Filomat 36:12 (2022), 4023-4040
https://doi.org/10.2298/FIL2212023K

(S
&

o

)
2 o
iy oS’

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

&
Ipapor®

Renormalized Self-Intersection Local Time for Sub-Bifractional
Brownian Motion

Nenghui Kuang?, Bingquan Liu®

?School of Mathematics and Computing Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR. China
bSchool of Mathematics and Information Science, Weinan Normal University, Weinan, 714000, P.R. China

Abstract. Let S"X = {SHK(t),t > 0} be a d—dimensional sub-bifractional Brownian motion with indices
H e (0,1)andK € (0,1]. Assumingd > 2,as HKd < 1, we mainly prove that the renormalized self-intersection

local time Do D
HK(o\ _ cHK _ HK(o _ cHK
fo fo O(S™8(s) — S (r))drds E[ jo‘ fo O(8™"(s) — SR (r))drds

exists in L2, where 6(x) is the Dirac delta function for x € R%.

1. Introduction and main results
Recently, EI-Nouty and Journé (2013) introduced the process Sg'K = {Sg[’K (t),t = 0} with indices H € (0,1)
and K € (0, 1], named the sub-bifractional Brownian motion and defined as follows:

1
S0 () = e (B (M) + B (1)),

where {B"X(t),t € R} is a two-sided bifractional Brownian motion with indices H € (0,1) and K € (0,1],
namely, {(BEX(t),t € R} is a centered Gaussian process, starting from zero, with covariance

1
E[B?/KB?LK] % [(|t|2H |S|2H)K |t S|2HK] ,
with H € (0,1) and K € (0,1].

Clearly, the sub-bifractional Brownian motion is a centered Gaussian process such that S?’K (0) = 0, with
probability 1, and Var[S{"(f)] = (2K — 22HK-1)2HK Note that since 2H — 1)K — 1 < K -1 < 0, it follows

that 2HK — 1 < K. We can easily verify that S? K is self-similar with index HK. When K = 1, Sf){’l is the
sub-fractional Brownian motion. For more on sub-fractional Brownian motion, we can see Kuang and Xie
(2015,2017), Kuang and Liu (2015,2018) and so on. Straightforward computations show that for all s,t > 0,
1 1

B[S ()55 (5)] = (P! + 1)< = St + 57"~

P A

5 1.1)
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and
Cult = sP€ < E[(Sy™ (1) = S5"(s))*] < Calt = 5P, (1.2)

where
Ci = min{2X - 1,2K - 22HK=1y ¢, = max{1,2 — 22HK-1), (1.3)

(See El-Nouty and Journé (2013)). Kuang (2019) investigated the collision local time of two independent

sub-bifractional Brownian motions. Kuang and Li (2022) obtained Berry-Esséen bounds and proved the

almost sure central limit theorem for the quadratic variation of the sub-bifractional Brownian motion. For

more on the sub-bifractional Brownian motion, we can see Kuang and Xie (2022) and Xie and Kuang (2022).
A d—dimensional sub-bifractional Brownian motion S7K = {SHK(¢),t > 0} is defined by

S = (ST, S5, - SR ®),

where Sf’K, Sg’K, e, S?’K are independent copies of SOH’I< .

The self-intersection local time, as an important topic of probability theory, has been widely considered.
For example, the self-intersection local time of the Brownian motion has been studied by many authors
(see Albeverio et al. (1997), He et al. (1995) and Hu (1996)). In the case of fractional Brownian motion,
the reader can refer to Hu (2001), Jung and Markowsky (2014, 2015). For the case of bifractional Brownian
motion, Jiang and Wang (2009) considered self-intersection local time and collision local time of bifractional
Brownian motion.

Varadhan (1969) studied the renormalized self-intersection local time of the planar Brownian motion.
This result has been extended by Rosen (1987) to the (planar) fractional Brownian motion. Hu and Nualart
(2005) extended the result to d—dimensional fractional Brownian motion. Chen et al. (2018) studied
renormalized self-intersection local time of bifractional Brownian motion. But there exists the same mistake
in Hu and Nualart (2005) and Chen et al. (2018), namely, (56) in Hu and Nualart (2005) and (3.18) in Chen
et al. (2018) are wrong (see Remark 1 below). We will use the different method to study the renormalized
self-intersection local time of a d—dimensional sub-bifractional Brownian motion.

In this paper, we investigate the local time and the renormalized self-intersection local time of a
d—dimensional sub-bifractional Brownian motion S#X. They are defined respectively as follows: for t > 0,
the local time

1HK(x) = fo t 5(S™(s) - x) ds, (1.4)

and the self-intersection local time
oy = f o (sH/K(s) - stK(r)) drds, (1.5)
D
where D = {(r,s) : 0 < r < s < t} and §(x) is the Dirac delta function for x € R?, and

o) = limp.() = @ [ explice, ) e,
€ Rd

and
|x[? el

Pe(x) := (2716)‘g exp {—2—} =(2n)™ fRd exp {i(é, x) — T} dé. (1.6)

€

The approximated self-intersection local time of sub-bifractional Brownian motion is defined by

Qe = fD pe (S™5(s) — S (r)) drds. (1.7)

Chen et al. (2015) obtained sufficient and necessary conditions for the existence of the local times,
collision local times, and self-intersection local times for anisotropic Gaussian random fields. However
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a sharp upper bound of second moment of the local time for anisotropic Gaussian random fields is not
obtained.

Now we state our main results as follows.

Theorem 1.1. Assuming HKd < 1, we have, for any x € RY,

<

HK |2 2I%(1 - HKd) 5 opa
E [‘l @) ] S H@nTG - 20Kl (18)

where lf[’K(x) is given by (1.4), I'(a) is a Gamma function defined by I'(«) := fom t*~le~'dt, and k is a constant
depending on H and K.

Theorem 1.2. Let S"K = {SHK(¢),t > 0} be a d—dimensional sub-bifractional Brownian motion with
indices H € (0,1) and K € (0, 1]. Assuming d > 2 and HKd < 1, we have, the renormalized self-intersection
local time a; ¢ — E[a;¢] converges in L2 ase — 0, where Qe is given by (1.7).

In what follows, we will use k to denote unspecified positive and finite constants whose value may be
different in each occurrence.

2. Some useful lemmas

In this section, we give some useful lemmas in order to prove the Theorems 1.1-1.2.
Lemma 2.1. For all constants 0 < a < b, Sf)ﬂ( is strongly locally @-nondeterministic on I = [a, b] with
@(r) = r*MX_ That is, there exist positive constants ¢; and rq such that for all t € I and all 0 < r < min{t, 7o},

Var(SE(DISF(s) s € Lr < |s =t < ro} > c1p(r). (2.1)

Proof. See Kuang (2019).
From the local nondeterminism (see Berman(1973), Xiao(2007)), we have the following property: if
0<t <t <---<t, <t then there is a constant k > 0 such that

n

Var | Y ui(S5R () - SPE (k)| 2 kYl — i P 22)
i=2

i=2

foranyu; € R,i=2,3,...,n.
Lemma 2.2. Let
A = Var [Si5(s) = ST ()], p = Var [S)(s') - ()],

and
u = Cov (S5(s) = S{ (1), S (s") = S ().

Case 1: If (,s,7,8) € Dy :={(r,s,7,s)0<r <7 <s<s <t},denotinga=7r —r,b=s—7r,c=s —s, then
we have

(1) Cila+b)* X <A =211 <Cola+b)*K, Ci(b+ )X < p=p1 < Colb+ )X, (2.3)

where C; and C; are given by (1.3).
(2) There exists a positive constant k, such that

Mpr = 183 2 k[(@ + bR 4 (b + 0 K?K], (2.4)

where y = .
(3) When 0 < 2HK < 1, there exists a positive constant k, such that

p= g < k(P4 pPHK 4 ) (2.5)
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Case 2: If (,5,7,8) € Dy := {(r,5,7,s)0<r<r <s <s<t},denotinga=7r —r,b=s —r,c=s-5,
then we have

(1) Cila+b+0)* K <A =2 <Cola+b+ oK, Cp*K < p = py < CH*K, (2.6)

where C; and C; are given by (1.3).
(2) There exists a positive constant k, such that

Aapa — i3 = kK (K 4 2K 2.7)

where 1 = .
(3) When 0 < 2HK < 1, there exists a positive constant k, such that

= up < kb*K. (2.8)

Case 3: If (r,s,7,8') € D3 :={(r,s,7,s )0 <r<s <t <s <t},denotinga=s—r,b=r —s,c=s —1, then
we have

(1) Ca?K < A = A3 < Cat®, ¢ PR < p = p3 < CrPK, (2.9)

where C; and C; are given by (1.3).
(2) There exists a positive constant k, such that

Azps — y§ > kK 2HK (2.10)

where u = ps.
(3) When 0 < 2HK < 1, for a, 8 > 0 with @ + = 1, there exists a positive constant k, such that

[J — [-13 < ka(x(HK—l)(ac)ﬁ(HK—lﬂl. (211)
Proof. The proof of this lemma is given in the Appendix since its proof is long.

Let D? := {(r,s,7,s)0<r<s<t0<+ <s <t},thenD?>N{r <r}=D;UD,U D3, where D;, D, and D3

-4 d . .
are given in Lemma 2.2. Let 6; = A;p; — yiz, and ©; =6, * — (/\ipi)_%,l =1,2,3. Then we have the following
three lemmas whose proofs are also given in the Appendix.

Lemma 2.3. If (1,s,7,s') € D;. Assume d > 2 and HKd < 2, we have

f O1drdsdr ds’ < +co. (2.12)
Dy

Lemma 2.4. If (1,5,7,5") € D,, we decompose the region D, :=1; U, Ul3, where Iy = (b > ma}, L = {b >
Mach, Iz = {b < ma, b < muc} for some fixed but arbitrary 7; > 0 and 1, > 0. Assume d > 2, we have
(1) as HKd < 3,

f O,drdsdr ds < +co. (2.13)
LI

(2) as HKd < 1,
f O,drdsdr' ds” < +co. (2.14)
I

Lemma 2.5. If (r,s,7,s) € D3, we decompose the region D3 := |1 + J» + J3 + J4, where |1 = {a > mb,c >
b}, Jo = {a <mb,c <mob), J3 = {a =2 mb,c < b}, Ju = {a < mb,c = nyb} for some fixed but arbitrary n; > 0
and 1, > 0. Assume d > 2, we have

(1) as HKd < 3,

f Osdrdsdr ds < +oo. (2.15)
J
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(2) asHKd <1,
f Osdrdsdr' ds’ < +co. (2.16)
Ja+]3+]a

Remark 1. We first point out the mistake of (56) in Hu and Nualart (2005). They claimed that: asd > 2,
there exists a constant 0 < k < 1 such that

©; < kp2(Aip) 27, (2.17)
fori = 2,3. In fact, (2.17) does not hold. Because we can prove that, forany 0 < x <1land a <0,
1-x*>1-ax (2.18)
Let f(x) = (1 -x)* -1+ ax,x €[0,1]. Then
f@=all-1-2"".
By 0 <x<1landa <0, wehave (1 —x)'"* < 1. Thus

1 (-1
(1-x)l (1-x)le

1-(1-x)*1=1- <0,

which implies f(x) is increasing on [0, 1]. Hence we obtain f(x) > f(0) = 0, (2.18) holds.

2 2 2
We take x = Ay_; and a = —¢ < 0. By Cauchy-Schwartz’ inequality, %‘_ <1, which shows x = % €[0,1].

Therefore, by (Z.ié),

We obtain
2\ 4 2
R P R D e HP7 WO AN B PPN A S PP
o= [1 A,-pi) 1] ipi) ™2 2 5505 i)™ = Zui(ip) = 2 wi(Aipi) =,

since d > 2. This implies (2.17) does not hold.

Secondly, Hu and Nualart (2005) used (56) to prove the results similar to (2.14) in Lemma 2.4 and (2.16)
in Lemma 2.5. Here we use the different method to prove (2.14) and (2.16). Hence the condition for (2.14)
or (2.16) is HKd < 1 but not HKd < 3.

Thirdly, (3.18) in Chen et al. (2018) cited from (56) in Hu and Nualart (2005). Hence the obtained results
in Hu and Nualart (2005) and in Chen et al. (2018) may be not correct.

3. Proofs of Theorems

In this section, we will prove Theorems 1.1-1.2.
Proof of Theorem 1.1. By (1.4) and (1.6), we get

E [|szK(x)|2] _E [ L . 5(S1K () — %) 5 (S5 () - x) drds]

1 .
- (2m)2 ‘th]z fRM E {exp (1 (<5H’K(S) - X, cf> + <SH'K(r) - X, n)))} dédndrds

= L f f El{expli
@n)2 o Jr P

d

((SIZ'K(S) - xm) Em + (SI,Z’K(Y) - xm) nm)]} d&dndrds
1

m=
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1
= —~Var
)X fmz j; eXP{ ar
1 1
= ~V,
2 f[o,t]z jl;dex { > ar

ex ——Var Slnf’K(s Em + Sl,i’K )N }déd drds.
(Zﬂ) 0<r<s<t f” p [ ) ( )17 ] L

m=

d
2 (S () = x) Em + (S},Z’K(r)—xm)nm)}}dédndrds

=1

d
Z (S )& + SHK<r)nm)l}d5dndrds
By (2.2), we have

Var [SHK(5)& + SHX(1)i1n] = Var [(SHX(s) = SEX ()& + SEX ()& + )|

> k(s = P 4 (& 4+ )P
Hence,

d

2 k
[ of| < G fo . fR e {—5 (E20s = 2%+ (5,0 + nm)ZrZHK)} dedndrds

m=1
2 1
= — —drd letr =
@)k fmg k(s —pyards (letr=su)

¢ 1
= _(2 ?;f’kd f §1-2HKd [f WwHKd(] u)HKddu] ds
" 0

2
—~ __B(1-HKd,1- HKd 1-2HKd g
(2 )dkd ( )f S
_ 2I2(1-HKd) oy
~ 2n)#kiT(3 — 2HKA) ’

since HKd < 1. Thus we finished the proof.
Proof of Theorem 1.2. By (1.7) and the independence of S7X,SHX ... sHX we have

1 7 2 I 4 d 4
E[a:c] = E [ f pe (S™5(s) - SH'K(r))drds]
D

1 ¢
" @ny fD fRd E[eXP {ZmZ:l(Sﬂ'%) - S ) Em}
d
B @ fD fR Hl exp {‘%Vaf [(5376) - i) €| exp{ cler } dedrds

i ﬁ fD {Var [S?’K(S) - Sy + E]}_% drds

1 _d
= —(2n)d/2 jl;()t +€)"2 drds,

where A is given in Lemma 2.2.
Similarly, we also get

2
exp {—l—a} d&drds

o [+ epro- @] asaras,

Ellac[’] =

4028

(3.1)

(3.2)
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where A, p, u are given in Lemma 2.2, and D? = {(r,s,7,s )0 <r<s<t,0<7 <s <t}
By (3.1) and (3.2), we obtain

E[(are — E(aie,)) (e, — E(ate,))]

=E [atﬂ at,ﬁz] - E[at,el]E[at,EZ]

) (2717)d f {[(A tellpre)- ”2]_%1 —[(A+e)p+ 62)]_3} drdsdr ds'.
D2
Hence,
ell,gr_l)o E [(ate, — E(ate,)) (re, — E(te,))]
1 7g ) N
~ @2ny L [(AP B HZ) - (Ap) ] drdsdr ds’.

Consequently, by Loéve’s criterion of mean-square convergence (see Chen et al.(2018)), a necessary and
sufficient condition for the convergence of a; — E[a; ] in L? is that

_d
B = fD 2 [(/\p —w) 7 - (Ap)-i] drdsdr ds' < +oo. (3.3)
Since D2 N {r < r'} = D; U D, U D;, it suffices to prove that

f O;drdsdr'ds’ < +o0, i=1,2,3. (3.4)
D.

i

By Lemmas 2.3-2.5, we obtain that (3.4) holds as HKd < 1. Therefore the proof of Theorem 1.2 is complete.

4. Appendix

In this section we prove Lemmas 2.2-2.5.
Proof of Lemma 2.2 By (1.2), we obtain (2.3), (2.6) and (2.9) easily.
For Case 1, by (2.2), we have

Var (5%~ 14) o - 1)
= Var [ (S = §715) + (e + 0) (816 = §715) + 0 (81 - 51
> k[u?a? ™ + (u + 0)2BHK + 022K

We also have

2a2HK

WA + 2uouy + 02p1 >k [u Yr?HK 4 UZCZHK] .

+(u+v

This implies that
(A1 = ka®X — kb Y02 1 20(u1 — kb)Y + v (o1 — kb*X — kX)) > 0,

which gives
(.Lll _ kaHK)Z _ (Al _ ka2HK _ kaHI()(p1 _ kaHK _ kCZHK) < 0,

namely,
A1p1 — .U% > —2y1kb2HK + IPUHK 4 A (kDK 4 kc?HKY 4 pl(ka2HK + kb

_kZ(QZHK + bZHK)(bZHK + CZHK).
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Since 1 < yJAip1 < Al;m ,and by (2.3), we get
N1 — 12 > Mke2HIK 4 o kg?HTK — 2 (2HKRHK | 2HK 2HK | j2HK 2HK)

> Crk(a + b)2HK2HK 4 C k(b + )2HKg2HK _ 2(q2HKp2HK | q2HK 2HK | j2HK 2HK)
> Cik [(a 4 b)zHKczHK +(b+ C)ZHKazHK] — 22 [(a 4 b)ZHKCZHK +(b+ C)zHKazHK]
= k(C1 — 2K) [(@ + bR + (b + ) Ka2K], (A1)
where we use the inequality
(@ + b)PHKHK o (4 ¢)2HK2HK > %(azHszHK 4 2HK 2HK | bZHKczHK)'
Thus (2.4) holds by replacing k(C;1 — 2k) in (A.1) with k.
In order to prove (2.5), lete = r, by (1.1), we have

u= [(SZH + ()K= (2 4 (F YK — (2 1 (52K 4 (2H (r’)ZH)K]
+% [(s + r/)ZHK —(s+ sl)2HK +(r+ s')zHK —(r+ r')2HK]

1r,. , , :
3 [ls = P~ s = P = s P~ - PHE]. (A2)

Hence,
K K
= {[(e+a+b)2H+(e+a+b+c)2H] ~[e+a+ b+ (e+a)]

- [ezH +(e+a+b+ c)zH]K + [€2H + (e + a)ZH]K}
+% [(Ze +20+ b)Y — (20 + 20+ 2b + ) K + Qe +a+ b+ o)HK — (20 + a)ZHK]

1
+§ [bZHK _ HK @+b+ C)ZHK _ a2HK]

= Al,l + ALQ + A1,3.

For A; 1, we obtain

e+a+b X p
A1p =f d{[x2H+(e+a+b+c)2H] —[x2H+(e+a)2H] }

+a+b P 1
= ZHKf K2 {[sz +(e+a+b+ c)zH] - [xZH +(e+ a)ZH] }dx

<0, (A3)

since0 < K < 1.
For A1, we get

1
Ap = 5 [(Ze +20+ b2 — (2 + 20 +2b + )X + 2e +a + b+ c)HK — (2e + a)ZHK]
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= %(b2 +2bc + ?)HK

< S + )
< ZHK—l(bZHK + C2HK), (A4)

since 0 < 2HK < 1, where we use the inequality x* — y* < |x —y|* forany x > 0,y > 0,0 < a < 1.
For A1 3, we deduce,

Az =

—

(a+b+ C)2HI< + pPHK _ 2HK _ C2HK]

(@* + b* + ¢* + 2ab + 2ac + 2bc)HE 4 pHHK — g2HK _ CZHK]

NI—= NI~ N -
r— —

IA

(3a2 +30 + 3CZ)HK + p2HK _ 2HK _ CZHK]
HK _ 1
<
2
3HK 41
<——
2

O8]

3HK 4 1
(QZHK CZHK) + b2HK

+
2

2HK+b2HK+

a ). (A.5)

Therefore (2.5) holds from (A.3), (A.4) and (A.5).
For Case 2, by (2.2), we have

Var (54 - ) o 5% - 51
= Var [u (S?K - thK) +(u+0) (S?,K _ Sf’K) o (SE’K B SfK)]
>k [MZaZHK + (u + 02 BHK 4 42 CZHK].

We also have

WAy + 2uvu, + vzpz >k [uzaZHK +(u+ v)ZbZHK + uZCZHK] .

This implies that
(A — ka® K — kp™ K — kc2HEYy2 4 20(uy — Kb Y + 02 (py — kbPHK) > 0,
which gives
(HZ _ kaHK)Z _ ()\2 _ kaZHK _ kaHK _ kCZHK)(p2 _ kaHK) <0,

namely,
Aapr — w3 = =2pskb™* + Mokb?HE 1 oy (ke + kb*HK + kc2HK)

_k2 (QZHK

+ CZHK)bZHK.

Since i < \/FPZ < AZ;er/ and by (2.6), we get
Aapa — 2 > pok(a®1K 4 (HK) — 2 (g2HK 4 (2HK)2HK
> Cok(@K 4 2HK)2HK _ 2 (2HK 4 2HK)2HK
= K(Cy — k)@ 4 2HK)p2HK “e

Thus (2.7) holds by replacing k(C; — k) in (A.6) with k.
In order to prove (2.8), lete = r, by (1.1) and (A.2), we have

yz:{[(e+a+b+c)2H+(e+a+b)2H]K—[(e+a+b+c)2H+(e+a)2H]K
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2H 211K | [ 2H 211K
—[e +(e+a+b) ] +[e +(e+a) ]

)ZHK _ ( )ZHK )ZHK

2e+2a+2b+c +Q2e+a+b

- (2e + u)ZHK]

1
+E[(2e+2a+b+c

+% [(b + C)ZHK _ c2HK (a+ b)ZHK _ aZHK]

= AZ,l + Az/z + A2,3.

For A, 1, we obtain

+a+b+c K K
Ay = f d{[x2H+(e+a+b)2H] - [x2H+(e+a)2H] }

+a+b+c K1 1
= ZHKf x2H-1 {[xZH +(e+a+ b)ZH] - [sz + (e + a)ZH] }dx

<0, (A7)

since0 < K < 1.
For Ay, we get

Mgy = % [@e+2a+b+ )™ = (e +2a + 2b + ¢/ + (2¢ + a + b — (2¢ + a)K]

< % [@e +a+5)*™ — (2e + )]

< K, (A.8)

NI =

since 0 < 2HK < 1.
For A, 3, we deduce,

AZ,S — % [(11 + b)ZHK _ aZHK + (b + C)ZHK _ CZHK]

< % (bZHK + bZHK)

_ szK, (A.9)

since 0 < 2HK < 1. Therefore (2.8) holds from (A.7), (A.8) and (A.9).
For Case 3, by (2.2), we have
Var [u (Sf’K - SE’K) +0 (S?’K - S?’K)] >k (uzaZHK + ZJZCZHK) .

We also have
w3 + 2uous + v p3 > k (uZQZHK + vzczHK) :

This implies that
(A3 — ka®™Yu? + 20u3u + v*(p3 — k) > 0,

which gives
1 = (As — ka?)(ps — k27X) < 0,

namely,
2HK 2HK _ 2 ,2HK 2HK

Asps — i3 > Aske® K + pska
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By (2.9), we get
Aaps — 12 > Crka?KPHK 1 €y q?HK 2HK _ 2 2HK 2HK

= k(2C; — k)a?HK 2K, (A.10)
Thus (2.10) holds by replacing k(2C; — k) in (A.10) with k.
In order to prove (2.11), let e = r, by (1.1) and (A.2), we have
s = {[(e +a) +(e+a+b+ c)ZH]K - [(e +al +e+a+ b)ZH]K
2H 21K | [ 20 21K
—[e +(e+a+b+c) ] +[e +(e+a+b) ] }

+% [(Ze +20+ 0K e+ 20+ b+ ) K+ Qe+a+b+ 0K —(Qe+a+ b)ZHK]

+% [bZHK —b+) (@ +b+0)K— @+ b)ZHK]

= A3,1 + A3,2 + A3,3.

For A3 1, we obtain

+a
Asy = f d {[xZH +(e+a+b+ c)2H]K — [+ e+a+ b)ZH]K}
e

+a _ _
= 2HwaZ x2H1 {[xZH +(e+a+b+ c)ZH]K ' [xZH +(+a+ b)ZH]I< 1}dx
e

<0, (A.11)

since )0 < K < 1.
For Az, and for o, f > O with o + f = 1, we get

2
Az = —% f d [(Ze +b+c+ua)?X—Qe+b+ ua)ZHK]
1

2
= —HKaf [(2e +b+c+ua) — Qe+ b+ ua)ZHK‘l] du
1
21 1
= —HKa f [f d(2e + b+ ua + vc)ZHK_l] du
1 LJo
2l
= —HK(2HK — 1)ac f f (2e + b + ua + ve)* 2 dvdy
1 Jo
2l
= HK(1 - ZHK)acf f (2e + b + ua + ve)* 2 dudu
1 Jo
2l
< HK(1 - 2HK)acf f (b + ua + vc)* 2 dodu
1 Jo

2t 2HK-2
< HK(1 - 2HK)ucf f [b"‘(ua + vc)’g] dodu
1 Jo

2l s pRHK-2
< kac f f [b“(ua)i(vc)f] dvdu
1 Jo

< kaa(HK—l)(aC)ﬁ(HK—l)H’ (A.12)
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since 0 < 2HK < 1.
For A3 3, we deduce,

Ass = % [(@+ b+ o) — (b + ) — (2 + b)) + K]

1
= % f d [(b +a+ve)?K— b+ UC)2HK]
0

1
= Hch [(b +a+ o) — (b + Uc)zHK‘ll do
0

TN
= Hch [f d + ua + vc)zHKl] do
0o LJo

1 1
= HK(2HK — 1)ac f f (b + ua + ve)* 2 dudv
0 0

<0, (A.13)

since 0 < 2HK < 1. Therefore (2.11) holds from (A.11), (A.12) and (A.13). Thus we have finished the proof
of Lemma 2.2.

Proof of Lemma 2.3 Since (r,s,7,s) € D; = {(r,s,7,s )0 <r <1 <s<s <t},denotinga =7 —r,b=
s—t,c=5s —s, wehave

f O drdsdr ds' < k f ©:dadbdc = k f [(A1p1 = 43)7% = (A1p1) ™" | dadbdc.
Dy [0,4]3 [0,4]3

On one hand, by (2.4), we get
Mpr— 3 >k [(a + BYPHKRHK 4 () 4 o)2HK a2HK]

> k(a + b)) (b + c)HKaHKHK

HK HK
=k(a+g+g) (é+é+c) K HK

> k(abc) 5 . (A.14)
On the other hand, by (2.3), we deduce

a a 2HK c c\¥K 41K
A1 = k(@ + bR (H + 2K = k(E T b) (b +o E) > k(abe)™. (A15)
Thus (2.12) holds from (A.14), (A.15) and HKd < 3. The proof of Lemma 2.3 is completed.

Proof of Lemma 2.4 Since (1,5,7,5) € Dy = {(r,s,7,s )0 <r <7 <s <s<t},denotinga=7r -r,b=5s -
r',c = s—s,wedecompose theregion D, = [;ULUI;, wherel; = {b > ma}, I, = {b > nac}, I = {b < ma,b < npc}
for some fixed but arbitrary n; > 0 and 7, > 0.

For I = {b > ma}, by (2.7), we have, if HKd < 1, then

f (Aapz — 1) 2drdsdr ds < k f bHKd(g2HK 1 2HKY=3 dadbdc
L

b>ma

t t t
=k f f (@2HK 4 2HKY- ( f b‘HKddb) dadc
0 0 ma
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k t ot L )
= TR f f (@K + CZHK)—Z’ (tl HKd _ (17111)1 HKd) dadc
0 Jo

et ~HKd f t f tOHK , 2HKy-d
< — @ + ¢*") 2dadc
1-HKd J, J,

£t
< kf f(ac)ﬂgddadc
0 Jo

< 400, (A.16)
since HKd < 1 < 2, and by (2.6), we get
f (Aap2) 2drdsdr' ds' <k f b HKd (g 4 b+ 0) PR dadbdc
L b>ma
<k f bR (g 4 o) HKI dadbdc
b>ma
k bt
= TR f f(a + C)—HKd (tl—HKd _ (Tha)l—HKd) dade
0 Jo
t t HKd
< kf f (ac)” 2 dadc
0 Jo
< 400, (A17)
since HKd < 1 < 2. Thus, by (A.16) and (A.17), we have, if HKd < 1, then
f O, drdsdr ds = f [(A2p2 = 13)7% = (Aapa)~* | drdsdr ds’ < +oo. (A.18)
11 Il
If 1 < HKd < %, we obtain
f(/\zpz - ‘ué)_%drdsdr/dsl < kf pHKd (g2HK CZHK)_%dadbdc
L b>ma
t t J t
=k f f (@K + 2HKY 2 ( f b‘HKddb) dadc
0 Jo ma
k L a
— e f f (QZHK + CZHK)_Z ((Tha)l—HKd _ tl—HKd) dadc
—1Jo Jo
k Lot 1 1 )2
2HK , L oHK | 1 2HK 1-HKd
SHKd—lfO‘fO‘(a +2c +2c ) a dadc
bt
< kf f a =" ¥ dadc
0 Jo
(A.19)

< +00.

We also have, if 1 < HKd < 2, then

(Aap2)~2drdsdr ds' < k f bR (g 4+ b+ o) dadbdc
L b>ma

<k f b~ HKA (g 4 ) K gadbdc
b>ma
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k t ot
-~ (a + C)—HKd (nla)l—HKd _ tl—HKd dadc
HKd -1 L L ( )
t ot C c\~HKd
< kf f (a + -+ —) a' iR gade
0 Jo 2 2
t t 4HKd 2HKd
< kf f al="5 ¢ 5 dadc
0o Jo

< +oo, (A.20)
Thus, by (A.19) and (A.20), we have, if 1 < HKd < %, then

f Odrdsdr ds = f [(A2p2 = 112)7% = (Aap2) ™2 | drdsdr'ds” < +oo. (A21)

L I

If HKd = 1, we get

f (Aapz — u3) " 2drdsdr'ds < k f b HKd(2HK 4 2HKY=3 gadbdc
I b>ma

t t t
=k f f (@K 4 2HKY- ( f b—ldb) dadc
0 0 ma

t t
=k f f (@K 4 2HKY5 (In t — In(m1a)) dadc
0 0

t t
Skf f(ac)‘édadc
0 Jo

< +o0. (A.22)
Similarly, we have, if HKd =1,

(Azpz)‘%drdsdr'ds' < 4o00. (A.23)
I

By (A.22) and (A.23), we deduce, if HKd = 1, then
f O, drdsdr ds = f [(A2p2 = 12)7% = (Aap2) ™" | drdsdr’ds” < +oo. (A.24)
I] Il
Combining (A.18), (A.21) and (A.24), we get, as HKd < %,

f O,drdsdr ds” < +co. (A.25)
L
For I = {b > mac}, we similarly obtain, as HKd < %,
f O,drdsdr' ds” < +co. (A.26)
I

Therefore (2.13) holds from (A.25) and (A.26).
For I3 = {b < ma, b < nyc}, we have, if HKd < 1, then

f(Azpz - y%)*%drdsdr'ds/
I3
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_ _d
<k f pHKd(2HK 4 2HKY=5 gaqbdc
b<ma,b<mnac
_ _M _M
<k f bHKdg # dadbdc
b<nia,b<mac

t
kf b‘HK”’{f —”z“daJ[f c—”z“dc]db
0 b

n

L
(1=

RIS T
-2

() f tbz‘ZHK"’db}
min2 0
< too, (A.27)

since HKd <1< % < 3.
We also have, if HKd < 1, then

f (A2 pz)‘%drdsdr'ds/
I3

<k f bR (g + b+ o) R Gadbdc
b<nia,b<mnyc

=k fo [ p-HKd [ f: [ f: (a+b+ c)_HKdda} dc} db

n m

k t t b 1-HKd
_ “HKd 1-HKd _ (D
_1_HdeOb [ﬁ((t+b+c) (m+b+c) ]dc}db

n

_ k t —HKd 2—-HKd 1\ e
= 1 HKIH@ —HKD) j(; b {[(Zt + b) - (t +(1+ 5)17)

2—HKd 2—-HKd
—[((l +1)b+t) —((l +1+ l)b) }db
m Uit M2

k HKd 2—-HKd 2—HKd
= (1~ HKd)(2 - HKd) b (Cmt

oK 1 1 2—-HKd
—t +{(—+1+—) db
m M2

k [(3t)2—HKd _ 2t2—HKd] "
= f b~ dp
(1 — HKd)(2 — HKd)

+ K 1 +1+ 1
(1 - HKd)(2 - HKd) \m 2

)Z—HKd

ft bZ—ZHKddb
0
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< 4o, (A28)

since HKd < 1 < % Thus (2.14) holds from (A.27) and (A.28). The proof of Lemma 2.4 is finished.

Remark 2.  Since fot b~HKdp appears in (A.27) and (A.28), we obtain fot b HKdgh = 400 as HKd > 1.
The holding condition for (2.14) is HKd < 1 using our proving method. It is similar to the case of (2.16) in
Lemma 2.5.

Proof of Lemma 2.5. Since (r,s,7,s) € D3 = {(r,5,7,s)I0 <r <s <t <s <t,denotinga=s-rb=
¥ —s,c =s —1, we decompose the region D3 := J; + [ + J3 + Ja, where J; = {a > mb,c > mb}, > = {a <
mb,c <mab}, J3 = {a = mb,c < b}, Ja = {a <mb, c = m2b} for some fixed but arbitrary n; > 0 and 1, > 0.

For 1 = {a = mb,c = nyb}, by (2.10), we have, if HKd < % and HKd # 1, then

f (Azps — yg)‘gdrdsdr/ds/
J

<k f (ac) FXdadbdc
a=n1b,c2nyb

= f db f a MK dg f g
mb n2b
t
$3-2HKd 1-HKd  1-HKd) j1-HKd f p-HKd gp,
(1 _ HKd)z [ (Th T]Z ) 0

t
+(n1n2)l—Hde bz_ZHKddb]
0

< 400, (A.29)
since HKd < 3 < 2.1f HKd = 1, we also get

f()\g,pg, - y%)_%drdsdr'ds/
J

<k f (ac)"'dadbdc
aznib,cznyb

=k f db —da —dc
mb a mb ¢
t ¢
=k (t In’t —1In t(n(n1) + In(12)) f In bdb + f In(m b) ln(nzb)db)
0 0

< 400, (A.30)

since fot Inbdb < +c0 and fot In? bdb < +oo0.
Similarly, we obtain, if HKd < 3, then

f (A3ps)”tdrdsdr' ds' < +oo. (A.31)
J

Hence (2.15) holds from (A.29), (A.30) and (A.31).
For |, = {a < mb,c < npb}, we have, if HKd < 1, then

f (Azps — yg)‘%drdsdr'ds/
J2
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<k f (ac) FXdadbdc
a<nib,c<nyb

t mb n2b
=k f db f g HKdg, f c~HKd g0
0 0 0

_ k() ~HK tbz—ZHKddb
(1= HKA? J,

< +oo0,
since HKd <1 < % Similarly, we get, if HKd < 1, then
(Asps)~ 2 drdsdr’ ds' < +oo.
]2

By (A.32) and (A.33), we deduce, as HKd < 1,

f@gdrdsdr'ds/ < +o00.
J2

For J3 = {a = mb,c < nyb}, we have, if HKd < 1, then

f (A3ps — p2) 2 drdsdr’ ds’
J3

<k f (ac) X dadbdc
aznb,c<nyb

t t 2b
=k f db f aHKd g, f c~HKd g,
0 mb 0

k(ﬂz)l_HKd t
= _(1 KR f [tl—HKd _ (nlb)l—HKd] pl-HKd zp,
- 0

< 400,
since HKd <1 < % < 2. Similarly, we get, if HKd < 1, then
(Asp3)~2drdsdr’ ds' < +oo.
JE

By (A.35) and (A.36), we deduce, as HKd < 1,

f Osdrdsdr ds < +co.
Js

For |4 = {a < mb, ¢ = nyb}, we similarly obtain, if HKd < 1, then

f Osdrdsdr ds < +oo.
Ja

4039

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

Therefore (2.16) holds from (A.34), (A.37) and (A.38). Consequently we have finished the proof of Lemma

2.5.
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