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Abstract

This paper introduces the variational Rényi bound (VR) that extends traditional vari-
ational inference to Rényi’s α-divergences. This new family of variational methods
unifies a number of existing approaches, and enables a smooth interpolation from
the evidence lower-bound to the log (marginal) likelihood that is controlled by the
value of α that parametrises the divergence. The reparameterization trick, Monte
Carlo approximation and stochastic optimisation methods are deployed to obtain a
tractable and unified framework for optimisation. We further consider negative α
values and propose a novel variational inference method as a new special case in
the proposed framework. Experiments on Bayesian neural networks and variational
auto-encoders demonstrate the wide applicability of the VR bound.

1 Introduction

Approximate inference, that is approximating posterior distributions and likelihood functions, is at the
core of modern probabilistic machine learning. This paper focuses on optimisation-based approximate
inference algorithms, popular examples of which include variational inference (VI), variational Bayes
(VB) [1, 2] and expectation propagation (EP) [3, 4]. Historically, VI has received more attention
compared to other approaches, although EP can be interpreted as iteratively minimising a set of local
divergences [5]. This is mainly because VI has elegant and useful theoretical properties such as the
fact that it proposes a lower-bound of the log-model evidence. Such a lower-bound can serve as
a surrogate to both maximum likelihood estimation (MLE) of the hyper-parameters and posterior
approximation by Kullback-Leibler (KL) divergence minimisation.

Recent advances of approximate inference follow three major trends. First, scalable methods,
e.g. stochastic variational inference (SVI) [6] and stochastic expectation propagation (SEP) [7, 8],
have been developed for datasets comprising millions of datapoints. Recent approaches [9, 10, 11]
have also applied variational methods to coordinate parallel updates arising from computations
performed on chunks of data. Second, Monte Carlo methods and black-box inference techniques have
been deployed to assist variational methods, e.g. see [12, 13, 14, 15] for VI and [16] for EP. They all
proposed ascending the Monte Carlo approximated variational bounds to the log-likelihood using
noisy gradients computed with automatic differentiation tools. Third, tighter variational lower-bounds
have been proposed for (approximate) MLE. The importance weighted auto-encoder (IWAE) [17]
improved upon the variational auto-encoder (VAE) [18, 19] framework, by providing tighter lower-
bound approximations to the log-likelihood using importance sampling. These recent developments
are rather separated and little work has been done to understand their connections.

In this paper we try to provide a unified framework from an energy function perspective that
encompasses a number of recent advances in variational methods, and we hope our effort could
potentially motivate new algorithms in the future. This is done by extending traditional VI to Rényi’s
α-divergence [20], a rich family that includes many well-known divergences as special cases. After
reviewing useful properties of Rényi divergences and the VI framework, we make the following
contributions:
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Table 1: Special cases in the Rényi divergence family.

α Definition Notes

α → 1
∫

p(θ) log p(θ)
q(θ)dθ

Kullback-Leibler (KL) divergence,

used in VI (KL[q||p]) and EP (KL[p||q])

α = 0.5 −2 log(1−Hel2[p||q]) function of the square Hellinger distance

α → 0 − log
∫

p(θ)>0
q(θ)dθ

zero when supp(q) ⊆ supp(p)

(not a divergence)

α = 2 − log(1− χ2[p||q]) proportional to the χ2-divergence

α → +∞ logmaxθ∈Θ
p(θ)
q(θ)

worst-case regret in

minimum description length principle [24]

• We introduce the variational Rényi bound (VR) as an extension of VI/VB. We then discuss
connections to existing approaches, including VI/VB, VAE, IWAE [17], SEP [7] and black-box
alpha (BB-α) [16], thereby showing the richness of this new family of variational methods.

• We develop an optimisation framework for the VR bound. An analysis of the bias introduced
by stochastic approximation is also provided with theoretical guarantees and empirical results.

• We propose a novel approximate inference algorithm called VR-max as a new special case.
Evaluations on VAEs and Bayesian neural networks show that this new method is often
comparable to, or even better than, a number of the state-of-the-art variational methods.

2 Background

This section reviews Rényi’s α-divergence and variational inference upon which the new framework
is based. Note that there exist other α-divergence definitions [21, 22] (see appendix). However we
mainly focus on Rényi’s definition as it enables us to derive a new class of variational lower-bounds.

2.1 Rényi’s α-divergence

We first review Rényi’s α-divergence [20, 23]. Rényi’s α-divergence, defined on {α : α > 0, α 6=
1, |Dα| < +∞}, measures the “closeness” of two distributions p and q on a random variable θ ∈ Θ:

Dα[p||q] =
1

α− 1
log

∫

p(θ)αq(θ)1−αdθ. (1)

The definition is extended to α = 0, 1,+∞ by continuity. We note that when α → 1 the Kullback-
Leibler (KL) divergence is recovered, which plays a crucial role in machine learning and information
theory. Some other special cases are presented in Table 1. The method proposed in this work also
considers α ≤ 0 (although (1) is no longer a divergence for these α values), and we include from
[23] some useful properties for forthcoming derivations.

Proposition 1. (Monotonicity) Rényi’s α-divergence definition (1), extended to negative α, is contin-
uous and non-decreasing on α ∈ {α : −∞ < Dα < +∞}.

Proposition 2. (Skew symmetry) For α 6∈ {0, 1}, Dα[p||q] = α
1−α

D1−α[q||p]. This implies

Dα[p||q] ≤ 0 for α < 0. For the limiting case D−∞[p||q] = −D+∞[q||p].

A critical question that is still in active research is how to choose a divergence in this rich family to
obtain optimal solution for a particular application, an issue which is discussed in the appendix.

2.2 Variational inference

Next we review the variational inference algorithm [1, 2] using posterior approximation as a running
example. Consider observing a dataset of N i.i.d. samples D = {xn}

N
n=1 from a probabilistic model

p(x|θ) parametrised by a random variable θ that is drawn from a prior p0(θ). Bayesian inference
involves computing the posterior distribution of the parameters given the data,

p(θ|D,ϕ) =
p(θ,D|ϕ)

p(D|ϕ)
=

p0(θ|ϕ)
∏N

n=1 p(xn|θ,ϕ)

p(D|ϕ)
, (2)
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(a) Approximated posterior.

(VI)

(b) Hyper-parameter optimisation.

Figure 1: Mean-Field approximation for Bayesian linear regression. In this case ϕ = σ the
observation noise variance. The bound is tight as σ → +∞, biasing the VI solution to large σ values.

where p(D|ϕ) =
∫

p0(θ|ϕ)
∏N

n=1 p(xn|θ,ϕ)dθ is called marginal likelihood or model evidence.
The hyper-parameters of the model are denoted as ϕ which might be omitted henceforth for notational
ease. For many powerful models the exact posterior is typically intractable, and approximate inference
introduces an approximation q(θ) in some tractable distribution family Q to the exact posterior. One
way to obtain this approximation is to minimise the KL divergence KL[q(θ)||p(θ|D)], which is
also intractable due the difficult term p(D). Variational inference (VI) sidesteps this difficulty by
considering an equivalent optimisation problem that maximises the variational lower-bound:

LVI(q;D,ϕ) = log p(D|ϕ)−KL[q(θ)||p(θ|D,ϕ)] = Eq

[

log
p(θ,D|ϕ)

q(θ)

]

. (3)

The variational lower-bound can also be used to optimise the hyper-parameters ϕ.

To illustrate the approximation quality of VI we present a mean-field approximation example to
Bayesian linear regression in Figure 1(a) (in magenta). Readers are referred to the appendix for
details, but essentially a factorised Gaussian approximation is fitted to the true posterior, a correlated
Gaussian in this case. The approximation recovers the posterior mean correctly, but is over-confident.
Moreover, as LVI is the difference between the marginal likelihood and the KL divergence, hyper-
parameter optimisation can be biased away from the exact MLE towards the region of parameter
space where the KL term is small [25] (see Figure 1(b)).

3 Variational Rényi bound

Recall from Section 2.1 that the family of Rényi divergences includes the KL divergence. Perhaps
variational free-energy approaches can be generalised to the Rényi case? Consider approximating
the exact posterior p(θ|D) by minimizing Rényi’s α-divergence Dα[q(θ)||p(θ|D)] for some selected
α > 0. Now we consider the equivalent optimization problem maxq∈Q log p(D)−Dα[q(θ)||p(θ|D)],
and when α 6= 1, whose objective can be rewritten as

Lα(q;D) :=
1

1− α
logEq

[

(

p(θ,D)

q(θ)

)1−α
]

. (4)

We name this new objective the variational Rényi (VR) bound. Importantly the above definition can
be extend to α ≤ 0, and the following theorem is a direct result of Proposition 1.

Theorem 1. The objective Lα(q;D) is continuous and non-increasing on α ∈ {α : |Lα| < +∞}.
Especially for all 0 < α+ < 1 and α− < 0,

LVI(q;D) = lim
α→1

Lα(q;D) ≤ Lα+
(q;D) ≤ L0(q;D) ≤ Lα

−

(q;D)

Also L0(q;D) = log p(D) if and only if the support supp(p(θ|D)) ⊆ supp(q(θ)).

Theorem 1 indicates that the VR bound can be useful for model selection by sandwiching the marginal
likelihood with bounds computed using positive and negative α values, which we leave to future
work. In particular L0 = log p(D) under the mild assumption that q is supported where the exact
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posterior is supported. This assumption holds for many commonly used distributions, e.g. Gaussians
are supported on the entire space, and in the following we assume that this condition is satisfied.

Choosing different alpha values allows the approximation to balance between zero-forcing (α →
+∞, when using uni-modal approximations it is usually called mode-seeking) and mass-covering
(α → −∞) behaviour. This is illustrated by the Bayesian linear regression example, again in Figure
1(a). First notice that α → +∞ (in cyan) returns non-zero uncertainty estimates (although it is more
over-confident than VI) which is different from the maximum a posteriori (MAP) method that only
returns a point estimate. Second, setting α = 0.0 (in green) returns q(θ) =

∏

i p(θi|D) and the exact
marginal likelihood log p(D) (Figure 1(b)). Also the approximate MLE is less biased for α = 0.5 (in
blue) since now the tightness of the bound is less hyper-parameter dependent.

4 The VR bound optimisation framework

This section addresses several issues of the VR bound optimisation by proposing further approxi-
mations. First when α 6= 1, the VR bound is usually just as intractable as the marginal likelihood
for many useful models. However Monte Carlo (MC) approximation is applied here to extend the
set of models that can be handled. The resulting method can be applied to any model that MC-VI
[12, 13, 14, 15] is applied to. Second, Theorem 1 suggests that the VR bound is to be minimised
when α < 0, which performs disastrously in MLE context. As we shall see, this issue is solved also
by the MC approximation under certain conditions. Third, a mini-batch training method is developed
for large-scale datasets in the posterior approximation context. Hence the proposed optimisation
framework of the VR bound enables tractable application to the same class of models as SVI.

4.1 Monte Carlo approximation of the VR bound

Consider learning a latent variable model with MLE as a running example, where the model is
specified by a conditional distribution p(x|h,ϕ) and a prior p(h|ϕ) on the latent variables h.
Examples include models treated by the variational auto-encoder (VAE) approach [18, 19] that
parametrises the likelihood with a (deep) neural network. MLE requires log p(x) which is obtained
by marginalising out h and is often intractable, so the VR bound is considered as an alternative
optimisation objective. However instead of using exact bounds, a simple Monte Carlo (MC) method

is deployed, which uses finite samples hk ∼ q(h|x), k = 1, ...,K to approximate Lα ≈ L̂α,K :

L̂α,K(q;x) =
1

1− α
log

1

K

K
∑

k=1

[

(

p(hk,x)

q(hk|x)

)1−α
]

. (5)

The importance weighted auto-encoder (IWAE) [17] is a special case of this framework with α = 0
and K < +∞. But unlike traditional VI, here the MC approximation is biased. Fortunately we can
characterise the bias by the following theorems proved in the appendix.

Theorem 2. Assume E{hk}K

k=1
[|L̂α,K(q;x)|] < +∞ and |Lα| < +∞. Then E{hk}K

k=1
[L̂α,K(q;x)]

as a function of α ∈ R and K ≥ 1 is:
1) non-decreasing in K for fixed α ≤ 1, and non-increasing in K for fixed α ≥ 1;

2) E{hk}K

k=1
[L̂α,K(q;x)] → Lα as K → +∞;

3) continuous and non-increasing in α with fixed K.

Corollary 1. For finite K, either E{hk}K

k=1
[L̂α,K(q;x)] < log p(x) for all α, or there exists αK ≤ 0

such that E{hk}K

k=1
[L̂αK ,K(q;x)] = log p(x) and E{hk}K

k=1
[L̂α,K(q;x)] > log p(x) for all α < αK .

Also αK is non-decreasing in K if exists, with limK→1 αK = −∞ and limK→+∞ αK = 0.

The intuition behind the theorems is visualised in Figure 2(a). By definition, the exact VR bound
is a lower-bound or upper-bound of log p(x) when α > 0 or α < 0, respectively. However the

MC approximation E[L̂α,K ] biases the estimate towards LVI, where the approximation quality can
be improved using more samples. Thus for finite samples and under mild conditions, negative
alpha values can potentially be used to improve the accuracy of the approximation, at the cost of
losing the upper-bound guarantee. Figure 2(b) shows an empirical evaluation by computing the
exact and the MC approximation of the Rényi divergences. In this example p, q are 2-D Gaussian
distributions with µp = [0, 0], µq = [1, 1] and Σp = Σq = I . The sampling procedure is repeated
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(a) MC approximated VR bounds. (b) Simulated MC approximations.

Figure 2: (a) An illustration for the bounding properties of MC approximations to the VR bounds. (b)
The bias of the MC approximation. Best viewed in colour and see the main text for details.

200 times to estimate the expectation. Clearly for K = 1 it is equivalent to an unbiased estimate
of the KL-divergence for all α (even though now the estimation is biased for Dα). For K > 1 and
α < 1, the MC method under-estimates the VR bound, and the bias decreases with increasing K. For
α > 1 the inequality is reversed also as predicted.

4.2 Unified implementation with the reparameterization trick

Readers may have noticed that LVI has a different form compared to Lα with α 6= 1. In this section
we show how to unify the implementation for all finite α settings using the reparameterization trick
[13, 18] as an example. This trick assumes the existence of the mapping θ = gφ(ǫ), where the
distribution of the noise term ǫ satisfies q(θ)dθ = p(ǫ)dǫ. Then the expectation of a function F (θ)
over distribution q(θ) can be computed as Eq(θ)[F (θ)] = Ep(ǫ)[F (gφ(ǫ))]. One prevalent example

is the Gaussian reparameterization: θ ∼ N (µ,Σ) ⇒ θ = µ+ Σ
1
2 ǫ, ǫ ∼ N (0, I). Now we apply

the reparameterization trick to the VR bound

Lα(qφ;x) =
1

1− α
logEǫ

[

(

p(gφ(ǫ),x)

q(gφ(ǫ))

)1−α
]

. (6)

Then the gradient of the VR bound w.r.t. φ is (similar for ϕ, see appendix for derivation)

∇φLα(qφ;x) = Eǫ

[

wα(ǫ;φ,x)∇φ log
p(gφ(ǫ),x)

q(gφ(ǫ))

]

, (7)

where wα(ǫ;φ,x) =
(

p(gφ(ǫ),x)
q(gφ(ǫ))

)1−α
/

Eǫ

[

(

p(gφ(ǫ),x)
q(gφ(ǫ))

)1−α
]

denotes the normalised importance

weight. One can show that this recovers the the stochastic gradients of LVI by setting α = 1 in (7)
since now w1(ǫ;φ,x) = 1, which means the resulting algorithm unifies the computation for all
finite α settings. For MC approximations, we use K samples to approximately compute the weight

ŵα,k(ǫk;φ,x) ∝
(

p(gφ(ǫk),x)
q(gφ(ǫk))

)1−α

, k = 1, ...,K, and the stochastic gradient becomes

∇φL̂α,K(qφ;x) =
K
∑

k=1

[

ŵα,k(ǫk;φ,x)∇φ log
p(gφ(ǫk),x)

q(gφ(ǫk))

]

. (8)

When α = 1, ŵ1,k(ǫk;φ,x) = 1/K, and it recovers the stochastic gradient VI method [18].

To speed-up learning [17] suggested back-propagating only one sample ǫj with j ∼ pj = ŵα,j , which
can be easily extended to our framework. Importantly, the use of different α < 1 indicates the degree
of emphasis placed upon locations where the approximation q under-estimates p, and in the extreme
case α → −∞, the algorithm chooses the sample that has the maximum unnormalised importance
weight. We name this approach VR-max and summarise it and the general case in Algorithm 1. Note
that VR-max (and VR-α with α < 0 and MC approximations) does not minimise D1−α[p||q]. It is
true that Lα ≥ log p(x) for negative α values. However Corollary 1 suggests that the tightest MC
approximation for given K has non-positive αK value, or might not even exist. Furthermore αK

becomes more negative as the mismatch between q and p increases, e.g. VAE uses a uni-modal q
distribution to approximate the typically multi-modal exact posterior.
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Algorithm 1 One gradient step for VR-α/VR-max
with single backward pass. Here ŵ(ǫk;x) short-
hands ŵ0,k(ǫk;φ,x) in the main text.

1: given the current datapoint x, sample
ǫ1, ..., ǫK ∼ p(ǫ)

2: for k = 1, ...,K, compute the unnormalised weight

log ŵ(ǫk;x) = log p(gφ(ǫk),x)−log q(gφ(ǫk)|x)

3: choose the sample ǫj to back-propagate:
if |α| < ∞: j ∼ pk where pk ∝ ŵ(ǫk;x)

1−α

if α = −∞: j = argmaxk log ŵ(ǫk;x)
4: return the gradients ∇φ log ŵ(ǫj ;x)

VR EP

SEP

BB-
global local

mini-batch
sub-sampling

factor
tying

energy
approx.

fixed point
approx.

Figure 3: Connecting local and global
divergence minimisation.

4.3 Stochastic approximation for large-scale learning

VR bounds can also be applied to full Bayesian inference with posterior approximation. However for
large datasets full batch learning is very inefficient. Mini-batch training is non-trivial here since the
VR bound cannot be represented by the expectation on a datapoint-wise loss, except when α = 1.
This section introduces two proposals for mini-batch training, and interestingly, this recovers two
existing algorithms that were motivated from a different perspective. In the following we define the

“average likelihood” f̄D(θ) = [
∏N

n=1 p(xn|θ)]
1
N . Hence the joint distribution can be rewritten as

p(θ,D) = p0(θ)f̄D(θ)
N . Also for a mini-batch of M datapoints S = {xn1

, ...,xnM
} ∼ D, we

define the “subset average likelihood” f̄S(θ) = [
∏M

m=1 p(xnm
|θ)]

1
M .

The first proposal considers fixed point approximations with mini-batch sub-sampling. It first derives
the fixed point conditions for the variational parameters (e.g. the natural parameters of q) using the
exact VR bound (4), then design an iterative algorithm using those fixed point equations, but with
f̄D(θ) replaced by f̄S(θ). The second proposal also applies this subset average likelihood approx-
imation idea, but directly to the VR bound (4) (so this approach is named energy approximation):

L̃α(q;S) =
1

1− α
logEq

[

(

p0(θ)f̄S(θ)
N

q(θ)

)1−α
]

. (9)

In the appendix we demonstrate with detailed derivations that fixed point approximation returns
Stochastic EP (SEP) [7], and black box alpha (BB-α) [16] corresponds to energy approximation. Both
algorithms were originally proposed to approximate (power) EP [3, 26], which usually minimises
α-divergences locally, and considers M = 1, α ∈ [1− 1/N, 1) and exponential family distributions.
These approximations were done by factor tying, which significantly reduces the memory overhead
of full EP and makes both SEP and BB-α scalable to large datasets just as SVI. The new derivation
derivation provides a theoretical justification from energy perspective, and also sheds lights on the
connections between local and global divergence minimisations as depicted in Figure 3. Note that
all these methods recover SVI when α → 1, in which global and local divergence minimisation are
equivalent. Also these results suggest that recent attempts of distributed posterior approximation (by
carving up the dataset into pieces with M > 1 [10, 11]) can be extended to both SEP and BB-α.

Monte Carlo methods can also be applied to both proposals. For SEP the moment computation can be
approximated with MCMC [10, 11]. For BB-α one can show in the same way as to prove Theorem
2 that simple MC approximation in expectation lower-bounds the BB-α energy when α ≤ 1. In
general it is also an open question how to choose α for given the mini-batch size M and the number
of samples K, but there is evidence that intermediate α values can be superior [27, 28].

5 Experiments

We evaluate the VR bound methods on Bayesian neural networks and variational auto-encoders. All
the experiments used the ADAM optimizer [29], and the detailed experimental set-up (batch size,
learning rate, etc.) can be found in the appendix. The implementation of all the experiments in Python
is released at https://github.com/YingzhenLi/VRbound.
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mass-covering zero-forcing

Figure 4: Test LL and RMSE results for Bayesian neural network regression. The lower the better.

5.1 Bayesian neural network

The first experiment considers Bayesian neural network regression. The datasets are collected from
the UCI dataset repository.1 The model is a single-layer neural network with 50 hidden units (ReLUs)
for all datasets except Protein and Year (100 units). We use a Gaussian prior θ ∼ N (θ;0, I) for
the network weights and Gaussian approximation to the true posterior q(θ) = N (θ;µq, diag(σq)).
We follow the toy example in Section 3 to consider α ∈ {−∞, 0.0, 0.5, 1.0,+∞} in order to
examine the effect of mass-covering/zero-forcing behaviour. Stochastic optimisation uses the energy
approximation proposed in Section 4.3. MC approximation is also deployed to compute the energy
function, in which K = 100, 10 is used for small and large datasets (Protein and Year), respectively.

We summarise the test negative log-likelihood (LL) and RMSE with standard error (across different
random splits except for Year) for selected datasets in Figure 4, where the full results are provided in
the appendix. These results indicate that for posterior approximation problems, the optimal α may
vary for different datasets. Also the MC approximation complicates the selection of α (see appendix).
Future work should develop algorithms to automatically select the best α values, although a naive
approach could use validation sets. We observed two major trends that zero-forcing/mode-seeking
methods tend to focus on improving the predictive error, while mass-covering methods returns better
calibrated uncertainty estimate and better test log-likelihood. In particular VI returns lower test
log-likelihood for most of the datasets. Furthermore, α = 0.5 produced overall good results for both
test LL and RMSE, possibly because the skew symmetry is centred at α = 0.5 and the corresponding
divergence is the only symmetric distance measure in the family.

5.2 Variational auto-encoder

The second experiments considers variational auto-encoders for unsupervised learning. We mainly
compare three approaches: VAE (α = 1.0), IWAE (α = 0), and VR-max (α = −∞), which are
implemented upon the publicly available code.2 Four datasets are considered: Frey Face (with 10-fold
cross validation), Caltech 101 Silhouettes, MNIST and OMNIGLOT. The VAE model has L = 1, 2
stochastic layers with deterministic layers stacked between, and the network architecture is detailed
in the appendix. We reproduce the IWAE experiments to obtain a fair comparison, since the results in
the original publication [17] mismatches those evaluated on the publicly available code.

We report test log-likelihood results in Table 2 by computing log p(x) ≈ L̂0,5000(q;x) following
[17]. We also present some samples from the trained models in the appendix. Overall VR-max is
almost indistinguishable from IWAE. Other positive alpha settings (e.g. α = 0.5) return worse results,
e.g. 1374.64± 5.62 for Frey Face and −85.50 for MNIST with α = 0.5, L = 1 and K = 5. These
worse results for α > 0 indicate the preference of getting tighter approximations to the likelihood
function for MLE problems. Small negative α values (e.g. α = −1.0,−2.0) returns better results on
different splits of the Frey Face data, and overall the best α value is dataset-specific.

1http://archive.ics.uci.edu/ml/datasets.html
2https://github.com/yburda/iwae
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Table 2: Average Test log-likelihood. Results for VAE on
MNIST and OMNIGLOT are collected from [17].

Dataset L K VAE IWAE VR-max
Frey Face 1 5 1322.96 1380.30 1377.40
(± std. err.) ±10.03 ±4.60 ±4.59
Caltech 101 1 5 -119.69 -117.89 -118.01
Silhouettes 50 -119.61 -117.21 -117.10
MNIST 1 5 -86.47 -85.41 -85.42

50 -86.35 -84.80 -84.81
2 5 -85.01 -83.92 -84.04

50 -84.78 -83.05 -83.44
OMNIGLOT 1 5 -107.62 -106.30 -106.33

1 50 -107.80 -104.68 -105.05
2 5 -106.31 -104.64 -104.71
2 50 -106.30 -103.25 -103.72

Figure 5: Bias of sampling approx-
imation to. Results for K = 5, 50
samples are shown on the left and
right, respectively.

(a) Log of ratio R = wmax/(1− wmax) (b) Weights of samples.

Figure 6: Importance weights during training, see main text for details. Best viewed in colour.

VR-max’s success might be explained by the tightness of the bound. To evaluate this, we compute
the VR bounds on 100 test datapoints using the 1-layer VAE trained on Frey Face, with K = {5, 50}

and α ∈ {0,−1,−5,−50,−500}. Figure 5 presents the estimated gap L̂α,K − L̂0,5000. The results

indicates that L̂α,K provides a lower-bound, and that gap is narrowed as α → −∞. Also increasing
K provides improvements. The standard error of estimation is almost constant for different α (with
K fixed), and is negligible when compared to the MC approximation bias.

Another explanation for VR-max’s success is that, the sample with the largest normalised importance
weight wmax dominates the contributions of all the gradients. This is confirmed by tracking R =
wmax

1−wmax

during training on Frey Face (Figure 6(a)). Also Figure 6(b) shows the 10 largest importance

weights from K = 50 samples in descending order, which exhibit an exponential decay behaviour,
with the largest weight occupying more than 75% of the probability mass. Hence VR-max provides a
fast approximation to IWAE when tested on CPUs or multiple GPUs with high communication costs.
Indeed our numpy implementation of VR-max achieves up to 3 times speed-up compared to IWAE
(9.7s vs. 29.0s per epoch, tested on Frey Face data with K = 50 and batch size M = 100, CPU info:
Intel Core i7-4930K CPU @ 3.40GHz). However this speed advantage is less significant when the
gradients can be computed very efficiently on a single GPU.

6 Conclusion

We have introduced the variational Rényi bound and an associated optimisation framework. We
have shown the richness of the new family, not only by connecting to existing approaches including
VI/VB, SEP, BB-α, VAE and IWAE, but also by proposing the VR-max algorithm as a new special
case. Empirical results on Bayesian neural networks and variational auto-encoders indicate that VR
bound methods are widely applicable and can obtain state-of-the-art results. Future work will focus
on both experimental and theoretical sides. Theoretical work will study the interaction of the biases
introduced by MC approximation and datapoint sub-sampling. A guide on choosing optimal α values
are needed for practitioners when applying the framework to their applications.
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