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1 Introduction and summary

One useful way to characterize dynamical aspects of quantum field theories (QFTs) is to

study properties of entanglement entropy [1–7]. Especially, the evolutions of entanglement

entropy when we excite QFTs provide us with important pieces of information such as

whether the quantum field theory is integrable or chaotic. Indeed, this has been manifest

for locally excited states in conformally field theories (CFTs) as we briefly review below.

A famous example in this direction is the studies of global quantum quenches, which are

translationally invariant excited states created by a sudden change of the Hamiltonian [8]

(also refer to references in [9]). The time evolution of entanglement entropy under global

quenches shows a causal and relativistic propagation of elementary excitations in generic

CFTs. One way to study how the details of propagations of quantum entanglement are

different beyond this universal behavior is to look at local excitations rather than global

excitations. Motivated by this, the main purpose of this paper is to study the time evolution

of entanglement when we locally excite a class of CFTs which are strongly interacting and
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have many degrees of freedom. Such a class of CFTs have holographic duals and is called

holographic CFTs [10–12].

A locally excited state |Ψ〉 (operator local quench) is defined by acting with a local

operator O(x) on the CFT vacuum |0〉 in the manner1

|Ψ〉 = N e−ǫHO(x)|0〉, (1.1)

where N is the normalization factor. The infinitesimally small parameter ǫ > 0 provides a

UV regularization as the truly localized operator has infinite energy. Consider the time evo-

lution of the entanglement entropy SA = −TrρA log ρA and more generally Renyi entangle-

ment entropy S
(n)
A = 1

1−nTr log(ρA)
n for the time evolved excited state |Ψ(t)〉 = e−iHt|Ψ〉.

We choose the subsystem A to be the half-space and ρA is the corresponding reduced den-

sity matrix. The excitation is originally located in the subsystem B (i.e. complement of

A), thus it creates additional entanglement between them. The main quantity of interest

is the growth of entanglement entropy compared to the vacuum:

∆S
(n)
A (t) = S

(n)
A (|Ψ(t)〉)− S

(n)
A (|0〉). (1.2)

Note that the n = 1 limit coincides with the von-Neumann entropy (or entanglement

entropy) growth limn→1∆S
(n)
A (t) = ∆SA(t). If we define l to be the distance between x

and the boundary point ∂A = ∂B, ∆S
(n)
A (t) = 0 for t ≤ l as follows from the causality. For

t > l, ∆S
(n)
A (t) gets non-vanishing in general as the excitations in the region B can reach

the region A.

Calculations of ∆S
(n)
A for massless scalar fields have been performed in [13–16] and

it was found that the growth ∆S
(n)
A (t) approaches a finite positive constant at late time.

This is clearly interpreted as a system of entangled particles propagating at the speed of

light [17]. The same behavior has also been found for rational CFTs in two dimensions,

which is a typical example of integrable CFTs, [14, 18–22].

Furthermore, a recent study of 1+1-dimensional orbifold CFTs found an exotic time

evolution ∆S
(n)
A ∝ log(log t) for irrational (but exactly solvable) CFTs [23]. For other field

theoretic progress on local quenches refer also to [24–34].

On the other hand, for holographic CFTs, which are strongly interacting CFTs with

large central charges [10–12], the evolution behavior changes drastically. In the calculation

using the holographic formula [35–37], the local excitation corresponds to a massive particle

falling in AdS3, whose mass m is related to the conformal dimension ∆O of O(x) in (1.1)

via the standard relation ∆ ≃ mR (R is the AdS radius). The holographic results for

the (von-Neumann) entanglement entropy under time evolution at late time was obtained

in [38] and this reads

∆SA ≃
cCFT

6
log

t

ǫ
, (1.3)

where cCFT is the central charge of the 2D holographic CFT.

1We would like to stress that ǫ in (1.1) is the UV cut off of the local excitations and should be distin-

guished from the UV cut off (i.e. the lattice spacing) of the CFT itself.
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This time dependence has been precisely reproduced in [39] using a large central charge

CFT analysis. Such a behavior is expected to stem from the chaotic nature of holographic

CFTs, where the quasi-particle picture breaks down. Similar calculations in higher dimen-

sional holographic CFTs have recently performed in [40] for a holographic computation in

the AdS4/CFT3 setup, where log t like behavior was observed.

In summary, the functional form of the growth of von-Neumann entanglement entropy

∆SA = ∆S
(1)
A depends on the nature of CFTs roughly in such a way that as interactions

in the CFT get stronger, the rate of its growth increases. In [23], it was even conjectured

that the logarithmic growth (1.3) found in the holographic 2d CFTs give an upper bound

of the growth rate for any two dimensional CFTs. In this way, we already had enough

knowledge about the von-Neumann entanglement entropy for the locally excited states.

However, to capture more information of quantum entanglement, we need to look at

the Renyi entanglement entropies ∆S
(n)
A for various n. At present, we have only limited

understanding of ∆S
(n)
A for the locally excited states as we will briefly review below. To

obtain the full understanding of the time evolutions of the Renyi entanglement entropies

is the main purpose of the present paper.

For the Renyi entanglement entropy in 2D holographic CFTs, the following behavior

was derived in [41] when the (chiral) conformal dimension hO of local operator is small

enough: ∆O = 2hO ≪ cCFT:

∆S
(n)
A ≃

2nhO
n− 1

log
t

ǫ
. (1.4)

In this way, interestingly, there are varieties of behaviors of (Renyi) entanglement

entropy for the locally excited states defined by (1.1), depending on how much a given

CFT is chaotic. Notice that the above operator local quench makes a significant contrast

with the original class of local quenches introduced in [42] (see also [9, 43]) defined by

joining two semi-infinite CFTs, which always lead to logarithmic growth of entanglement

entropy ∆SA(t) ≃
cCFT
3 log t

ǫ for any two dimensional CFTs, both integrable and chaotic.

In this paper, we would like to explore more on the analysis of ∆S
(n)
A for 2D holo-

graphic CFTs to obtain complete and systematic understandings without relying on spe-

cial approximations. For example, one may notice that it is not immediately clear why

the two results (1.3) for the von-Neumann entropy and (1.4) for the Renyi entropy with

hO ≪ cCFT are related to each other. Indeed, the latter gets divergent in the von-Neumann

limit n → 1. Moreover, there is no known result for the evolution of Renyi entropy with

large hO.

To find a full control of the computability for any values of n and hO we will employ

the powerful numerical program recently developed in [44] by Chen, Hussong, Kaplan and

Yi, based on Zamolodchikov’s recursion relation [45–47]. For example, this relation was

applied to computations of entanglement entropy for multi-intervals in [48]. This powerful

and non-perturbative method allows us to evaluate any conformal blocks with any values

of conformal dimensions and central charges c. Note that for the replica computation of

the Renyi entanglement entropy ∆S
(n)
A we set c = n · cCFT. Therefore in this paper we

express the total (replicated) central charge as c when we talk about the conformal blocks.
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Figure 1. We summarized the behaviors of the logarithmic growth of Renyi entanglement entropy

∆S
(n)
A

(t). The green and red regions can be well approximated by the HHLL conformal block

approximation.

As we will explain later in the present paper, our analysis reveals that the behavior of

conformal block changes drastically when the conformal dimensions are large. We find that

the behavior of vacuum conformal block for the 4-pt function of the form 〈OAOAOBOB〉 can

be classified into three regions (i)hA, hB ≥ c
32 , (ii)hA ≤ c

32 , hB ≥ c
32 , and (iii)hA, hB ≤ c

32 .

The region (ii) is equivalent to (ii)′ hA ≥ c
32 , hB ≤ c

32 . In region (i) the coefficients cn of

the power series of the function H(q) = 1+
∑∞

n=1 cnq
2n, which is an important part of the

contributions to the conformal block, grows polynomially. On the other hand in the region

(ii) and (iii), cn grows exponentially.

In terms of our Renyi entanglement entropy calculations, these regions correspond to

(i) hO ≥ cCFT
32 , n ≥ 2, (ii) hO ≥ cCFT

32 , n ≤ 2, (ii)′ hO ≤ cCFT
32 , n ≥ 2, and (iii) hO ≤ cCFT

32 ,

n ≤ 2. In particular, studies of the region (i) lead to the following new universal behavior

of Renyi entropy growth

∆S
(n)
A ≃

ncCFT

24(n− 1)
log

t

ǫ
. (1.5)

On the other hand, in the region (ii) and (iii), we can apply the formula (1.3) when n ≃ 1,

while in the region (ii)′ and (iii) we can apply the formula (1.4) when hO ≪ cCFT. These

behaviors are summarized in figure 1. It will be an intriguing future problem to reproduce

the new behavior (1.5) from holographic calculations. Also it is an important to understand

better the nature of the non-trivial transition of the conformal blocks at hA,B = c/32.

This paper is organized as follows: in section 2, we review the computation of Renyi

entanglement entropy in large central charge CFTs. In section 3 we analyse the vacuum

conformal blocks by using the Zamolodchikov’s recursion relation for various parameter

regions. In section 4, we apply the results of section 3 to the computations of Renyi entan-

glement entropy. In appendix A we summarize our conventions of four point functions and

conformal blocks. In appendix B we briefly review the Zamolodchikov’s recursion relation.
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Figure 2. The positions of operators in the replica computation (2.1).

2 Renyi entropy and conformal blocks

Here we review the general calculation of Renyi entanglement entropy for excited states in

a 2D CFT in terms of conformal blocks. We express the 2D CFT we consider as M and

its central charge is written as cCFT.

2.1 Growth of Renyi entropy for excited states

In the replica computation for Renyi entropy we introduce the replicated CFT with the

central charge nc. The growth of Renyi entropy (1.2) for locally excite states (1.1) can be

expressed by [39, 49, 50]

∆S
(n)
A =

1

1− n
log

〈O⊗nO⊗nσnσ̄n〉

〈O⊗nO⊗n〉〈σnσ̄n〉
. (2.1)

we take the subsystem A to be a semi-infinite interval and the twist operators are inserted

at both end points of A. Here O⊗n is defined on the cyclic orbfold CFT (replicated CFT)

Mn/Zn (with the central charge c = n · cCFT), using the operators in the seed CFT M

(with the central charge cCFT) as

O⊗n = O ⊗O ⊗ · · · ⊗O, (2.2)

which is separated by the distance l from the boundary of A as shown in figure 2. We take

the subsystem A to be the half line [0,∞]. In the complex plane (z, z̄), we insert the two

twist operators each at z = z̄ = 0 and z = z̄ = ∞. The replicated operator O⊗n, which

produces the state |Ψ〉 of the local excitation, is inserted at z = i(ǫ−it)−l, z̄ = −i(ǫ−it)−l

and the other, which creates 〈Ψ|, is at z = −i(ǫ + it) − l, z̄ = i(ǫ + it) − l as in figure 2.

The rule of the analytical continuation from the Euclidean time to Lorentzian time follows

from the prescription in [8]. Now, these insertions of four operators lead to the growth of

the trace of the reduced density matrix Tr(ρA)
n i.e. that of Renyi entropy as in (2.1).

We define the chiral conformal dimension of O(x) as hO. Then the dimension of On is

written as nhO. The dimension of twist operator σn is given by the standard formula

hσn =
cCFT

24

(

n−
1

n

)

=
c

24

(

1−
1

n2

)

. (2.3)

By using the cross ratio z = z12z34
z13z24

, we can rewrite (2.1) as

〈O⊗nO⊗nσnσ̄n〉

〈O⊗nO⊗n〉〈σnσ̄n〉
=
∣

∣

∣z2hσn

∣

∣

∣

2
G(z, z̄), (2.4)

– 5 –



J
H
E
P
0
1
(
2
0
1
8
)
1
1
5

Figure 3. The time evolution of cross ratio z.

where G(z, z̄) is the four point function (refer to appendix A for more details of our con-

ventions)

G(z, z̄) = 〈σn(0)σ̄n(z)O
⊗n(1)O⊗n(∞)〉, (2.5)

and the cross ratio (z, z̄) is explicitly expressed as

z =
2iǫ

l − t+ iǫ
, z̄ = −

2iǫ

l + t− iǫ
. (2.6)

From these expressions, one find that the sign of the imaginary part of the cross ratio

z changes at t = l. As a result, the cross ratio z picks up the factor e−2πi at t = l as

1 − z → e−2πi(1 − z) (see figure 3). This does not happen for the anti-chiral coordinate

z̄. We write the value of z after this monodromy transformation as zmo. For example, if

f(z) := log(1 − z), then f(zmo) = −2πi + f(z). In the late time region ǫ ≪ l ≪ t, which

we are interested in, we find

z = −
2iǫ

t
≡ zmo, z̄ ≃ −

2iǫ

t
≡ z̄mo. (2.7)

Therefore the time evolution of excited Renyi entropy at late time can be calculated as

∆S
(n)
A =

1

1− n
log

[

|zmo|
4hσnG(zmo, z̄mo)

]

. (2.8)

The 4-pt function G can be expressed as a summation over conformal blocks

F
hσn ,hO⊗n

hp
(z). In holographic CFTs we expect that due to its sparse spectrum, we can

approximate G by restricting to the vacuum conformal block hP = 0. Thus we obtain

∆S
(n)
A =

1

1− n
log

[

|zmo|
4hσn

∑

p

Cp
O⊗nO⊗nC

p
σnσn

|F
hσn ,hO⊗n

hp
(zmo)|

2

]

≃
1

1− n
log

[

|zmo|
4hσn |F

hσn ,hO⊗n

0 (zmo)|
2

]

, (2.9)

This is the main target which we would like to evaluate in this paper.
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3 Analysis of conformal blocks

In this section, after we review the numerical computation of conformal block based on

Zamolodchikov’s recursion relation, we explore properties of conformal block towards the

calculation of Renyi entropy. We are especially interested in large central charge limit c≫1.

3.1 Conformal blocks and numerical approach

As in [45], the conformal block for the 4-pt function 〈OA(0)OA(z)OB(1)OB(∞)〉 can be

expressed in the following way (h is the dimension of intermediate primary):

F hA,hB

h (z)=(16q)h−
c−1
24 z

c−1
24

−2hA(1−z)
c−1
24

−hA−hB · (θ3(q))
c−1
2

−8(hA+hB) ·HhA,hB

h (q), (3.1)

where

q = eiπτ = e
−π

K(1−z)
K(z) , (3.2)

and

θ3(q) =
∑

n∈Z

qn
2
=

∞
∏

m=1

(1− q2m)(1 + q2m−1)2. (3.3)

It is useful to note K(0) = π
2 and when z is small we have K(1 − z) ≃ 1

2 log
16
z . We can

express z in terms of the theta functions as z =
(

θ2(q)
θ3(q)

)4
.

The function HhA,hB

h (q) is found by solving the recursion relation in [45], whose numer-

ical prescription was formulated in [44] (see appendix B of this paper). It is expanded as

HhA,hB

h (q) = 1 +
∞
∑

n=1

cnq
2n. (3.4)

It is important to note that HhA,hB

h (q) has the symmetry:

HhA,hB

h (q) = HhB ,hA

h (q). (3.5)

This follows from the relation (A.5) for the full 4-pt function is true for each conformal

block. This relation is expected because it just flips A with B and does not change the

structure of channel.

One useful limit we take is q → 1. Accordingly z approaches to z = 1. We write this

as z = 1− ǫ with ǫ → 0. Then we have in this limit:

q ≡ e−δ, δ ≃
π2

log(16/ǫ)
→ 0,

θ3(q) ∼ δ−1/2. (3.6)

– 7 –
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3.2 Simplest example of H(q): vacuum primary

If we consider the trivial limit of vacuum primaries hA = hB = h = 0, obviously we have

F hA=hB=0
h=0 (z) = 1. This fixes the form of H(q) as follows

H0,0
0 (q) = (16q)

c−1
24 · z−

c−1
24 · (1− z)−

c−1
24 · (θ3(q))

− c−1
2

= (16q)
c−1
24 · (θ2(q)θ3(q)θ4(q))

− c−1
6

= q
c−1
24 · η(τ)−

c−1
2

=
1

[
∏∞

n=1(1− q2n)]−
c−1
2

. (3.7)

When q is small (or equally z is small), this is expanded as follows:

H0,0
0 (q) =

(

∏

n

(1− q2n)

)− c−1
2

= 1 +
1

2
(c− 1)q2 +

1

8
(c2 − 1)q4 +

1

48
(c3 + 3c2 − c− 3)q6 + . . . (3.8)

On the other hand, if we take the limit z = 1− ǫ with ǫ → 0, we find

H0,0
0 (q) ∼ δ

c−1
4 · ǫ−

c−1
24 , (3.9)

where ∼ means the approximation up to a constant factor.

By using the approximation formula of a summation (based on the saddle point ap-

proximation) (we assume A > 0):

∞
∑

n=0

nαeA
√
ne−2nδ ∼ δ−2α− 3

2 e
A2

8δ . (3.10)

When A = 0, we have
∞
∑

n=0

nαe−2nδ ∼ δ−α−1. (3.11)

From (3.10), we find the Cardy formula-like behavior of the coefficient cn defined

in (3.4) when n ≫ c:

cn ≃ β · nα · eA
√
n, (3.12)

for a certain constant β which we are not interested in. Here A and α are given by

A = π

√

c− 1

3
, α = −

c

8
−

5

8
. (3.13)

3.3 Behaviors of H(q)

Now we would like to examine the properties of H(q) for general hA and hB. We focus on

the vacuum conformal block h = 0 as that is relevant for our later calculations of Renyi

– 8 –
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Figure 4. The sign behaviors of coefficients cn. Actually, we plotted sign(cn) · log |cn| against n for

n ≤ 600. The left plot is for (hA, hB) =
c

24 (0.7, 0.1), which is in the region (iii) and cn is always posi-

tive. The right one is for (hA, hB) =
c

24 (0.8, 0.1), which is in the region (ii) and has alternating signs.

hA

hB

c/32

c/32

Region (i)

Region (ii)

Region (ii)

Region (iii)

nc
n
~

nAn

n
enc )1(~

nA

n
enc ~

nAn

n
enc )1(~

0

Figure 5. The sketch of behaviors of cn for various values of (hA, hB).

entropy. First we can analytically calculate the coefficient cn assuming the large c limit

from the recursion relation:

cn ≃
1

n!
·
( c

2

)n
·

[(

1−
32

c
hA

)(

1−
32

c
hB

)]n

. (3.14)

However note that here we ignored the lower powers of c and this approximation is only

sensible for n ≪ c.

From this expression we find the following behavior of signs of cn (refer to figure 4):

(i) hA, hB >
c

32
: cn = |cn|, (3.15)

(ii) hA >
c

32
, hB <

c

32
or hA <

c

32
, hB >

c

32
: cn = (−1)n|cn|, (3.16)

(iii) hA, hB <
c

32
: cn = |cn|. (3.17)

We summarized these behavior in figure 5. Note that cn is invariant under the exchange

of hA and hB as follows from the symmetry (3.5).
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8 i.e. the region (i), where cn
grows polynomially. The lower two plots are for hA = hB = c

240 , i.e. the region (i), where cn grows

exponentially.

Now we perform numerical computations of cn employing the computer program made

in the paper [44] (for a short summary, see also appendix B of the present paper). First,

our numerical calculations of cn for various values of (hA, hB) precisely show the above

behaviors of signs, even for the regions n ≫ c. By fitting the numerical result for cn (refer

to the plots figure 6) in the Cardy formula-like form

|cn| ≃ β · nα · eA
√
n, (3.18)

and we evaluated the values of A and α for various (hA, hB) and plotted in figure 7.

Interestingly we observe a clear transition of the values of A and α along the lines

hA = c
32 and hB = c

32 as can be seen from the plots in figure 7. This behavior is summarized

as follows2

(i) A ≃ 0,

(ii) A ≃ π

√

c

12
· a2(hA, hB) ,

(iii) A ≃ π

√

c

3
· a3(hA, hB) . (3.19)

2In the paper [44], it was argued that the power law like behavior cn ∝ n
s in the limit n → ∞ can be

observed for HHLL conformal block. Our analysis shows that this power law behavior (i.e. A = 0) can only

be seen for the region (i) and not in the region (ii) and (iii).
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Figure 7. The plot of the values of A (left) and α (right) for various values of hA and hB . The

ranges are 0 < hA, hB < c

8 . The black dots are the numerical values of A and α. The blue

surfaces are analytical predictions from the HHLL approximation. The red surface describes (3.26).

We set c = 100.01.

Here the functions a2 and a3 are smooth monotonic functions bounded as |a2| ≤ 1 and

|a3| ≤ 1. We have

a2(0, hB) = a2(hA, 0) = a3(0, 0) = 1, (3.20)

a3(c/32, 0) = a3(0, c/32) =
1

2
, (3.21)

a2(c/32, hB) = a2(hA, c/32) = a3(c/32, c/32) = 0. (3.22)

Note that a3(0, 0) = 1 in (3.20) following from (3.13). As we will show in the next subsec-

tions, we can evaluate A and α by using the heavy-heavy-light-light (HHLL) approximation

of conformal blocks assuming hA ≡ hL ≪ c and hB ≡ hH = O(c). This leads to

a2(hL, hH) ≃

√

1−
48

c
hL, (3.23)

a3(hL, hH) ≃

√

1−
24

c
hH −

24

c
hL

√

1−
24

c
hH , (3.24)

Indeed, we find a3(hL, c/32) ≃
1
2 , which justifies (3.21) and shows that A is continuous at

the border between (ii) and (iii). The value of α is found as

αHHLL
2,3 (hL, hH) = 2(hL + hH)−

c

8
−

5

8
, (3.25)

which can be applicable to both (ii) and (iii) if hL is small enough.

On the other hand, we would like to note that the result in the region (i), α is well

fitted with the numerical data by the formula first considered in [44]:

α1(hA, hB) = 4(hA + hB)−
c

4
−

9

4
. (3.26)

Note that the doubled coefficient of hA+hB compared with (3.25) can be understood from

the factor two difference of the power of δ between the A > 0 formula (3.10) and A = 0

formula (3.11).
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3.4 HHLL approximation

When one of hA and hB is light and another is heavy, we can apply the heavy-heavy-

light-light (HHLL) approximation of conformal blocks [51, 52]. We take hA ≡ hL ≪ c and

hB ≡ hH = O(c).

In our case we have (we assume h = 0)

F hH ,hL

h=0 (z) ≃





√

1− 24
c hH

1− (1− z)

√

1− 24
c
hH





2hL

· (1− z)
−hL

(

1−
√

1− 24
c
hH

)

. (3.27)

Thus in the z → 1 limit: z = 1− ǫ, we get

F hH ,hL

h=0 (z) ≃ ǫ
−hL

(

1−
√

1− 24
c
hH

)

. (3.28)

In terms of the function HhH ,hL

h=0 (q), this behavior is described as

HhH ,hL

h=0 (q) ∼ ǫ
−( c−1

24 )+hH+hL

√

1− 24
c
hH · δ

c−1
4

−4(hH+hL). (3.29)

Now we focus on the region (iii) i.e. hH < c/32 so that cn is positive definite. By using

the formula (3.10), we obtain the estimation of A and α given by (3.24) and (3.25).

3.5 q → i limit

When we consider the region (ii) i.e. hH > c/32, we need to worry about the alternat-

ing signs in (3.16), as cn behaves like cn ∼ (−1)n · nα · eA
√
n. In such a case, it is not

straightforward to obtain a formula like (3.10).

To cancel the signs, we consider another limit of q → i. This is obtained by z → 0

limit with a monodoromy transformation around z = 1. Explicitly we have

qmo = e
−π

K(1−z)
K(z)+2iK(1−z) , z = ǫ̃ → 0. (3.30)

This behaves like (we define δ̃ = π2

log(16/ǫ̃)):

qmo ≃ eπiτm ≃ i · e−
δ̃
4 , τmo =

1

2− iδ̃/π
≡

1

2− τ
, (3.31)

From the HHLL approximation (3.27), we obtain the following behavior for the mod-

ular limit q → i

HhH ,hL

h=0 (qmo) ∼ ǫ̃−(
c−1
24 )+2hL · δ̃

c−1
4

−4(hH+hL). (3.32)

By using the formula (3.10), we can read off from this behavior the advertised values of A

and α given by (3.23) and (3.25).

Actually, this limit q → i exactly corresponds to the one we need to calculate the Renyi

entropy described in (2.7) i.e. qmo = q(zmo). In this relation, we can identify ǫ̃ = −2iǫ
t .
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4 Evaluation of Renyi entropy

Now we are in a position to study the Renyi entropy computed by the formula (2.9) based

on our previous results for the vacuum conformal block. First note that to calculate the

n-th Renyi entropy for a large central charge CFT (holographic CFT) with a central charge

cCFT by the replica method, we consider a CFT with the central charge c = n·cCFT, defined

by taking n copies of the original CFT. Then we take

hA = hσn =
cCFT

24

(

n−
1

n

)

, hB = nhO. (4.1)

The growth of Renyi entropy is symmetric under the exchange of hA and hB as

∆S
(n)
A =

1

1− n
log
[

z2hA z̄2hAF hA,hB

0 (z)F hA,hB

0 (z̄)
]

z=zmo,z̄→0

=
1

1− n
log
[

z2hB z̄2hAF hB ,hA

0 (z)F hB ,hA

0 (z̄)
]

z=zmo,z̄→0
. (4.2)

Since we act the monodromy transformation only for z and not for z̄, in the limit (2.7) we

have q → i as in (3.31) and q̄ ≃ z̄
16 → 0.

Thus we can simply (2.9) as follows

∆S
(n)
A ≃

1

1− n
log
[

(zmo)
n·cCFT−1

24 ·H(qmo)
]

, (4.3)

where we neglect subleading terms and keep such terms grow as ∼ | log ǫ̃| ∼ log( tǫ) in

the end.3

In general, we find that ∆S
(n)
A grows logarithmically under time evolutions. Therefore,

below, we are interested in the coefficient of the log t term, denoted by B(n, hO):

∆S
(n)
A ≃ B(n, hO) · log

t

ǫ
. (4.4)

The behaviors of B(n, hO) are summarized in figure 1. Our numerical results of

B(n, hO) are plotted in figure 8 as we will explain below.

4.1 HHLL approximation

If we apply the HHLL approximation with hA ≪ c ∼ hB, we obtain from (3.32)

∆S
(n)
A ≃

2hA
n− 1

log
t

ǫ
. (4.5)

If we choose the light operator OA to be the twist operator σn in the limit n → 1, then

we reproduce the formula (1.3). If we choose the light operator OA to be O, namely the

operator for the excitation, then we reproduce another formula (1.4). Note that these

approximated results are continuous at hA,B = c/32. The regions where we can apply this

HHLL approximation is depicted in figure 1 as the red and green regions.

3In other words, we neglect terms ∼ log log t
ǫ
.
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Figure 8. The plots of the coefficient B(n, hO) of the logarithmic growth of entanglement entropy.

The left is the case of the third Renyi entropy n = 3 for various values of hO (the vertical dotted line

(A) in figure 1). The red line describes the formula (1.4) and the dotted horizontal line corresponds

to the formula (4.6). The right is the case of hO = c

120 = n·cCFT

120 for various values of n (the

horizontal dotted line (B) in figure 1). The dotted horizontal line and red curve correspond to the

formula (1.3) and (1.4), respectively.

4.2 Region (i)

In the region (i) defined by (3.15), we simply have

B(n, hO) =
ncCFT

24(n− 1)
, (4.6)

namely the advertised formula (1.5). This is derived as follows. First note that H(qmo)

does not give any leading divergence which contributes to O(log t) entropy, remembering

the behavior cn ∼ nα (i.e. no eA
√
n factor). Then the formula (4.3) with ncCFT ≫ 1 leads

to the formula (4.6). Indeed this behavior is confirmed in the left plot in figure 8.

At the special value n = 2 and hO = cCFT
32 , the conformal block coincides with a torus

partition function [10, 29, 53]. By using this fact we can evaluate ∆S
(2)
A as computed

in [54], which indeed agrees with (4.6).4

4.3 Region (ii)

In the region (ii) defined by (3.16), we can apply the formula (3.10) in q → i limit as we

have explained in the previous section. Thus we can calculate the coefficient B in (4.4) in

terms of A:

B(n, hO) =
1

n− 1

(

ncCFT

24
−

A2

2π2

)

=
ncCFT

24(n− 1)

(

1− (a2)
2
)

. (4.7)

This function interpolates the HHLL approximated result and the formula (4.6) in the

region (i). Examples of the plots of B(n, hO) in this region can be found from the both

two plots in figure 8.

4We are very much grateful to Pawel Caputa and Tomonori Ugajin for pointing out this to us.
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4.4 Region (iii)

The region (iii), defined by (3.17) also includes parameter spaces where we can apply

the HHLL approximation. Also when n = 2 and hO = cCFT
32 , we should reproduce the

behavior (4.6). Even though we do not have any analytical formula, our numerical results

show that the function B(n, hO) monotonically interpolates these boundary values, as

depicted in the right plot of figure 8.

4.5 Comment on OTOC

In this paper, we focus on entropy, but the vacuum block we derived can be also used to

evaluate OTOC. As in [55], we can express the late time behavior of OTOC in holographic

CFTs as
〈OA(t)OBOA(t)OB〉β
〈OAOA〉β〈OBOB〉β

≃ |zmo|
4hA |F hA,hB

0 (zmo)|
2. (4.8)

The cross ratio zmo is given by

zmo ≃ −e
− 2π(t−x)

β ǫ∗12ǫ34, z̄mo ≃ −e
− 2π(t+x)

β ǫ∗12ǫ34, (4.9)

where ǫij = i
(

e
2πi
β

ǫi − e
2πi
β

ǫj
)

and x is the separation between operators that keeps the

ratio z̄/z fixed. This technique is very similar to that used to calculate entropy. Therefore

we can apply our result to calculating OTOC straightforwardly and it leads to the late

time behavior of OTOC for any two operators, in particular two heavy operators. The

result is as follows.

〈OA(t)OBOA(t)OB〉β
〈OAOA〉β〈OBOB〉β

≃ e
− c−1

12
πt
β , if hA, hB >

c

32
. (4.10)

and in the heavy-light limit, we can reproduce the results in [55, 56]. Moreover we can

conclude that the behaviors of OTOC show the late exponential decay for any operator at

late time. This exponential decay cannot be seen in non-chaotic CFTs, where the OTOC

approaches non-zero constant [57, 58] or decays polynomially [59]. This may suggest that

this late time behavior can also be used as a criterion of chaotic nature of a given quantum

field theory, in addition to the existing arguments on the Lyapunov exponent [55, 60, 61].

It is also intriguing to note that the above exponential decay behavior of OTOC is directly

related to the logarithmic growth of Renyi entanglement entropy (1.5).

Acknowledgments

We thank Arpan Bhattacharrya, Kanato Goto, Yasuaki Hikida, Fabio Novaes, Shinsei

Ryu, and Tomonori Ugajin for useful discussions, and in particular Pawel Caputa and

Jared Kaplan for reading the draft of this paper and giving us valuable comments. TT

is supported by the Simons Foundation through the “It from Qubit” collaboration. TT

is supported by JSPS Grant-in-Aid for Scientific Research (A) No.16H02182. TT is also

supported by World Premier International Research Center Initiative (WPI Initiative) from

the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT). YK

– 15 –



J
H
E
P
0
1
(
2
0
1
8
)
1
1
5

and TT are very grateful to the workshop “Holography and Dynamics” (YITP-X-17-06),

held in Yukawa Institute for Theoretical Physics, Kyoto University where results of this

paper were presented.

A Convention of 4-pt function

Here we summarize our conventions on 4-pt functions and conformal blocks. Consider two

kinds of primary operators OA with the dimension (hA, h̄A) and OB with the dimension

(hB, h̄B). The full expression of 4-pt function, written as 〈OA(w1)OA(w2)OB(w3)OB(w4)〉,

takes the following form

〈OA(w1)OA(w2)OB(w3)OB(w4)〉

=

∣

∣

∣

∣

w
− 4

3
hA+ 2

3
hB

12 w
− 1

3
(hA+hB)

13 w
− 1

3
(hA+hB)

14 w
− 1

3
(hA+hB)

23 w
− 1

3
(hA+hB)

24 w
− 4

3
hB+ 2

3
hA

34

∣

∣

∣

∣

2

W (z, z̄),

(A.1)

where z = (w1−w2)(w3−w4)
(w1−w3)(w2−w4)

is the cross ratio.

We define the (normalized) 4-pt function 〈OA(0)OA(z)OB(1)OB(∞)〉 by taking the

limit (w1, w2, w3, w4) → (0, z, 1,∞) and by absorbing the divergence as follows:

〈OA(w1)OA(w2)OB(w3)OB(w4)〉 →
∣

∣

∣
(∞)−2hB

∣

∣

∣

2
· 〈OA(0)OA(z)OB(1)OB(∞)〉. (A.2)

In other words we find the relation

G(z, z̄) ≡ 〈OA(0)OA(z)OB(1)OB(∞)〉

=
∣

∣

∣
z−

4
3
hA+ 2

3
hB (1− z)−

1
3
(hA+hB)

∣

∣

∣

2
W (z, z̄). (A.3)

On the other hand if we take the limit (w1, w2, w3, w4) → (1,∞, 0, z), we can define

〈OA(1)OA(∞)OB(0)OB(z)〉 as follows:

〈OA(w1)OA(w2)OB(w3)OB(w4)〉 →
∣

∣

∣(∞)−2hA

∣

∣

∣

2
· 〈OA(1)OA(∞)OB(0)OB(z)〉. (A.4)

By comparing (A.2) and (A.4) based on the expression (A.1), we find the relation

〈OA(1)OA(∞)OB(0)OB(z)〉 · |z|
4hB = 〈OA(0)OA(z)OB(1)OB(∞)〉 · |z|4hA . (A.5)

This relation is very natural because it is just an exchange of two OAs with two OBs.

The (normalized) 4-pt function can be written as the summation over all conformal

blocks:

〈OA(0)OA(z)OB(1)OB(∞)〉 =
∑

p

CAApCBBpF
hA,hB

hp
(z)F hA,hB

h̄p
(z̄), (A.6)

where hp is the conformal dimension of the intermediate primary state.
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B Recursion relations

In this appendix, we will review Zamolodchikov’s recursion relation. In our case

h1 = h2 = hA and h3 = h4 = hB, the Virasoro conformal block can be expressed as

F hA,hB

h (z)=(16q)h−
c−1
24 z

c−1
24

−2hA(1−z)
c−1
24

−hA−hB ·(θ3(q))
c−1
2

−8(hA+hB) ·HhA,hB

h (q) (B.1)

and HhA,hB

h (q) is given by the following recursion relation,

HhA,hB

h (q) = 1 +
∞
∑

m=1,n=1
mn∈even

qmnRm,n

h− hm,n
HhA,hB

hm,n+mn(q), (B.2)

where hm,n is a zero of the Kac determinant and

Rm,n = 2 ·

(

∏

p,q λp,q

)2

∏′
k,l λk,l

·
∏

p,q

(2λA − λp,q)(2λB − λp,q). (B.3)

Here the integers p, q, k, l are defined as

p = −m+ 1,−m+ 3, · · · ,m− 3,m− 1,

q = −n+ 1,−n+ 3, · · · , n− 3, n− 1,

k = −m+ 1,−m+ 2, · · · ,m,

l = −n+ 1,−n+ 2, · · · , n. (B.4)

The product
∏′

k,l in (B.3) means that we exclude (k, l) = (0, 0) and (m,n). We also defined

c = 1 +

(

b+
1

b

)2

,

hA,B =
c− 1

24
− λ2

A,B,

λp,q =
1

2

(p

b
+ qb

)

. (B.5)

We expand HhA,hB

h (q) as

HhA,hB

h (q) = 1 +
∞
∑

k=1

ck(h)q
2k. (B.6)

In the same way as (B.2), we can also calculate the coefficients ck(h) recursively by the

following relation,

ck(h) =
k
∑

i=1

∑

m=1,n=1
mn=2i

Rm,n

h− hm,n
ck−i(hm,n +mn), (B.7)

where the sum is took over m,n = 1, 2, 3, · · · with mn held fixed, i.e. the sum
∑

m=1,n=1
mn=4

means taking sum over (m,n) = (1, 4), (2, 2), (4, 1). The coefficient ck(hm,n +mn) can be
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also calculated recursively by

ck(hm,n +mn) =
k
∑

i=1

∑

µ=1,ν=1
µν=2i

Rµ,ν

hm,n +mn− hµ,ν
ck−i(hµ,ν + µν), (B.8)

where the starting values of this recursion formula are c0(hm,n + mn) = 1. Note that in

this paper, we describe ck(0) as ck.
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