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RENORMING OF C(K) SPACES

JAN RYCHTÁŘ

(Communicated by Jonathan M. Borwein)

Abstract. If K is a scattered Eberlein compact space, then C(K)∗ admits
an equivalent dual norm that is uniformly rotund in every direction. The same
is shown for the dual to the Johnson-Lindenstrauss space JL2.

1. Introduction

We will find classes of Banach spaces whose duals admit equivalent dual norms
that are uniformly rotund in every direction (URED) or pointwise uniformly rotund
(p-UR) (definitions are given below). The notion of p-UR covers both the weak
and weak∗ uniform rotundity (W∗UR). It can be shown from the Šmulyan theorem
(see, e.g., [5, p. 63]), that the existence of a dual p-UR norm on X∗ implies the
existence of a “big” set in X∗∗ on which the bidual norm is uniformly Gâteaux
differentiable.

In Section 2 we will prove a three-space-like theorem for the following properties
of a Banach space X : X∗ admits an equivalent dual URED (p-UR) norm. This
result enables us to renorm duals to spaces, such as the Johnson-Lindenstrauss space
or C(K) for K scattered with K(ω) = ∅, by dual norms that are simultaneously
locally uniformly rotund (LUR) and p-UR. On the example of C(K), where K is
the so-called “two arrow” compact space, it is shown that properties of the duals
to be equivalently renormed by dual URED norm (or p-UR norm) are not three
space properties.

In Section 3, we will apply previous results, use a result from [1] and a method
from [9], [11]. It will be proved that if K is an Eberlein and scattered compact
space, then C(K)∗ admits an equivalent dual LUR and p-UR norm.

Recently it was shown in [6] that if X∗ admits weak∗ uniformly rotund norm,
then X is a subspace of weakly compactly generated space. However, in [12, Th.
1] it is shown that if X has an unconditional Schauder basis and X∗ admits an
equivalent (not necessarily dual) URED norm, then X∗ admits an equivalent dual
weak∗ uniformly rotund norm. Hence the space JL2 from Section 2 shows that
Theorem 1 in [12] does not hold without the assumption of unconditional Schauder
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2064 JAN RYCHTÁŘ

basis. From the result in Section 3 we can deduce that if K is scattered Eber-
lein compact, that is not uniform Eberlein compact, then C(K)∗ is a dual to the
weakly compactly generated space and admits an equivalent dual p-UR norm, but
no equivalent dual weak∗ uniformly rotund norm, i.e., there is weakly compactly
generated Banach space X , such that its dual X∗ admits an equivalent dual URED
and LUR norm and no W∗UR norm.

Let (X, ‖.‖) be a Banach space. Let SX and BX denote the unit sphere and the
unit ball respectively, i.e., SX = {x ∈ X ; ‖x‖ = 1} and BX = {x ∈ X ; ‖x‖ ≤ 1}.
The norm ‖.‖ on a Banach space X is said to be uniformly rotund in every direction
(URED for short), if limn→∞ ‖xn − yn‖ = 0 whenever xn, yn ∈ SX are such that
xn − yn = λnz for some z ∈ X,λn ∈ R and limn→∞ ‖xn + yn‖ = 2. We will
say that the norm ‖.‖ on X is pointwise uniformly rotund (p-UR), if there exists a
w∗-dense set F ⊂ X∗ such that limn→∞ f(xn− yn) = 0 whenever xn, yn ∈ S(X,‖.‖),
limn→∞ ‖xn + yn‖ = 2, and f ∈ F. More precisely, we say that the norm is p-UR
with F. Clearly, if the norm is p-UR, then it is URED. In the case of a dual Banach
space X = Y ∗ we say that the norm is weak∗ uniformly rotund (W∗UR ), if it is p-
UR with F = Y ⊂ Y ∗∗. The norm ‖.‖ is said to be locally uniformly rotund (LUR),
if limn→∞ ‖x− xn‖ = 0 whenever x, xn ∈ SX are such that limn→∞ ‖x+ xn‖ = 2.

A compact space K is an Eberlein compact if K is homeomorphic to a weakly
compact subset of a Banach space in its weak topology. A compact space K is
a uniform Eberlein compact if K is homeomorphic to a weakly compact subset of
a Hilbert space. A compact space is called scattered if every closed subset L ⊂ K
has an isolated point in L. For scattered compact spaces the Cantor derivative sets
are defined as follows: K(0) = K,K(1) = K ′ is the set of all limit points of K. If
α is an ordinal and K(β) are defined for all β < α, then we put K(α) = (K(β))′ for
α = β + 1 and K(α) =

⋂
β<αK

(β) for α a limit ordinal.
If we consider spaces such as c0(Γ), `1(Γ), l∞(Γ), by the symbol eγ we mean the

standard unit vector.
For more information in this area we refer to [3], [5], [7, Ch. 12], [10] and [14].

2. The three space problem

Theorem 1. Let X be a Banach space such that c0(Γ) ⊂ X. Let the dual to
Y = X/c0(Γ) admit an equivalent dual p-UR (URED) norm. Then X∗ admits an
equivalent dual p-UR (URED) norm.

Proof. Let i : c0(Γ) → X be the inclusion map and q : X → Y be the quotient
map. Then the dual mappings are i∗ : X∗ → c0(Γ)∗, which is a quotient map
and a restriction, and q∗ : Y ∗ → X∗, which is an inclusion. Because of the lifting
property of the space `1(Γ) =̃ c0(Γ)∗ there is a bounded linear map l : `1(Γ)→ X∗

(the so-called lifting; see, e.g., [4]) such that i∗(l(e)) = e for all e ∈ `1(Γ). Hence we
have an isomorphismX∗ =̃ `1(Γ)⊕Y ∗, where the duality between (f, g) ∈ `1(Γ)⊕Y ∗
and x ∈ X is given by the formula

〈(f, g), x〉 = 〈l(f), x〉+ 〈q∗(g), x〉 .
Let ‖.‖Y ∗ be a dual norm on Y ∗ which is p-UR with F. We will prove that

there is an equivalent dual norm ‖.‖u on X∗, that is, p-UR with G = {(eγ , 0); γ ∈
Γ}∪{(0, f); f ∈ F}, where we identify X∗∗ with l∞(Γ)⊕Y ∗∗ and where {eγ ; γ ∈ Γ}
denote the standard unit vectors in c0(Γ) ⊂ l∞(Γ). The proof that the norm ‖.‖u
is URED if ‖.‖Y ∗ is URED proceeds in the same way.
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Let ‖.‖X∗ be a dual norm on X∗ which extends the norm ‖.‖Y ∗ . Let ‖.‖`1(Γ) be
the standard norm on `1(Γ). We choose a > 1 such that

a−1‖(f, g)‖X∗ ≤ ‖f‖`1(Γ) + ‖g‖Y ∗ ≤ a‖(f, g)‖X∗ .
Put

‖(f, g)‖w =
(
‖f‖2`1(Γ) + ‖f‖2l2(Γ) + ‖g‖2Y ∗

) 1
2 .

This is an equivalent norm on X∗ =̃ `1(Γ)⊕Y ∗. The norm ‖.‖w need not be a dual
norm, but it is p-UR with G. This convexity property will be used at the end of
this proof. To have a dual norm, let us define

‖(f, g)‖ = ‖(f, g)‖w + a‖f‖`1(Γ).

Observation. The norm ‖.‖ is a dual norm on X∗.

Proof of the Observation. We will follow the proof published in [8] and show that
the unit ball is closed in the weak∗ topology. To prove this, let {(fα, gα)}α∈A
be a net in the unit ball in (X∗, ‖.‖), which weak∗ converges to (f, g). Because
c0(Γ) ⊂ X and `1(Γ) =̃ c0(Γ)∗, {fα}α∈A converges coordinatewise to f . To see
this, choose x ∈ c0(Γ). We have

〈(fα, gα), i(x)〉 = 〈l(fα), i(x)〉 + 〈q∗(gα), i(x)〉
= 〈i∗(l(fα)), x〉 + 〈gα, q(i(x))〉 = 〈fα, x〉 .

To estimate the norm of (f, g) we will decompose fα in a special way. For each
α ∈ A, we can find elements f1

α, f
2
α ∈ `1(Γ) such that fα = f1

α + f2
α, the supports of

f1
α, f

2
α are disjoint and limα∈A ‖fα − f1

α‖`1(Γ) = 0. By passing to a subnet, we can
assume that {(f2

α, 0)}α∈A weak∗ converges to some (0, g1) and {(0, gα)}α∈A weak∗

converges to (0, g2) = (0, g − g1). Then

‖f‖`1(Γ) ≤ lim inf
α∈A

‖f1
α‖`1(Γ),

‖g1‖Y ∗ = ‖(0, g1)‖X∗ ≤ lim inf
α∈A

‖(f2
α, 0)‖X∗ ≤ a lim inf

α∈A
‖f2
α‖`1(Γ),

‖g2‖Y ∗ = ‖(0, g2)‖X∗ ≤ lim inf
α∈A

‖(0, gα)‖X∗ = lim inf
α∈A

‖gα‖Y ∗ ,

where we used that ‖.‖X∗ is the dual norm. It follows from previous estimates that

‖(f, g)‖ = a‖f‖`1(Γ) +
(
‖f‖2`1(Γ) + ‖f‖2`2(Γ) + ‖g1 + g2‖2Y ∗

) 1
2

≤ a‖f‖`1(Γ) + ‖g1‖Y ∗ + (‖f‖2`1(Γ) + ‖f‖2`2(Γ) + ‖g2‖2Y ∗)
1
2

≤ lim inf
α∈A

(
a‖f1

α‖`1(Γ) + a‖f2
α‖`1(Γ) +

(
‖f1
α‖2`1(Γ) + ‖f1

α‖2`2(Γ) + ‖gα‖2Y ∗
) 1

2
)

≤ lim sup
α∈A

‖(fα, gα)‖ ≤ 1.

Thus dual unit ball is w∗-closed and the Observation is proved. �

We will continue with the proof of Theorem 1. Let us define the norm ‖.‖u on
X∗ by the formula

‖(f, g)‖2u = ‖(f, g)‖2 + ‖f‖2`1(Γ).

It is a dual norm, because it is w∗-lower semicontinuous as is the seminorm ‖.‖`1(Γ)

on X∗. We prove that it is p-UR with G. To do this, we use the following fact,
which can be found with the proof in [5, Ch. II].
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Fact. Let an, bn be bounded elements of a Banach space (E, ‖.‖) such that

lim
n→∞

(
2‖an‖2 + 2‖bn‖2 − ‖an + bn‖2

)
= 0.

Then limn→∞
(
‖an‖ − ‖bn‖

)
= 0 and limn→∞

(
‖an‖+ ‖bn‖ − ‖an + bn‖

)
= 0.

Now assume that xn = (x1
n, x

2
n), yn = (y1

n, y
2
n) ∈ X∗ satisfy

(1) lim
n→∞

(
2‖xn‖2u + 2‖yn‖2u − ‖xn + yn‖2u

)
= 0.

By the previous Fact we have

lim
n→∞

(
2‖x1

n‖2`1(Γ) + 2‖y1
n‖2`1(Γ) − ‖x1

n + y1
n‖2`1(Γ)

)
= 0.

And again by the Fact

lim
n→∞

(
‖x1

n‖`1(Γ) − ‖y1
n‖`1(Γ)

)
= 0,

lim
n→∞

(
‖x1

n‖`1(Γ) + ‖y1
n‖`1(Γ)

)
− lim
n→∞

‖x1
n + y1

n‖`1(Γ) = 0.
(2)

By (1) and by the Fact it follows that

lim
n→∞

(
2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2

)
= 0.

Hence by the Fact

(3) lim
n→∞

(
‖xn‖+ ‖yn‖

)
− lim
n→∞

‖xn + yn‖ = 0.

By (2) and (3) we have

lim
n→∞

(
‖xn‖w + ‖yn‖w

)
= lim
n→∞

‖xn + yn‖w,

lim
n→∞

‖xn‖w = lim
n→∞

‖yn‖w.

Hence
lim
n→∞

∥∥∥ xn
‖xn‖w

+
yn
‖yn‖w

∥∥∥
w

= lim
n→∞

∥∥∥ xn
‖xn‖w

+
yn
‖xn‖w

∥∥∥
w

= 2.

The norm ‖.‖w on `1(Γ)⊕ Y ∗ is p-UR with G; thus, for all G ∈ G we have

lim
n→∞

G
( xn
‖xn‖w

− yn
‖xn‖w

)
= 0,

which finishes the proof of Theorem 1. �

Remark. Moreover, if the norm ‖.‖Y ∗ on Y ∗ is LUR, the norm ‖.‖u on X∗ is LUR
as well because the norm ‖.‖w is.

Corollary 2. Let K be a scattered compact space with K(ω) = ∅. Then C(K)∗

admits an equivalent dual norm that is simultaneously LUR and p-UR with F =
{ek; k ∈ K} ⊂ c0(K) ⊂ C(K)∗∗.

Proof. By a compactness argument, there is some n ∈ N such that K(n) = ∅. We
shall prove the corollary by an induction. If n = 0, 1, the claim is trivial. Let n > 1.
It is easy to see that the space Y = {f ∈ C(K); f |K′ = 0} is isometric to the space
c0(K \K ′). Moreover, C(K)/Y = C(K ′), so we can use Theorem 1. �

In fact, the following theorem holds.

Theorem (Deville). Let K be a scattered compact space, such that K(ω1) = ∅.
Then C(K)∗ admits an equivalent dual norm, that is LUR and p-UR.
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Proof. See [5, Theorem 7.4.7]. There is an equivalent dual LUR norm constructed
on C(K)∗. One can compute that this norm is, moreover, p-UR with F = {ek; k ∈
K}. �

Note that it is shown in [8] (see also [13]) that there is a Banach space JL2 with
the following properties:

(1) c0 ⊂ JL2, JL2/c0 = `2(Γ), where the cardinality of the set Γ is a continuum,
(2) JL2 is not a subspace of any WCG space; in particular, JL2 is not isomor-

phic to the c0 ⊕ `2(Γ),
(3) there is an equivalent dual LUR norm on JL∗2.

From Theorem 1 we can obtain a stronger result.

Theorem 3. There is an equivalent dual norm on the space JL∗ that is LUR and
p-UR with F, where F is the canonical imbedding of c0⊕`2(Γ) into `∞⊕`2(Γ) =̃ JL∗∗2 .

It is shown in [5, pp. 299–305], that ifK is a so-called “two arrow” compact space,
then C([0, 1]) ⊂ C(K), C(K)/C([0, 1]) = c0([0, 1]) and C(K) has no equivalent
Gâteaux smooth norm. It means that there is no dual equivalent strictly convex
norm on C(K)∗. It means that C(K)∗ does not admit an equivalent dual URED
norm, although both C([0, 1])∗ and c0([0, 1])∗ do admit an equivalent dual p-UR
norms.

3. Scattered Eberlein compact spaces

Theorem 4. Let K be a scattered compact space such that K =
⋃∞
n=1Kn, and for

all n ∈ N let C(Kn)∗ admit an equivalent dual p-UR norm with Fn = {ek; k ∈ Kn}.
Then C(K)∗ admits an equivalent dual p-UR norm with F = {ek; k ∈ K}.

Proof. This proof is similar to the proof of Theorem 2.7.16 in [5], which states, that
the space L1(Ω) admits a norm that is LUR and URED.

As in [9], we can define the operator T : C(K) →
∑

`2
C(Kn) by the formula

T (f) =
(

1
n2 f |Kn

)
. For k ∈ K put N(k) = {n ∈ N; k ∈ Kn}. For k ∈ K,n ∈ N(k)

let k̃n denote a copy of k in Kn. For A ⊂ K put Ã = {k̃n; k ∈ A, n ∈ N(k)}. By
Rudin’s Theorem (see [7]) C(K)∗ is isometric to the space l1(K) and the canonical
norm ‖.‖1 is a dual norm on C(K)∗, the same holds for Kn’s. Without loss of
generality, we can assume, that the p-UR norms are uniformly close to the original
norms on C(Kn)∗. Hence (

∑
`2
C(Kn))∗ =̃

∑
`2
`1(Kn) and (

∑
`2
C(Kn))∗ admits

an equivalent dual norm ‖.‖Σ, which is p-UR with G = {ek̃n ; k ∈ K,n ∈ N(k)}.
The dual operator T ∗ : (

∑
`2
C(Kn))∗ → C(K)∗ is given by

T ∗(y∗) =
( ∑
n∈N(k)

1
n2
y∗(k̃n)

)
k∈K

.

The range of T ∗ is a dense set in C(K)∗. Now, we shall use the standard LUR
renorming method. For n ∈ N and x ∈ `1(K) we define

|x|2n = inf
{
‖x− T ∗y‖21 +

1
n
‖y‖2Σ; y ∈

∑
`2

C(Kn)∗
}
,

|‖x‖|2 = ‖x‖21 +
∞∑
n=1

2−n|x|2n.
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This is a dual norm and we will prove that it is p-UR. Choose xi, yi ∈ l1(K) such
that ‖xi‖1 ≤ 1, ‖yi‖1 ≤ 1 and

lim
i→∞

(
2|‖xi‖|2 + 2|‖yi‖|2 − |‖xi + yi‖|2

)
= 0.

Then for all n ∈ N,

(1) lim
i→∞

(
2|xi|2n + 2|yi|2n − |xi + yi|2n

)
= 0.

The infimum in the definition of |.|n is attained (see [5, p. 44]); e.g., for all
i, n ∈ N there are u(n)

i , v
(n)
i ∈

∑
`2
C(Kn)∗ such that

|xi|2n = ‖xi − T ∗u(n)
i ‖21 +

1
n
‖u(n)

i ‖2Σ,

|yi|2n = ‖yi − T ∗v(n)
i ‖21 +

1
n
‖v(n)
i ‖2Σ.

(2)

From (2) we get

(3) ‖u(n)
i ‖Σ ≤ n|xi|n ≤ n‖xi‖1 ≤ n,

and by the same manner we have ‖v(n)
i ‖Σ ≤ n; therefore, for all k ∈ K and l ∈ N(k)

(4) (u(n)
i − v(n)

i )(k̃l) ≤ ‖u(n)
i − v(n)

i ‖1 ≤ c.‖u
(n)
i − v

(n)
i ‖Σ ≤ 2cn,

where c is a constant of the equivalence of norms ‖.‖1 and ‖.‖Σ. From (1), (2), (3)
we have

lim
i→∞

(
2‖u(n)

i ‖2Σ + 2‖v(n)
i ‖2Σ − ‖u

(n)
i + v

(n)
i ‖2Σ

)
= 0.

The norm ‖.‖Σ is p-UR and hence for all k ∈ K, m ∈ N and n ∈ N(k)

(5) lim
i→∞

(u(m)
i − v(m)

i )(k̃n) = 0.

We can assume (by passing to a subsequence), that limi→∞ |xi|n = dn. For every
x ∈ l1(K), |x|n is a nonincreasing sequence, hence there is d = limn→∞ dn. By
passing to a subsequence again, we can assume, moreover, that limi→∞ |yi|n = dn.
Choose ε > 0 and k ∈ K. Put A = K \ {k}. Let m ∈ N be such that dm < d + ε.
Then

|(xi − yi)(k)| ≤ |(xi − T ∗u(m)
i )(k)|+ |(T ∗u(m)

i − T ∗v(m)
i )(k)| + |(T ∗v(m)

i − yi)(k)|.

Considering the second term, we have∣∣∣T ∗(u(m)
i − v(m)

i

)
(k)
∣∣∣ =

∣∣∣ ∑
n∈N(k)

1
n2

(
u

(m)
i − v(m)

i

)
(k̃n)

∣∣∣
≤

∑
n≤n0,n∈N(k)

∣∣ 1
n2

(
u

(m)
i − v(m)

i

)
(k̃n)

∣∣+ ε,

where n0 depends only on ε (because of (4)) and the sum is finite and therefore tends
to 0 for i→∞ because of (5). It remains to prove, that |(xi−T ∗u(m)

i )(k)| < ε. We
can assume that k ∈ Kn0 . Put y = si + (u(m)

i |Ã), where si(l) = n2
0xi(k) if l = k̃n0 ,
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and si(l) = 0 otherwise. Considering this y in the definition of |xi|n we get

|xi|2n ≤ ‖(xi − T ∗u
(m)
i )|A‖21 +

1
n
‖si + (u(m)

i |Ã)‖2Σ

≤ ‖(xi − T ∗u(m)
i )|A‖21 +

1
n

(‖si‖Σ + ‖u(m)
i |Ã‖Σ)2

≤ ‖(xi − T ∗u(m)
i )|A‖21 +

1
n

(n2
0c+mc2)2

,

because
‖u(m)

i |Ã‖Σ ≤ c‖u
(m)
i |Ã‖1 ≤ c‖u

(m)
i ‖1 ≤ mc2,

where we used that the canonical norm ‖.‖1 on X∗ is a lattice norm.
Hence for all n ∈ N

lim sup
i→∞

∥∥∥(xi − T ∗u(m)
i

)
|A
∥∥∥2

1
≥ lim

i→∞
|xi|2n −

1
n

(cn2
0 +mc2)2.

Finally,

lim sup
i→∞

∥∥∥(xi − T ∗u(m)
i

)
|A
∥∥∥2

1
≥ d2.

For all i ∈ N we have∣∣∣(xi − T ∗u(m)
i

)
(k)
∣∣∣ =

∥∥∥xi − T ∗u(m)
i

∥∥∥
1
−
∥∥∥(xi − T ∗u(m)

i

)
|A
∥∥∥

1

≤ |xi|m −
∥∥∥(xi − T ∗u(m)

i

)
|A
∥∥∥.

Hence we get
lim inf
i→∞

∣∣∣(xi − T ∗u(m)
i

)
(k)
∣∣∣ ≤ dm − d ≤ ε.

The same holds for the third term and this concludes the proof. �
Theorem 5. Let K be a scattered Eberlein compact space. Then C(K)∗ admits an
equivalent dual norm that is LUR and p-UR with F = {ek; k ∈ K}. In particular,
C(K)∗ admits an equivalent dual norm that is LUR and URED.

Proof. K. Alster proved in [1] that if K is a scattered Eberlein compact space, then
K is a strong Eberlein compact space, e.g., K ⊂ {0, 1}Γ for some Γ. Hence

K =
∞⋃
n=1

Kn, where Kn =
{
x ∈ K; card({γ ∈ Γ;x(γ) = 1}) ≤ n

}
.

The Kn’s are uniform Eberlein compact spaces, they are scattered and K(n+1) = ∅.
Hence by Corollary 2, C(Kn)∗ admits an equivalent dual norm that is both p-UR
with F = {ek; k ∈ Kn} and LUR. Thus we can use the preceding theorem to finish
the proof. �

4. Open question

It is shown in [12, Th. 1] that if X has an unconditional Schauder basis and
X∗ admits an equivalent URED norm, then X∗ admits an equivalent dual weak∗

uniformly rotund norm. Because there is a scattered Eberlein compact space K
that is not uniform Eberlein compact (see, e.g., [2, Example 1.10]), the space C(K)∗

admits an equivalent dual p-UR (and hence URED norm) but does not admit any
equivalent dual W∗UR norm. But we do not know the answer to the following
questions. Is there any reflexive Banach space X such that X admits an equivalent
URED norm and does not admit any equivalent p-UR (and hence W∗UR) norm?
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Is there any Banach space that admits an equivalent URED norm and does not
admit any p-UR norm?
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[11] M. Raja, Mesurabilité de Borel et renormages dans les espaces de Banach, (Doctoral disser-
tation), Printemps, 1998.
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