry, with d > 4.

The asymptotically AdSd+1 metric in the Fefferman-Graham coordinates is given by

ds2 =
L2

z2

(

dz2 +
(

1 + h(z)
)

ηµνdx
µdxν

)

with xµ = (t, x1, x2, · · · , xd−2, y). (2.44)

The equations of motions for the metric fluctuation and the corresponding scalar field,

which are derived from the action in (2.1), are solved by the following two independent

solutions

φa(z) = s0z
d−∆ + s1z

3(d−∆) + · · · =⇒ ha(z) = − s20
4(d− 1)

z2(d−∆) + h1z
4(d−∆) + · · · ,

φb(z) = v0z
∆ + v1z

3∆ + · · · =⇒ hb(z) = − v20
4(d− 1)

z2∆ + h̃1z
4∆ + · · · . (2.45)

As we did in the case of d = 3 and d = 4, we will use these solutions to determine the

counter terms.

The RT hyper-surface ΣA is a d − 1-dimensional manifold parametrized by the

embedding

xp =
(

z, t = t0, x1, · · · , xd−2, y = w(z, x1, · · · , xd−2)
)

. (2.46)
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The induce metric on ΣA is given by

γzz =
L2

z2

(

1 + w′2(1 + h)
)

, γza =
L2

z2
∂aww

′(1 + h),

γab =
L2

z2
(1 + h)

(

δab + ∂aw∂bw
)

, (2.47)

where ∂a = (∂x1 , · · · , ∂xd−2
), w′ = ∂zw. Then the HEE is determined by the minimum

value of the area of this hyper-surface given by

AΣA
= Ld−1

∫

d2x

∫

dz
(1 + h)

d−2

2

zd−1

√

1 + (∂aw)
2 + (1 + h)w′2. (2.48)

The minimum area equation derived from this action is

z(1+h)w′′+z∂2aw−(d−1)(1+h)w′+
d

2
zh′w′

− z

1+∂cw
2+(1+h)w′2

[

∂aw∂bw∂a∂bw+(1+h)2

(

w′2w′′+
1
2h

′w′3+2w′∂aw∂aw′

1+h

)]

=0.

(2.49)

We introduce the asymptotic expansion of w(z, xa) and solve this equation order by order

in z and we read the asymptotic expansion of h(z) from (2.45),

h(z) = h0z
α + · · · ,

w(z, xa) = w0(x
a) + w2(x

a)z2 + · · · , (2.50)

where α is the smaller of 2(d−∆) and 2∆. The w2 in (2.50) is determined in terms of w0

by solving the minimal area equation (2.49) and is given by

w2 =
1

2(d− 2)

(

∂2aw0 −
∂aw0∂bw0∂a∂bw0

1 + (∂cw0)2

)

(2.51)

Plugging the expansion (2.50) into (2.48) and introducing the cut-off surface z = ǫ,

the HEE is given by

Sreg
A =

Ld−1

4Gd+1

∫

dd−2x

∫ zm

ǫ
dz

√

1+(∂cw0)2

zd−1

[

1+
2w2

2+∂aw0∂aw2

1+(∂cw0)2
z2+

d−2

2
h0z

α+· · ·
]

.

(2.52)

Integrating by parts the second term in the square bracket in (2.52) and then using the

result in (2.51), we obtain

Sreg
A =

Ld−1

4Gd+1

∫

dd−2x

∫ zm

ǫ
dz
√

1+(∂cw0)2
[

1

zd−1
− 2(d−3)w2

2

(1+(∂cw0)2)zd−3
+
(d−2)h0
2zd−1−α +· · ·

]

.

(2.53)

Then we can carry out the z integration to obtain

Sreg
A =

Ld−1

4Gd+1

∫

dd−2x

√

1+(∂cw0)2

ǫd−2

[

1

(d−2)
− 2(d−3)w2

2ǫ
2

(d−4)(1+(∂cw0)2)
+
(d−2)h0ǫ

α

2(d−2−α)+· · ·
]

.

(2.54)
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Next we fix the counter terms which are composed of the invariant quantities of the

scalar field φ, the induced metric, and extrinsic curvature on the boundary space ∂ΣǫA.

In this case the boundary space is a (d − 2)-dimensional hypersurface embedded in the

cut-off z = ǫ as xi = (xa, y = w(ǫ, xa)). Using this embedding we can calculate the induced

metric and the extrinsic curvature and they are given by (2.37). Then using the asymptotic

expansion in (2.50), the trace of the extrinsic curvature is given by

K̃ =
ǫ(1 + h)−1/2

L
√

1 + (∂cw0)2

(

∂2aw0 −
∂aw0∂bw0∂a∂bw0

1 + (∂cw0)2

)

+ · · · = 2(d− 2)ǫ(1 + h)−1/2

L
√

1 + (∂cw0)2
w2 + · · · ,

(2.55)

where in the last step we have used the solution of w2 in (2.51).

The first counter term that cancels the leading order divergence in (2.54) is

S
(1)
ct = − L

4(d− 2)Gd+1

∫

dd−2x
√

γ̃

= − Ld−1

4Gd+1

∫

dd−2x

√

1 + (∂cw0)2

ǫd−2

[

1

(d− 2)
− 2w2

2ǫ
2

(1 + (∂cw0)2)
+
h0ǫ

α

2
+ · · ·

]

. (2.56)

Adding the counter term (2.56) to (2.54), we obtain

Sreg
A +S

(1)
ct =

Ld−1

4Gd+1

∫

dd−2x

√

1+(∂cw0)2

ǫd−2

[

− 2w2
2ǫ

2

(d−4)(1+(∂cw0)2)
+

αh0ǫ
α

2(d−2−α)+· · ·
]

.

(2.57)

The next required counter term is

S
(2)
ct =

L3

8(d− 2)2(d− 4)Gd+1

∫

dd−2x
√

γ̃K̃2

=
Ld−1

4Gd+1

∫

dd−2x

√

1 + (∂cw0)2

ǫd−2

[

2w2
2ǫ

2

(d− 4)(1 + (∂cw0)2)
+ · · ·

]

. (2.58)

Here we would like to note that there are more of such matter field independent diver-

gences for d > 4. For even d, the least divergent of those is the universal logarithmic

divergence [40], whereas for odd d, it is the linear divergence. These are always cancelled

by the counter terms built from the curvature invariants on ∂ΣǫA [35]. Now, adding the

counter term (2.58) to (2.57), we obtain

Sreg
A + S

(1)
ct + S

(2)
ct =

Ld−1

4Gd+1

∫

dd−2x

√

1 + (∂cw0)2

ǫd−2

[

αh0ǫ
α

2(d− 2− α)
+ · · ·

]

. (2.59)

The third counter term to cancel the next order divergences is composed of the scalar field

(φ2 = −4(d− 1)h0z
α + · · · ),

S
(3)
ct =

αL

32(d− 1)(d− 2− α)Gd+1

∫

dd−2x
√

γ̃ φ2

= − Ld−1

4Gd+1

∫

dd−2x

√

1 + (∂cw0)2

ǫd−2

[

αh0ǫ
α

2(d− 2− α)
+ · · ·

]

. (2.60)
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This demonstrates, though there are numerous divergences in the case of higher dimensions,

one can still construct the necessary counter terms from invariant quantities built from the

scalar field φ and curvature invariants on the (d− 2)-dimensional boundary of the regular-

ized RT minimal area hypersurface. See appendix A for the completed renormalization of

HEE in the simple case of pure AdSd+1 geometry with the disc entangling region.

3 Renormalized HSC under relevant perturbations

The CV conjecture for the subregion complexity [10] states that the HSC is equal to the

volume of the codimension-one hypersurface BA enclosed by the entangling subregion A

and the corresponding RT surface ΣA [4, 5], i.e.,

CA =
V (BA)

8πLGd+1
, (3.1)

where L is the radius of the AdSd+1 geometry. The CA conjecture for the subregion

complexity was also proposed in [12]. In this section, we construct the renormalized HSC

with entangling regions denoted by (2.7) for the asymptotically AdS4,5 geometries under

relevant perturbations. To do that, one has to consider divergent terms generated from

the boundary of the entangling region ∂A, which is different from the renormalization of

the holographic complexity for the whole space [38].

3.1 Renormalized HSC in asymptotically AdS4 geometry

According to proposal of the HSC [10], we use the RT surface ΣA for entangling regions

denoted by (2.7), which were obtained in the previous section. To regularize divergences

of the HSC CA in (3.1), we also introduce the z = ǫ cut-off, and then the regularized HSC

is written as

Creg
A =

1

8πLG4

∫

dx

∫ zm

ǫ
dz

∫ w(z,x)

0
dy
L3

z3
(1 + h) =

L2

8πG4

∫

dx

∫ zm

ǫ
dz
w(z, x)

z3
(1 + h),

(3.2)

where we used the asymptotically AdS4 geometry in (2.2) and w(z, x) is defined in the

embedding (2.8). Using the asymptotic expansion (2.12), we obtain

Creg
A =

L2

8πG4

∫

dx

∫ zm

ǫ
dz
(

w0z
−3+w2z

−1+h0w0z
α−3+O(ǫ2α−3)+· · ·+O(zα−1)

)

. (3.3)

Evaluating the z integral, we single out the divergent terms as follows:

Creg
A =































L2

8πG4

∫

dx

(

w0

2ǫ2
− w2 ln

(

ǫ
ℓ

)

+ h0w0ǫα−2

(2−α) + h1w0ǫ2α−2

2(1−α) + · · ·
)

, 0 < α < 2

L2

8πG4

∫

dx
(

w0

2ǫ2
−
(

w2 + h0w0

)

ln
(

ǫ
ℓ

)

+ · · ·
)

, α = 2

L2

8πG4

∫

dx
(

w0

2ǫ2
− w2 ln

(

ǫ
ℓ

)

+ · · ·
)

, α > 2

, (3.4)
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where the relations between α and the conformal dimension ∆ were given in (2.17). For

α = 1 the last divergence in the first line will be logarithmic. We note that in the case of

α = 2, there is only one divergence that depends on the scalar deformation whereas those

divergences are absent when α > 2.

For a (d+ 1)-dimensional bulk space-time, the counter terms are given by

Cct =
∫

∂Mǫ

dd−1x
√

dethij
∑

n

Cn(gµν , Rµν , hij ,Kij , φ), (3.5)

where ∂Mǫ is a codimension-two static hyper-surface at the cut-off boundary (z = ǫ), hij
is the induced metric on ∂Mǫ, and Kij is the extrinsic curvature of the ∂Mǫ embedded

in the bulk constant time slice Mǫ. In addition, gµν is the induced metric on the cut-off

z = ǫ boundary, Rµν is the Ricci tensor derived from gµν , and Cn are invariants built from

Rµν , gµν , hij , and Kij with appropriate mass dimensions. In the case we are considering,

both gµν and hij at z = ǫ are flat, i.e.,

gµν =
L2

ǫ2
[

1 + h(ǫ)
]

ηµν , hij =
L2

ǫ2
[

1 + h(ǫ)
]

δij , (3.6)

where µ, ν = (t, x, y) and i, j = (x, y). Therefore, the Ricci tensor Rµν is vanishing and the

extrinsic curvature is given by

Kij =L

(

h′(ǫ)

2ǫ
− 1 + h(ǫ)

ǫ2

)

δij , Kiz = 0, Kzz = 0. (3.7)

According to the general formula in (3.5), the counter term which cancels the leading

order divergence in (3.4) is given by

C(1)
ct = − 1

16πG4

∫

dx

∫ w(ǫ,x)

0
dy
√

dethij = − L2

16πG4

∫

dx

(

w0

ǫ2
+
h0w0

ǫ2−α
+
h1w0

ǫ2−2α
+ · · ·

)

.

(3.8)

Since the leading order divergence in (3.4) is independent of the matter deformation, there

is no contribution from the scalar field to the counter term at this order. Adding this

leading counter term to the HSC in (3.4), we obtain

Creg
A +C(1)

ct =































L2

8πG4

∫

dx

(

−w2 ln
(

ǫ
ℓ

)

+ αh0w0ǫα−2

2(2−α) + αh1w0ǫ2α−2

2(1−α) +· · ·
)

, 0<α< 2

L2

8πG4

∫

dx
(

−w2 ln
(

ǫ
ℓ

)

−h0w0 ln
(

ǫ
ℓ

)

+· · ·
)

, α=2

L2

8πG4

∫

dx
(

−w2 ln
(

ǫ
ℓ

)

+· · ·
)

, α> 2

. (3.9)

The w2 ln(ǫ/ℓ) divergence is also independent of the perturbations by the scalar field and

it is present in the case of pure AdS4 background as well. We will come back to renormal-

ization of this term later. First, let us discuss the other divergences. Since the Ricci tensor

Rµν is vanishing, the counter terms to cancel these other divergences are built from the

invariants of Kij and hij , as well as the scalar field. We notice that, the contributions from
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the counter terms built from the curvature invariants on ∂Mǫ can be expressed in terms of

the scalar field by using the solutions to the Einstein equation and the equation of motion

of the scalar field obtained in (2.4). Therefore, we can express those counter terms purely

in terms of the scalar field. Then, the counter term that has the right structure to cancel

the second terms in the first and second lines of (3.9) is

C(2)
ct =











− α
128πG4(α−2)

∫

dx
∫ w(ǫ,x)
0 dy

√

dethij φ
2, 0 < α < 2

− 1
64πG4

ln
(

ǫ
ℓ

)

∫

dx
∫ w(ǫ,x)
0 dy

√

dethij φ
2, α = 2

. (3.10)

Then we obtain

Creg
A +C(1)

ct +C(2)
ct

=































L2

8πG4

∫

dx

(

−w2 ln
(

ǫ
ℓ

)

−
(

h1
2(α−1)−

4h20−φ0φ1)
8(α−2)

)

αw0ǫ
2α−2+· · ·

)

, 0<α< 2

L2

8πG4

∫

dx
(

−w2 ln
(

ǫ
ℓ

)

+· · ·
)

, α=2

L2

8πG4

∫

dx
(

−w2 ln
(

ǫ
ℓ

)

+· · ·
)

, α> 2

, (3.11)

where φ0 and φ1 are respectively, the coefficients of zα/2 and z3α/2 in the scalar field

solution in (2.4). From (3.11), we see that there is a divergence which is of order ǫ2α−2 for

α < 1. In order to cancel this divergence we need to add counter terms that contain K2

and φ4. Note that KijKij also has the right order of divergence, however, since in our case

KijKij =
1
2K

2, it is not an independent contribution. Therefore, again replacing the K2

contributions with the scalar field, the required counter term at this order is

C(3)
ct =

C3

8πG4

∫

dx

∫ w(ǫ,x)

0
dy
√

dethij φ
4, 0 < α < 1, (3.12)

where C3 =
α

27h20

(

h1
α−1 − 4h20−φ0φ1)

4(α−2)

)

. Adding the counter term (3.12) to (3.11), we obtain

Creg
A +C(1)

ct +C(2)
ct +C(3)

ct =































L2

8πG4

∫

dx

(

−w2 ln
(

ǫ
ℓ

)

+O(ǫ3α−2)+· · ·
)

, 0<α< 2

L2

8πG4

∫

dx
(

−w2 ln
(

ǫ
ℓ

)

+· · ·
)

, α=2

L2

8πG4

∫

dx
(

−w2 ln
(

ǫ
ℓ

)

+· · ·
)

, α> 2

. (3.13)

Similarly, less divergent terms which are O(ǫnα−2) are removed by adding counter terms

that are higher order in K and φ. However, the w2 ln(ǫ/ℓ) term, which is independent

of the scalar deformation and it exists for all the three ranges of α, can not be cancelled

by any counter terms built from the invariants of Rµν , gµν , hij Kij , and φ. Therefore, the

general form of the counter terms (3.5) proposed in the literature does not account for

this particular divergence. It turns out, these divergences are cancelled by counter terms

which are built from the invariants of the induced metric γ̃ab and the extrinsic curvature

– 17 –
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K̃ab on the boundary ∂ΣǫA of the regularized minimal surface ΣǫA [12]. In our case these

induced metric and the extrinsic curvature are as in (2.18). The required counter term

which cancels the logarithmic divergence in (3.13) is

C̃ct =
L2

16πG4
ln
(ǫ

ℓ

)

∫

dx
√

det γ̃xxK̃ =
L2

8πG4
ln
(ǫ

ℓ

)

∫

dx
(

w2 +O(ǫ2)
)

. (3.14)

Adding this counter term to (3.13), we finally obtain a finite result for α ≥ 2
3 whereas for

α < 2
3 , as it was stated above, we need more counter terms containing higher powers of K

and φ. However, we note that the number of the necessary counter terms are finite once

one fixes the value of α, therefore, in the case of asymptotically AdS4 geometry, HSC is

renormalizable for any value of α.

3.2 Renormalized HSC in asymptotically AdS5 geometry

The renormalization of HSC in asymptotically AdS5 geometry follows the same steps as

the d = 3 case, however, in the current case there is an extra O(ǫα−1) divergence which

can not be cancelled by any of the counter terms listed in the previous subsection. The

regularized HSC is given by

Creg
A =

L3

8πG5

∫

d2x

∫ zm

ǫ
dz(1 + h)

3

2
w(z, x1, x2)

z4
. (3.15)

Evaluating the z integration in (3.15), we obtain

Creg
A =















L3

8πG5

∫

d2x
(

w0

3ǫ3
+w2

ǫ + 3
2(3−α)

w0h0
ǫ3−α + 3h0w2+2wα+2

2(1−α)ǫ1−α +O(ǫ2α−3)+· · ·
)

, 0<α< 2

L3

8πG5

∫

d2x
(

w0

3ǫ3
+w2

ǫ + 3
2(3−α)

w0h0
ǫ3−α +· · ·

)

, α≥ 2
,

(3.16)

where the relations between α and the conformal dimension ∆ were given in (2.32). Note

that for α = 1 and α = 3 cases, we get logarithmic divergences and those cases should be

treated separately as in the previous subsection.

As in the previous subsection, the Ricci tensor derived from the flat boundary metric

gµν = L2

ǫ2

[

1 + h(ǫ)
]

ηµν is vanishing. Therefore, the counter terms are obtained from the

induced metric hij , the extrinsic curvature Kij on the cut-off surface z = ǫ, and the scalar

field. The induced metric and the extrinsic curvature are

hij =
L2

ǫ2
[

1 + h(ǫ)
]

δij , Kij =
L

2ǫ2
[

ǫh′(ǫ)− 2h(ǫ)− 2
]

δij , (3.17)

where i, j = (x1, x2, y) are the coordinates on the cut-off surface at fixed time t = t0. The

appropriate counter term which removes the leading divergence in (3.16) is

C(1)
ct = − 1

24πG5

∫

d2x
√

dethij w(ǫ, x1, x2). (3.18)
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Adding this counter term to (3.16), we obtain

Creg
A +C(1)

ct =















L3

8πG5

∫

d2x
(

2w2

3ǫ + α
2(3−α)

w0h0
ǫ3−α + (α+2)(3h0w2+2wα+2)

6(1−α)ǫ1−α +· · ·
)

, 0<α< 2

L3

8πG5

∫

d2x
(

2w2

3ǫ + α
2(3−α)

w0h0
ǫ3−α +· · ·

)

, α≥ 2
. (3.19)

The counter term that cancels O(ǫα−3) divergence is linear in K and quadratic in φ.

Replacing the contribution from the extrinsic curvature with the scalar field by using the

gravity equations of motion, we can write

C(2)
ct =− α

192πG5(α− 3)

∫

d2x

∫ w(ǫ,x)

0
dy
√

dethij φ
2. (3.20)

Adding this counter term to (3.19), we obtain

Creg
A +C(1)

ct +C(2)
ct =











L3

8πG5

∫

d2x
(

2w2

3ǫ + 9h0w2+(6+α−α2)wα+2

3(α−3)(α−1)ǫ1−α +· · ·
)

, 0<α< 1,

L3

8πG5

∫

d2x
(

2w2

3ǫ +· · ·
)

, α> 1
, (3.21)

where we notice that the ranges of α are changed from those of (3.19) and the corresponding

ranges of the conformal dimension ∆ are

0 < α < 1 ⇐⇒ 0 < ∆ <
1

2
and

7

2
< ∆ < 4,

α > 1 ⇐⇒ 1

2
< ∆ <

7

2
. (3.22)

Like it was in the previous subsection, there is a divergence which is independent from

the scalar field deformation and it is O(ǫ−1). In order to cancel this divergence we need to

introduce the extrinsic curvature on the boundary ∂ΣǫA of the RT surface, as we did in the

previous subsection. This corresponding extrinsic curvature was given in (2.38). Therefore,

the counter term that cancels the O(ǫ−1) divergence in (3.21) is given by

C̃ct = − L2

48πG5

∫

d2x
√

det γ̃abK̃ = − L3

8πG5

∫

d2x

(

2w2

3ǫ
+
h0w2

3ǫ1−α
+O(ǫ)

)

. (3.23)

Adding this counter term to (3.21), we finally obtain

Creg
A +C(1,2)

ct +C̃ct=



















L3

8πG5

∫

d2x

(

(6+4α−α2)h0w2+(6+α−α2)wα+2

3(α−3)(α−1)ǫ1−α +· · ·
)

, 0<α< 1,

L3

8πG5

∫

d2x
(

O(ǫ2α−3)+· · ·
)

, α> 1

. (3.24)

Next we need to remove the O(ǫα−1) divergence. The possible counter term is

C(3)
ct =

Bα
8πG5

∫

d2x

∫ w(ǫ,x)

0
dy
√

dethij
(

φ2 + Cαφ
4
)

. (3.25)
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This counter term produces unwanted divergent term, which is O(ǫα−3), in addition to

the wanted O(ǫα−1) divergent term. Then, we could fix the values of the undetermined

constants Bα and Cα by setting the coefficient of the unwanted divergence to zero. However,

the coefficient of the O(ǫα−3) term is the same as that of O(ǫα−1) term, which means

setting the former to zero does eliminate the later as well. In general, it is impossible to

write a counter term for the O(ǫα−1) divergence without producing the O(ǫα−3) unwanted

divergence. Therefore, after fixing the undetermined constants in (3.25), we can cancel

the less divergent term O(ǫ2α−3) but can not cancel the O(ǫα−1) divergence. Hence, the

O(ǫα−1) divergence can not be removed, which means there is no renormalized HSC in the

range 0 < α < 1, i.e., 0 < ∆ < 1
2 and 7

2 < ∆ < 4. Here the latter case does not violate the

unitary bound (∆ ≥ 1) for primary operators in 4-dimensional dual field theory. It will be

interesting if one figures out the physical reason of this phenomenon by investigating other

HSC conjectures or spacetime dimensions.

3.3 Comments on the case of asymptotically AdSd+1>5 geometry

In order to comment on the deliberation of the renoramalization of HSC in general space-

time dimensions, in this section, we show the cancellation of the leading three divergences

for any d > 4. Using the general definition in (3.1), the regularized HSC in asymptotically

AdSd+1 geometry is given by

Creg
A =

Ld−1

8πGd+1

∫

dd−2x

∫ zm

ǫ
dz(1 + h)

d−1

2
w(z, xa)

zd
. (3.26)

Evaluating the z integration in (3.26), we obtain

Creg
A =

Ld−1

8πGd+1

∫

dd−2x

ǫd−1

(

w0

d− 1
+
w2ǫ

2

d− 3
+

(d− 1)w0h0ǫ
α

2(d− 1− α)
+ · · ·

)

(3.27)

The counter terms that cancels the first and the third divergences in (3.27) are obtained

from the induced metric hij and the extrinsic curvature Kij on the cut-off surface z = ǫ,

which are given by

hij =
L2

ǫ2
[

1 + h(ǫ)
]

δij , Kij =
L

2ǫ2
[

ǫh′(ǫ)− 2h(ǫ)− 2
]

δij , (3.28)

where i, j = (xa, y) are the coordinates on the cut-off surface at fixed time t = t0. The

appropriate counter term which removes the leading divergence in (3.27) is

C(1)
ct = − 1

8(d− 1)πGd+1

∫

dd−2x

∫ w(ǫ,xa)

0
dy
√

dethij . (3.29)

Adding this counter term to (3.27), we obtain

Creg
A + C(1)

ct =
Ld−1

8πGd+1

∫

dd−2x

(

2w2

(d− 1)(d− 3)ǫd−3
+

α

2(d− 1− α)

w0h0
ǫd−1−α + · · ·

)

(3.30)
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The counter term that cancels O(ǫα+1−d) divergence is linear in K and quadratic in φ and

is given by

C(2)
ct =

α

64πGd+1(d− 1)(d− 1− α)

∫

dd−2x

∫ w(ǫ,x)

0
dy
√

dethij φ
2, (3.31)

where we have replaced the K term using the equations of motion as usual. Adding this

counter term to (3.30), we obtain

Creg
A + C(1)

ct + C(2)
ct =

Ld−1

8πGd+1

∫

dd−2x

(

2w2

(d− 1)(d− 3)ǫd−3
+ · · ·

)

. (3.32)

The next order divergence is O(ǫ3−d), which is independent from the scalar field de-

formation. In order to cancel this divergence, we need to introduce the extrinsic curvature

on the boundary ∂ΣǫA of the RT surface. The corresponding extrinsic curvature was given

in (2.55). Therefore, the counter term that cancels the O(ǫd−3) divergence in (3.32) is

given by

C̃ct = − L2

8π(d− 1)(d− 2)(d− 3)Gd+1

∫

dd−2x
√

det γ̃abK̃

= − Ld−1

8πGd+1

∫

dd−2x

(

2w2

(d− 1)(d− 3)ǫd−3
+ · · ·

)

. (3.33)

Though what we have done here is not complete, it is enough to see that in any dimensions,

the counter terms needed to renormalize the HSC are expressed as integrals of the curva-

ture invariants on the (d− 1)-dimensional cut-off boundary plus integrals of the curvature

invariants on the (d − 2)-dimensional boundary of the RT hyper-surface. See appendix B

for the fully renormalized HSC in the case of AdSd+1 geometry and disc entangling space.

4 An example: the LLM geometry

In this section, we test the general procedure we discussed in the previous sections, by

using an asymptotically AdS4 geometry, which is obtained from the KK reduction of the

11-dimensional LLM solutions [39]. For definiteness, we choose the boundary subspace A

to be a disc of radius R.

4.1 The LLM geometry

We have presented a detailed account of the LLM geometries with (or without) discrete

torsion and applied the KK holography procedure [41, 42] to obtain the vacuum expectation

values (vevs) of chiral primary operators (CPOs) with conformal dimensions ∆ = 1, 2 in

the Uk(N)×U−k(N) mass-deformed ABJM (mABJM) theory [43, 44].3 Here the mABJM

theory is obtained from the supersymmetry preserving mass deformation of the N = 6

ABJM theory [48]. In this subsection, we briefly review some necessary aspects of the

LLM geometries and the KK reduction to asymptotically AdS4 geometry.

3The gauge/gravity duality between the N = 6 supersymmetry preserving mABJM theory and the LLM

geometry was investigated in the large N limit [45–47].
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The LLM geometries with SO(2,1)×SO(4)/Zk×SO(4)/Zk isometry are BPS solutions

of the 11-dimensional supergravity [39, 49]. The metric and the corresponding 4-form field

strength are given by

ds2 = −Gtt(−dt2 + dw2
1 + dw2

2) +Gxx(dx̃
2 + dỹ2) +Gθθds

2
S3/Zk

Gθ̃θ̃ds
2
S̃3/Zk

, (4.1)

F4 = −d
(

e2Φh−2V
)

∧ dt ∧ dw1 ∧ dw2 + µ−1
0

[

V d(ỹ2e2G) + h2e3G ⋆2 d(ỹ
2e−2G)

]

∧ dΩ3

+ µ−1
0

[

V d(ỹ2e−2G)− h2e−3G ⋆2 d(ỹ
2e2G)

]

∧ dΩ̃3, (4.2)

where µ0 is a mass parameter, ds2S3/Zk
and ds2

S̃3/Zk
are metrics of two S3’s with Zk orbifold,

while dΩ3 and dΩ̃3 are the corresponding volume forms. The metric Gpq and the 4-form

field strength Fpqrs are completely determined by the two functions Z(x̃, ỹ) and V (x̃, ỹ),

Z(x̃, ỹ) =

2Nb+1
∑

i=1

(−1)i+1(x̃−x̃i)
2
√

(x̃−x̃i)2 + ỹ2
, V (x̃, ỹ) =

2Nb+1
∑

i=1

(−1)i+1

2
√

(x̃−x̃i)2 + ỹ2
, (4.3)

where x̃i are the location of the boundaries between the black/white regions in the droplet

representations of the geometries and Nb is the number of black or white regions with finite

lengths. See [45–47] for functional forms of Gpq and Fpqrs and other detailed conventions.

These functions are written in terms of the Legendre polynomials as follows [50],

Z(r, ξ) =
1

2

[

ξ +

∞
∑

n=1

Cn
[

(n+ 1)Pn+1(ξ)− 2ξnPn(ξ) + (n− 1)Pn−1(ξ)
]

(

2πµ0l
3
P

r

)n
]

,

V (r, ξ) =
1

2r

[

1 +
∞
∑

n=1

CnPn(ξ)

(

2πµ0l
3
P

r

)n
]

, (4.4)

where ξ = x̃
r with r =

√

x̃2 + ỹ2, Pn(ξ) are the Legendre polynomials, and we have

introduced [47]

Cn =

2Nb+1
∑

i=1

(−1)i+1

(

x̃i
2πµ0l3P

)n

(4.5)

with Planck length lP. In order to obtain the HEE for the mABJM theory in the small

mass limit, we consider the asymptotic expansion of the LLM geometries up to quadratic

order in µ0.
4 One can see in this small mass limit that physical quantities, such as vevs of

CPOs with ∆ = 1, 2 and the HEE, are completely expressed by the following two quantities

A2 =
1

2

(

C2 − C2
1

)

, A3 =
1

3

(

C3 − 3C1C2 + 2C3
1

)

. (4.6)

Before we write the non-linear KK reduction of the 11-dimensional supergravity, we

notice that the Zk-orbifold has no non-trivial role in the KK reduction. The reason is the

following. The LLM geometry has SO(2,1) ×SO(4)/Zk × SO(4)/Zk isometry and becomes

4The HEEs for the massive ABJM theory was investigated in various contexts [46, 50–53].

– 22 –



J
H
E
P
0
7
(
2
0
2
0
)
1
3
7

asymptotically AdS4 × S7/Zk. In order to reflect such symmetry of the LLM geometry,

one needs to write the asymptotic metric S7/Zk as

ds2S7/Zk
= dτ2 +

dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2

4
+
dθ̃2 + sin2 θ̃dφ̃2 + (dψ̃ + cos θ̃dφ̃)2

4
,

(4.7)

where (θ, φ, ψ) and (θ̃, φ̃, ψ̃) are Euler angles with ranges, 0 ≤ θ, θ̃ ≤ π, 0 ≤ φ, φ̃ ≤ 2π, and

0 ≤ ψ, ψ̃ ≤ 4π
k [49, 54]. We see that in (4.7), the two S1 circles with angles ψ and ψ̃ are

orbifolded. However, in the asymptotic expansion of the LLM geometries, components of

the metric and the 4-form field strength have no dependence of ψ and ψ̃. For this reason,

one can follow the method of non-linear KK reduction developed in [45–47], even for the

cases of k > 1, since the presence of discrete torsion [47] is originated from the Zk-orbifold

and is only related to the coordinates ψ and ψ̃.

Keeping in mind the comments in the previous paragraph, one can implement the

non-linear KK reduction up to quadratic order in µ0 for the LLM geometry to obtain an

asymptotically AdS4 geometry. Then we obtain

ds2 =
L2

z2
[

f(z)ηijdx
idxj + g(z)dz2

]

, (4.8)

where ηij = diag(−1, 1, 1) and

f(z) = 1− 1

45

(

30 + β23
)

(µ0z)
2 +O(z4),

g(z) = 1− 1

360

(

960 + 29β23
)

(µ0z)
2 +O(z4). (4.9)

Here, the quantities β3 and the radius of the AdS4 L are written in terms of A2 and A3 as

β3 =
3A3

A
3/2
2

, L =
1

2
(32π2A2)

1/6lP. (4.10)

In order to write the metric in the FG coordinate, we introduce the coordinate transfor-

mation z → z +
µ20
1440

(

960 + 29β23
)

z3. The result is

ds2 =
L2

z2

[

dz2 +

(

1−
(

2 +
β23
16

)

(µ0z)
2 +O

(

(µ0z)
4
)

)

ηijdx
idxj

]

. (4.11)

In the next subsection, we use the asymptotically AdS4 metric in (4.11) to construct the

renormalized HEE and HSC following the methods developed in the previous sections.

4.2 Renormalized HEE and HSC in the mABJM theory

In [46], we have shown that the metric in (4.11) is a solution to equations of motion

derived from the action of Einstein gravity with negative cosmological constant coupled

to two scalar fields T and Ψ. The action was obtained from the KK reduction of the

11-dimensional gravity on LLM background, and it is given by

S =
1

16πG4

∫

d4x
√−g (R− 2Λ) + Sm, (4.12)
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where Λ = − 3
L2 is the negative cosmological constant and the matter action is given by

Sm =− 1

32πG4

∫

d4x
√−g

(

∇pT∇pT +M2
t T

2 +∇pΨ∇pΨ+M2
ψΨ

2
)

. (4.13)

The field Ψ is a genuine scalar, which is dual to the CPO of conformal dimension ∆ = 1,

with mass M2
ψ = ∆(∆−3)

L2 = − 2
L2 , whereas T is a pseudoscalar and it is dual to a gauge

invariant operator of conformal dimension ∆ = 2, hence has the same mass as that of Ψ.

The solutions to the equations of motion of those scalar fields as well were obtained

from the KK reduction of the 11-dimensional LLM solutions:

T (z) = 4µ0z + s1z
3 + · · · , Ψ(z) = − 1√

2
β3µ0z + v1z

3 + · · · . (4.14)

Using the conformal dimensions assignments of the previous paragraph and comparing this

solution with the general solutions we wrote in section 2.1, we notice that for the field T

the solutions belong to the first type of solution in (2.4) with s0 = 4µ0, whereas for the

field Ψ they belong to the second type of solutions in (2.4) with v0 = − 1√
2
β3µ0. One can

also read the solution to the warp factor h(z) by using (2.4) and (4.14). The answer is

h(z) = −s
2
0

8
z2 + · · · − v20

8
z2 + · · · = −

(

2 +
β23
16

)

µ20z
2 + · · · . (4.15)

As expected, this is consistent with the value of the warp factor that can be read from (4.11).

The parametrization in (2.8), which describe the embedding of the minimal surface ΣA
into the bulk space, is convenient to separate the divergent terms from the regular terms

and then propose the appropriate counter terms to cancel those divergences. For the case

at hand, where the subspace A is a disc of radius R, however, to calculate the finite value

of the regularized HEE and HSC, one needs to find the re-summation of the series in (2.12)

at each order in the mass parameter µ0, which is very difficult. Therefore, we introduce an

alternative parametrization for the embedding as

xp =
(

t = t0, z, x = ρ(z) cos θ, y = ρ(z) sin θ
)

. (4.16)

Though we choose the mapping (4.16), which is different from that of (2.8), the resulting

counter terms for the HEE and the HSC have the same forms since they are independent

of coordinate choices.

Denoting the coordinates on the minimal surface as σα = (θ, ρ), the induced metric

γαβ = ∂αx
p∂βx

qgpq becomes

γρρ =
L2

z2

[

1

ρ′(z)2
+
(

1 + h(z)
)

]

, γθθ =
L2

z2
(1 + h(z)) ρ(z)2, (4.17)

where we have used the bulk metric gpq in (4.11) and the warp factor is read from (4.15)

1 + h(z) = 1 + h0z
α + h1z

2α + · · · , with α = 2, h0 = −
(

2 +
β23
16

)

µ20. (4.18)
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The area of the minimal surface is given by

AΣA
=

∫

dρ

∫

dθ
√

det γαβ = 2πL2

∫ zm

0
dzLA, (4.19)

where

LA =
ρ(z)

z2

√

1 + h(z) +
(

(

1 + h(z)
)

ρ′(z)
)2
. (4.20)

In order to determine ρ(z) which minimize the area AΣ, we solve the Euler-Lagrangian

equation for LA, order by order in µ0 with the boundary condition ρ(z = 0) = R. Up to

quadratic order in µ0, the result is [46, 50, 51]

ρ(z) = ρ0(z) + ρ2(z)µ
2
0 +O(µ40), (4.21)

where

ρ0(z) =
√

R2 − z2,

ρ2(z) =
µ20

6
√
R2 − z2

(

4 +
β23
8

)[

−z
4

2
+ 2R2z2 − 4R3z + 4R4 log

(R+ z

R

)

]

. (4.22)

The value of the turning point zm is determined by ρ′(zm) → ∞ and is given by

zm = R− R3

6

(

2 +
β23
16

)

(

5− 8 log 2
)

µ20 +O(µ40). (4.23)

Using these results in (4.19) and introducing a cut-off z = ǫ, we can calculate the HEE

up to quadratic in µ0

Sreg
A =

2πL2

4G4

∫ zm

ǫ
dz LA =

πL2

2G4

(

R

ǫ
− 1− 32 + β23

24
R2µ20 + · · ·

)

, (4.24)

where here and in the following equations, the ellipses denote terms which are higher order

in µ0. Since we are considering the α = 2 case, only the first counter term in (2.20) is

required to cancel the divergences. The induced metric on the boundary curve ∂ΣǫA is

γ̃θθ = L2 1 + h(ǫ)

ǫ2
ρ(ǫ)2. (4.25)

Then counter term is

S
(1)
ct = − L

4G4

∫

dθ
√

γ̃θθ = −πL
2

2G4

R

ǫ
+O(ǫα). (4.26)

From the renormalized HEE for α > 1, which was constructed in (2.21), we obtain

Sren
A = −πL

2

2G4

(

1 +
32 + β23

24
R2µ20 + · · ·

)

. (4.27)

Here the negative sign of the contribution from the mass deformation (a relevant pertur-

bation) is related to the F -theorem in the 3-dimensional CFT.
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Similarly, the HSC, which is identified with the volume Bǫ enclosed by the disc A and

the static minimal area surface ΣǫA at a constant time slice t = t0, is given by

Creg
A =

V (Bǫ)
8πLG4

. (4.28)

See figure 1. Using the bulk coordinates xm = (z, ρ, θ) on the constant time slice, the

volume is given by

Creg
A =

L2

8πG4

∫ 2π

0
dθ

∫ zm

ǫ
dz

∫ ρ(z)

0
dρ

ρ

z3
[

1 + h(z)
]

=
πL2

16πG4

[

−1 +
R2

ǫ2
+ 2 log

( ǫ

R

)

+

(

32 + β23
8

)

(

1 + log
( ǫ

R

))

R2µ20 + · · ·
]

. (4.29)

The above result contains three divergent terms. Those divergences are regulated by

the three counter terms that were introduced in the subsection 3.1. The first counter term

is given by

C(1)
ct = − 1

16πG4

∫ 2π

0
dθ

∫ ρ(ǫ)

0
dρ
√

dethij = − L2

8G4

1 + h(ǫ)

ǫ2

∫ ρ(ǫ)

0
ρdρ

=
L2

16G4

[

−R
2

ǫ2
+ 1 +

(

32 + β23
16

)

R2µ30 + · · ·
]

. (4.30)

Recalling that in the case we are considering here, α = 2, the second counter term is

given by

C(2)
ct = − 1

64πG4
ln
( ǫ

R

)

∫ 2π

0
dθ

∫ ρ(ǫ)

0
dρ
√

dethij

(

T 2 +Ψ2) =
πL2

8πG4
ln
( ǫ

R

)

∫ ρ(ǫ)

0
dρ
ρ

ǫ
h′(ǫ)

= − L2

16G4

[

ln
( ǫ

R

)

(

32 + β23
8

)

R2µ20 + · · ·
]

. (4.31)

In order to calculate the third counter term, we need to obtain the extrinsic curvature of

the boundary curve ∂ΣǫA using the embedding xi = (ρ = ρ(ǫ), θ). The induced metric and

the extrinsic curvature are given by

γ̃θθ = L2 1 + h(ǫ)

ǫ2
ρ(ǫ)2, K̃ρρ = 0, K̃ρθ = K̃θρ = 0,

K̃θθ = −Lρ(ǫ)
ǫ

√

1 + h(ǫ), K̃ = gijK̃ij = −
(

Lρ(ǫ)

ǫ

√

1 + h(ǫ)

)−1

. (4.32)

Therefore, the third counter term is obtained as

C̃ct =
L2

16πG4
ln
( ǫ

R

)

∫ 2π

0
dθ
√

det γ̃θθK̃ = − L2

8G4
ln
( ǫ

R

)

. (4.33)

Note that, unlike the first two counter terms, this one is exact and has no µ0 corrections,

which means that it is independent of the scalar deformation. This is because, when

we deform the pure AdS4 space to obtain an asymptotically AdS4 space by adding scalar

deformations, the induced metric on the cut-off surface ∂Mǫ as well as those on the minimal
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surface ΣA get deformed, however, the boundary curve ∂ΣA of the minimal surface remains

the same. Since the third counter term is built by the invariants on this codimension-three

boundary curve, it is independent of the scalar deformation. In general, as we have shown

by using the examples of d = 3 and d = 4 in the previous section, there are always

divergent terms which are independent of the scalar deformation, it was logarithmic in

d = 3 and O(ǫ−1) in d = 4. The counter terms which cancels these divergence are always

built from the invariants on the codimension-three boundary of the minimal hyper-surface

ΣA. Therefore, the general claim in the literature, which states that the counter terms

to cancel all the divergences encountered in the complexity calculations are built from the

invariants on the codimension-two cut-off hyper-surface ∂Mǫ, does not account for those

divergences.

Finally, adding the three counter terms to the regularized HSC in (4.29) using the

renormalized HSC constructed in (3.13) and (3.14), we obtain

Cren
A =

3L2

162G4

(

(32 + β23)R
2µ20 + · · ·

)

, (4.34)

where we notice that the renormalized HSC is vanishing in the absence of the relevant

perturbation. Therefore, the contribution for the HSC by the mass deformation (a relevant

deformation) is always positive, while that for the HEE is negative. From the renormalized

HEE in (4.27), we obtain the relation for the disk entangling region up to µ20-order,

∆Cren
A = − 9

16π2
∆Sren

A , (4.35)

where ∆Sren
A and ∆Cren

A , respectively, are the variations of the renormalized HEE and HSC

due to the relevant perturbations. The properties of the relation (4.35) were investigated

in [55]. However, in our case, it is not clear that the relation (4.35) is satisfied for higher

µ0-orders and different shapes of subregions.

5 Conclusion

In this paper, we examined the renormalization of HEE and HSC of general entangling

subregions on the asymptotically AdS4 and AdS5 geometries under relevant perturbations

originated from a bulk scalar field. We considered the HSC of the CV conjecture and omit-

ted the case of the asymptotically AdS3 geometry, which is similar to the case of the AdS5
geometry, whereas we have obtained the counter terms that cancel few leading divergences

in case of asymptotically AdSd+1 geometry when d > 4. In order to renormalize these

quantities in a coordinate independent way, we explicitly constructed universal counter

terms using the holographic renormalization method.

For the divergences of the HEE on an asymptotically AdSd+1 geometry, the proposed

counter terms are integrals of the curvature invariants on the (d−2)-dimensional boundary

of the RTminimal hyper-surface. We pointed out that curvature invariants on the boundary

of the RT minimal hyper-surface are independent of the bulk stress tensor. On the other

hand, the HEE contains subleading divergences whose coefficients are determined by the

back reaction of the stress tensor on the geometry. We showed that the counter terms

that cancel these subleading divergence, must contain invariants of the bulk matter fields
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in addition to the curvature invariants on the boundary of the RT hyper-surface. We have

determined the exact forms of these counter terms in the asymptotically AdS4 and AdS5
geometries with arbitrary shapes of entangling regions.

Taking lesson from the renormalization of the HEE, the counter terms for the di-

vergences in HSC were proposed as integrals of the curvature invariants on the (d − 1)-

dimensional cut-off hyper-surface at z = ǫ, with z being the holographic coordinate. In this

case the curvature invariants on the cut-off hyper-surface are dependent on the bulk stress

tensor. Therefore, it looks natural to build the counter terms just from the integrals of the

curvature invariants on the (d−1)-dimensional cut-off boundary. However, we pointed out

that there are always divergences that are independent of the scalar deformations and can

not be cancelled by the invariants on the (d−1)-dimensional cut-off boundary. The counter

terms for those divergences are expressed in terms of integrals of curvature invariants on

the boundary of the RT minimal hyper-surface. We argued that the existence of these

divergence is attributed to the fact that the (d − 1)-dimensional cut-off boundary meets

the (d−2)-dimensional boundary of the RT hyper-surface and gets the UV divergence. We

showed that the complete counter terms for the divergences of HSC are expressed as inte-

grals of the curvature invariants on the (d− 1)-dimensional cut-off boundary plus integrals

of the curvature invariants on the (d− 2)-dimensional boundary of the RT hyper-surface.

We have tested our general construction of the renormalized HEE and HSC for an

asymptotically AdS4 geometry, which was obtained from the non-linear KK reduction of the

11-dimensional LLM geometry. We obtained coordinate independent finite results for both

HEE and HSC with a disk shape of entangling region. For our convenience of the coordinate

choice for the disk, we used a different mapping with (2.8). However, the counter terms for

the HEE and HSC have the same form with those in subsections 2.1 and 3.1, respectively.

Intriguingly, we found that the coordinate independent renormalization of the HSC in

the asymptotically AdS5 is not possible in the range 0 < α < 1, i.e., 0 < ∆ < 1
2 and 7

2 <

∆ < 4 of the relevant operators in the 4-dimensional dual field theory. That is, a divergent

term in that range of α cannot be cancelled out by adding any curvature invariant. We

also noticed that the case of 7
2 < ∆ < 4 does not violate the unitary bound (∆ ≥ 1)

for primary operators. Therefore, the problem of the non-renormalizability of the HSC in

the asymptotically AdS5 is genuine in this range of α. It will be interesting if one figures

out the physical reason of this phenomenon by investigating cases of other dimensions and

other HSC conjectures, for instance, the HSC in the CA conjecture.
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A Renormalized HEE in pure AdSd+1 geometry

In order to demonstrate the complete renoramilazation of HEE in arbitrary dimensions,

lets consider the simple case of an AdSd+1 geometry with the entangling surface A is a

disc. The metric in the Fefferman-Graham coordinates is given by

ds2 =
L2

z2

(

dz2 − dt2 + dρ2 + ρ2dΩ2
d−2

)

, (A.1)

where dΩ2
d−2 is the metric on Sd−2, with coordinates xa = {θ1, · · · , θd−2}. The RT hyper-

surface ΣA is a (d− 1)-dimensional manifold parametrized by the embedding

xp =
(

z, t = t0, ρ = ρ(z), θ1, · · · , θd−2,
)

. (A.2)

Introducing the coordinates on the minimal surface as σα = (ρ, θ1, · · · , θd−2), the induce

metric is given by

γρρ =
L2

z2

(

1 +
1

ρ′(z)2

)

, γρa = 0, γab =
L2

z2
ρ(z)2g̃ab, (A.3)

where g̃ab is the metric elements of the Sd−2. The HEE which is determined by the area

of the RT hyper-surface is

SA =
Ld−1Ωd−2

4Gn+1

∫ zm

0
dz
ρ(z)d−2

zd−1

√

1 + ρ′(z)2, (A.4)

where Ωd−2 = 2 π
d−1
2

Γ
(

d−1

2

) is the volume of the (d − 2)-sphere. The ρ(z) is determined by

solving the Euler-Lagrangian equation from this action, which is

zρ(z)ρ′′(z)−
(

ρ′(z)2 + 1
) (

(d− 1)ρ(z)ρ′(z) + (d− 2)z
)

= 0. (A.5)

An exact solution of this equation can be obtained, unlike the case of the asymptotically

AdS geometry or arbitrary entangling surface. With the boundary condition ρ(z = 0) = R

the exact solution is

ρ(z) =
√

R2 − z2. (A.6)

Plugging this exact solution into (A.4), expanding in powers of z, and introducing the

cut-off z = ǫ, the regularized HEE is given by

Sreg
A =

Ld−1Rd−2

4Gd+1
Ωd−2

∫ zm

ǫ
dz

[

1

zd−1
+

∞
∑

n=1

(−1)n

2nn!R2n
z2n−d+1

n
∏

m=1

(d− 2m− 1)

]

. (A.7)

To evaluating the z integration, lets assume d > 2 (where there is only the leading order

logarithmic divergence) and also consider the odd and even d cases separately. In the case

of odd d, the least divergent term is O(ǫ−1) and the result of the integration is

Sreg
A =

Ld−1Rd−2

4Gd+1
Ωd−2





1

(d− 2)ǫd−2
+

d−3

2
∑

n=1

(−1)n

2nn!R2n

ǫ2n−d+2

(d− 2− 2n)

n
∏

m=1

(d− 2m− 1) + · · ·



 ,

(A.8)
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whereas in the case of even d, the least divergent term is logarithmic, and we can write

Sreg
A =

Ld−1Rd−2

4Gd+1
Ωd−2





1

(d− 2)ǫd−2
+

d−4

2
∑

n=1

(−1)n

2nn!R2n

ǫ2n−d+2

(d− 2− 2n)

n
∏

m=1

(d− 2m− 1) + · · ·





− Ld−1

4Gd+1
Ωd−2





(−1)
d−2

2

2
d−2

2

(

d−2
2

)

!
log
( ǫ

R

)

d−2

2
∏

m=1

(d− 2m− 1) + · · ·



 . (A.9)

Here the ellipses denote only finite terms, which means that we have explicitly expressed all

divergent terms. This is difficult to do in a more general set up because solving the notori-

ously complex minimal area equations in (2.49) beyond few orders in z is very challenging.

The counter terms to cancel these divergences are composed of the invariants of the in-

duced metric and the extrinsic curvature on the boundary space ∂ΣǫA. Using the embedding

xi = (ρ = ρ(ǫ), θ1, · · · , θd−2), the induced metric and the extrinsic curvature are given by

γ̃ab =
L2

ǫ2
ρ(ǫ)2g̃ab, K̃ρρ = 0, K̃ρa = K̃aρ = 0,

K̃ab = −L
ǫ
ρ(ǫ)g̃ab, K̃ = gijK̃ij = −(d− 2)

ǫ

Lρ(ǫ)
. (A.10)

We note that other invariants of the extrinsic curvature can be written as power of K̃. For,

instance

K̃ijK̃ij =
1

d− 2
K̃2, K̃ijK̃jmK̃

m
i =

1

(d− 2)2
K̃3, · · · . (A.11)

Therefore, recalling also that the intrinsic curvature R̃ab is vanishing, the counter terms to

remove the divergences in (A.8) and (A.9) are composed of only the trace of the extrinsic

curvature.

Starting with the leading order divergence and going order by order, it is not difficult

to find the pattern of the necessary counter terms to cancel the O
(

ǫ2(k+1)−d) divergence

with k = 0, 1, 2, · · · . It is given by

S
(k+1)
ct =

(−1)k+1(2k − 1)!!L2k+1

4Gd+12kk!(d− 2k − 2)(d− 2)2k

∫

dd−2θ
√

γ̃abK̃
2k,

(A.12)

where (2k − 1)!! = (2k − 1)(2k − 3)(2k − 5) · · · 1 and (−1)!! = 1. Adding all the counter

terms up to this order to the regularized HEE in (A.8) and (A.9), we obtain

Sreg
A + S

(1)
ct + S

(2)
ct + · · ·+ S

(k+1)
ct (A.13)

=
Ld−1Rd−2Ωd−2

4Gd+1





d−3

2
∑

n=k+1

(−1)nǫ2n−d+2

2nn!R2n

(

∏n
m=1(d− 2m− 1)

d− 2− 2n

−
(

(2k − 1)!!

(

n

k

) n
∏

m=k+2

+(2k − 3)!!

(

n

k − 1

) n
∏

k+1

+ · · ·+
(

n

0

) n
∏

m=2

)

(d− 2m)

)

+ · · ·



 ,
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when d is odd and

Sreg
A +S

(1)
ct +S

(2)
ct +· · ·+S(k+1)

ct (A.14)

=
Ld−1Rd−2Ωd−2

4Gd+1





d−4

2
∑

n=k+1

(−1)nǫ2n−d+2

2nn!R2n

(

∏n
m=1(d−2m−1)

d−2−2n

−
(

(2k−1)!!

(

n

k

) n
∏

m=k+2

+(2k−3)!!

(

n

k−1

) n
∏

m=k+1

+ · · ·+
(

n

0

) n
∏

m=2

)

(d−2m)

)

+· · ·





− Ld−1

4Gd+1
Ωd−2





(−1)
d−2

2

2
d−2

2

(

d−2
2

)

!
log
( ǫ

R

)

d−2

2
∏

m=1

(d−2m−1)+· · ·



 ,

when d is even. For odd d, the least divergent term is at order of k = d−3
2 and the

corresponding counter term is

S
( d−1

2
)

ct =
(−1)

d−1

2 (d− 4)!!Ld−2

4Gd+12
d−3

2 (d−3
2 )!(d− 2)d−3

∫

dd−2θ
√

γ̃abK̃
d−3, (A.15)

whereas for even d it is the logarithm divergence and the counter term is

S
( d
2
)

ct = − (−1)
d
2 (d− 3)!!Ld−1

4Gd+12
d−2

2 (d−2
2 )!(d− 2)d−2

log
( ǫ

R

)

∫

dd−2θ
√

γ̃abK̃
d−2. (A.16)

Therefore, the renormalized HEE is

Sren
A =











Sreg
A + S

(1)
ct + S

(2)
ct + · · ·+ S

(k+1)
ct + · · ·+ S

( d−1

2
)

ct , for odd d,

Sreg
A + S

(1)
ct + S

(2)
ct + · · ·+ S

(k+1)
ct + · · ·+ S

( d
2
)

ct , for even d

.

B Renormalized HSC in pure AdSd+1 geometry

Using the results we have collated in appendix A, the regularized HSC for AdSd+1 geometry

and the disc entangling space is given by

Creg
A =

Ld−1

8πGd+1

∫

dd−2θ
√

g̃ab

∫ zm

ǫ
dz

∫ ρ(z)

0
dρ
ρd−2

zd

=
Ld−1Ωd−2R

d−1

8π(d− 1)Gd+1

∫ zm

ǫ
dz

[ ∞
∑

n=0

(−1)nz2n−d

2nn!R2n

n
∏

m=1

(d− 2m+ 1)

]

. (B.1)

As in the case of HEE, the integration over the z coordinate gives

Creg
A =

Ld−1Ωd−2R
d−1

8π(d− 1)Gd+1





d−2

2
∑

n=0

(−1)nǫ2n−d+1

2nn!R2n(d− 2n− 1)

n
∏

m=1

(d− 2m+ 1) + · · ·



 , (B.2)
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for even d and for odd d it is

Creg
A =

Ld−1Ωd−2R
d−1

8π(d− 1)Gd+1





d−3

2
∑

n=0

(−1)nǫ2n−d+1

2nn!R2n(d− 2n− 1)

n
∏

m=1

(d− 2m+ 1) + · · ·





− Ld−1Ωd−2

8π(d− 1)Gd+1





(−1)
d−1

2

2
d−1

2
d−1
2 !

log
( ǫ

R

)

d−1

2
∏

m=1

(d− 2m+ 1) + · · ·



 . (B.3)

As we have discussed in section 3, in the absence of the matter deformation, the counter

terms that cancel the divergences in (B.2) and (B.3) are composed of the invariants of the

intrinsic and extrinsic curvatures on both the (d − 1)-dimensional cut-off space ∂Mǫ and

the (d−2)-dimensional boundary ∂ΣǫA of the RT minimal area hyper-surface. The induced

metric hij and the extrinsic curvature Kij on the cut-off surface ∂Mǫ are given by

hρρ =
L2

ǫ2
, hab =

L2ρ(ǫ)2

ǫ2
g̃ab, Kρρ = −L

ǫ2
, Kab = −Lρ(ǫ)

2

ǫ2
g̃ab, (B.4)

whereas those of ∂ΣǫA are as in (A.10).

As always the counter term that cancels the leading order divergence is proportional

to the volume of the (d− 1)-dimensional cut-off space Vol(∂Mǫ) and it is given by

C(1)
ct = − 1

8π(d− 1)Gd+1

∫

dd−2θ

∫ ρ(ǫ)

0
dρ
√

dethij . (B.5)

Since K = gijKij in (B.4) is constant and the intrinsic curvature is zero, there is no other

counter term obtained from the curvature invariants on the (d− 1)-dimensional boundary

space ∂Mǫ. Therefore, in order to calculate counter terms for all subleading divergences,

we need to use the extrinsic curvature of the boundary curve ∂ΣǫA in (A.10). As a result,

the counter term that cancels the O
(

ǫ2k−d+3
)

subleading divergence with k = 0, 1, 2, · · · , is

C̃(k+1)
ct =

(−1)k+1L2k+2

8π(d− 1)(d− 2)2k+1(d− 2k − 3)Gd+1

∫

dd−2θ
√

det γ̃abK̃
2k+1. (B.6)

Adding these counter terms for the subleading divergences as well as that of the leading

divergence in (B.5), the HSC in (B.2) and (B.3) becomes

Creg
A + C(1)

ct + C̃(1)
ct + · · ·+ C̃(k+1)

ct

=
Ld−1Ωd−2R

d−1

8π(d− 1)Gd+1





d−2

2
∑

n=k+2

(−1)nǫ2n−d+1

2nn!R2n

(

∏n
m=1

d− 2n− 1
−
(

n

0

) n
∏

m=2

−2

(

n

1

) n
∏

m=3

− 8

(

n

2

) n
∏

m=4

− · · · − 2k+1(k + 1)!

(

n

k + 1

) n
∏

m=k+3

)

(d− 2m+ 1) + · · ·



 , (B.7)
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for even d whereas for odd d it is

Creg
A + C(1)

ct + C̃(1)
ct + · · ·+ C̃(k+1)

ct

=
Ld−1Ωd−2R

d−1

8π(d− 1)Gd+1





d−3

2
∑

n=k+2

(−1)nǫ2n−d+1

2nn!R2n

(

∏n
m=1

d− 2n− 1
−
(

n

0

) n
∏

m=2

−2

(

n

1

) n
∏

m=3

− 8

(

n

2

) n
∏

m=4

− · · · − 2k+1(k + 1)!

(

n

k + 1

) n
∏

m=k+3

)

(d− 2m+ 1) + · · ·





− Ld−1Ωd−2

8π(d− 1)Gd+1





(−1)
d−1

2

2
d−1

2
d−1
2 !

log
( ǫ

R

)

d−1

2
∏

m=1

(d− 2m+ 1) + · · ·



 . (B.8)

Proceeding like this, one can cancel all the divergences up to the last one, which for even

d corresponds to k + 1 = d−2
2 and the counter term is

C̃( d−2

2
)

ct =
(−1)

d−2

2 Ld−2

8π(d− 1)(d− 2)d−3Gd+1

∫

dd−2θ
√

det γ̃abK̃
d−3, (B.9)

and for odd d it is the logarithmic divergence with the counter term

C̃( d−1

2
)

ct = − (−1)
d−1

2 Ld−1

8π(d− 1)(d− 2)d−2Gd+1
log
( ǫ

R

)

∫

dd−2θ
√

det γ̃abK̃
d−2. (B.10)
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