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The conditional quantum mutual information I(A; B|C) of a tripartite state ρABC is

an information quantity which lies at the center of many problems in quantum

information theory. Three of its main properties are that it is non-negative for any

tripartite state, that it decreases under local operations applied to systems A and B,

and that it obeys the duality relation I(A; B|C) = I(A; B|D) for a four-party pure

state on systems ABCD. The conditional mutual information also underlies the

squashed entanglement, an entanglement measure that satisfies all of the axioms

desired for an entanglement measure. As such, it has been an open question to find

Rényi generalizations of the conditional mutual information, that would allow for

a deeper understanding of the original quantity and find applications beyond the

traditional memoryless setting of quantum information theory. The present paper

addresses this question, by defining different α-Rényi generalizations Iα(A; B|C) of

the conditional mutual information, some of which we can prove converge to the

conditional mutual information in the limit α → 1. Furthermore, we prove that many

of these generalizations satisfy non-negativity, duality, and monotonicity with respect

to local operations on one of the systems A or B (with it being left as an open question

to prove that monotonicity holds with respect to local operations on both systems).

The quantities defined here should find applications in quantum information theory

and perhaps even in other areas of physics, but we leave this for future work. We

also state a conjecture regarding the monotonicity of the Rényi conditional mutual

informations defined here with respect to the Rényi parameter α. We prove that

this conjecture is true in some special cases and when α is in a neighborhood of

one. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908102]

I. INTRODUCTION

How much correlation do two parties have from the perspective of a third? This kind of corre-

lation is what the conditional quantum mutual information (CQMI) quantifies. Indeed, let ρABC be a

density operator corresponding to a quantum state shared between three parties, say, Alice, Bob, and

Charlie. Then the conditional quantum mutual information is defined as

I(A; B|C)ρ ≡ H(AC)ρ + H(BC)ρ − H(C)ρ − H(ABC)ρ, (1.1)

where H(F)σ ≡ −Tr{σF logσF} is the von Neumann entropy of a state σF on system F and

we unambiguously let ρC ≡ TrAB{ρABC} denote the reduced density operator on system C, for

example. Refs. 19 and 74 provided a compelling operational interpretation of the conditional quan-

tum mutual information in terms of the quantum state redistribution protocol: given many inde-

pendent copies of a four-party pure state ψADBC, with a sender possessing the D and B systems,

a receiver possessing the C systems, and the sender and receiver sharing noiseless entanglement
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before communication begins, the optimal rate of quantum communication necessary to transfer the

B systems to the receiver is given by 1
2

I(A; B|C)ψ.

It is a nontrivial fact, known as strong subadditivity of quantum entropy,45,46 that the condi-

tional quantum mutual information of any tripartite quantum state is non-negative. This can be

viewed as a general constraint imposed on the marginal entropy values of arbitrary tripartite quan-

tum states. Strong subadditivity also implies that the conditional mutual information can never

increase under local quantum operations performed on the systems A and B,13 so that I(A; B|C)ρ is

a sensible measure of the correlations present between systems A and B, from the perspective of C.

That is, the following inequality holds

I(A; B|C)ρ ≥ I(A′; B′|C)ω, (1.2)

where ωA′B′C ≡ (NA→A′ ⊗MB→B′) (ρABC) with NA→A′ andMB→B′ arbitrary local quantum opera-

tions performed on the input systems A and B, leading to output systems A′ and B′, respectively.

Inequalities like these are extremely useful in applications, with nearly all coding theorems in

quantum information theory invoking the strong subadditivity inequality in their proofs.

One of the most fruitful avenues of research in quantum information theory has been the

program of generalizing entropies beyond those that are linear combinations of the von Neumann

entropy.52,54,17,62,71,50,72,20 Not only is this interesting from a theoretical perspective but more impor-

tantly, these generalizations have found application in operational settings in which there is no

assumption of many independent and identically distributed (i.i.d.) systems, so that the law of large

numbers does not come into play. In particular, the family of Rényi entropies has proved to possess

a wide variety of applications in these non-i.i.d. settings. More recently, researchers have shown that

nearly all of the known information quantities being employed in the non-i.i.d. setting are special

cases of a Rényi family of quantum entropies.50,5

However, in spite of this aforementioned progress, it has been a vexing open question to deter-

mine a Rényi generalization of the conditional quantum mutual information that can be useful in

applications. On the one hand, a potential Rényi generalization of the conditional mutual informa-

tion of a tripartite state ρABC consists of simply taking a linear combination of Rényi entropies.

For example, in analogy with the definition in (1.1), one could define a Rényi generalization of the

conditional mutual information as follows:

I ′α(A; B|C)ρ ≡ Hα(AC)ρ + Hα(BC)ρ − Hα(C)ρ − Hα(ABC)ρ, (1.3)

where Hα(F)σ ≡ [1 − α]−1 log Tr
�
σα

F

	
is the Rényi entropy of a state σF on system F, with param-

eter α ∈ (0,1) ∪ (1,∞) (with the Rényi entropy being defined for α ∈ {0,1,∞} in the limit as α

approaches 0, 1, and ∞, respectively). Although this quantity is non-negative in some very special

cases,2 in general, I ′α(A; B|C)ρ can be negative, and in fact there are some simple examples of states

for which this occurs. Furthermore, the results of Ref. 47 imply that there are generally no linear

inequality constraints on the marginal Rényi entropies of a multiparty quantum state other than

non-negativity when α ∈ (0,1) ∪ (1,∞). This implies that monotonicity under local quantum oper-

ations generally does not hold for I ′α(A; B|C)ρ, and Ref. 47 provides many examples of four-party

states ρABCD such that I ′α(A; BD|C)ρ < I ′α(A; B|C)ρ. For these reasons, we feel that formulas like

that in (1.3) should not be considered as Rényi generalizations of the conditional quantum mutual

information, given that non-negativity and monotonicity under local operations are two of the

basic properties of the conditional quantum mutual information, which are consistently employed

in applications. However, one could certainly argue that the case α = 2 is useful for the class of

Gaussian quantum states, as done in Ref. 2.

On the other hand, the standard approach for generalizing information quantities such as en-

tropy, conditional entropy, and mutual information beyond the von Neumann setting begins with the

realization that these quantities can be written in terms of the Umegaki relative entropy D(ρ∥σ)70

H(A)ρ = −D(ρA∥IA), (1.4)

H(A|B)ρ ≡ H(AB)ρ − H(B)ρ = −min
σB

D(ρAB∥IA ⊗ σB), (1.5)

I(A; B)ρ ≡ H(A)ρ + H(B)ρ − H(AB)ρ = min
σB

D(ρAB∥ρA ⊗ σB), (1.6)
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where

D(ρ∥σ) ≡

[Tr {ρ}]−1 [Tr {ρ log ρ} − Tr {ρ logσ}] if supp (ρ) ⊆ supp (σ)

+∞ otherwise
. (1.7)

Note that the unique optimum σB in (1.5) and (1.6) turns out to be the reduced density operator ρB.

The Rényi relative entropy of order α ∈ [0,1) ∪ (1,∞) is defined as52

Dα(ρ∥σ) ≡


1

α − 1
log Tr


[Tr {ρ}]−1ρασ1−α


if supp (ρ) ⊆ supp (σ) or (α ∈ [0,1) and ρ ̸⊥ σ)

+∞ otherwise
,

(1.8)

with the support conditions established in Ref. 65. Using this quantity, one can easily define Rényi

generalizations of entropy, conditional entropy, and mutual information in analogy with the above

formulations

Hα(A)ρ = −Dα(ρA∥IA), (1.9)

Hα(A|B)ρ ≡ −min
σB

Dα(ρAB∥IA ⊗ σB), (1.10)

Iα(A; B)ρ ≡ min
σB

Dα(ρAB∥ρA ⊗ σB). (1.11)

Since the Rényi relative entropy obeys monotonicity under quantum operations for α ∈ [0,1) ∪
(1,2],52 in the sense that Dα(ρ∥σ) ≥ Dα(N (ρ) ∥N (σ)) for a quantum operation N , the above

generalizations have proven useful in several applications (see Refs. 41, 48, and 62 and references

therein).

II. OVERVIEW OF RESULTS

The main purpose of the present paper is to develop Rényi generalizations of the conditional

quantum mutual information that satisfy the aforementioned properties of non-negativity, mono-

tonicity under local quantum operations, and duality. We come close to achieving this goal by

showing that non-negativity, duality, and monotonicity under local operations on one of the systems

A or B hold for many of our Rényi generalizations. Numerical evidence has not falsified monoto-

nicity under local operations holding for both systems A and B, but it remains an open question

to determine if this holds for both systems A and B. Nevertheless, we think the quantities defined

here should be useful in applications in quantum information theory, and they might even find use in

other areas of physics.30,9,29,36,39,27,38

After establishing some notation and recalling definitions in Sec. III, our starting point is in

Sec. IV, where we recall that the conditional quantum mutual information of a tripartite state ρABC

can be written in terms of the relative entropy as follows (see “Proof of (1.5)” in Ref. 46):

I(A; B|C)ρ = D (ρABC∥ exp {log ρAC + log ρBC − log ρC}) . (2.1)

We then recall the following generalized Lie-Trotter product formula from Ref. 60, with the partic-

ular form below being inspired from developments in Ref. 43

exp {log ρAC + log ρBC − log ρC} = lim
α→1


ρ
(1−α)/2
AC

ρ
(α−1)/2

C
ρ1−α

BC ρ
(α−1)/2

C
ρ
(1−α)/2
AC

1/(1−α)
, (2.2)

where we assume that the operators ρAC, ρBC, and ρC are invertible. The relation above suggests a

number of Rényi generalizations of the relative entropy formulation in (2.1), one of which is

Dα

(

ρABC







ρ
(1−α)/2
AC

ρ
(α−1)/2

C
ρ1−α

BC ρ
(α−1)/2

C
ρ
(1−α)/2
AC

1/(1−α) )

=
1

α − 1
log Tr


ραABCρ

(1−α)/2
AC

ρ
(α−1)/2

C
ρ1−α

BC ρ
(α−1)/2

C
ρ
(1−α)/2
AC


. (2.3)

We prove that several of these Rényi conditional mutual informations are non-negative for α ∈
[0,1) ∪ (1,2] and obey monotonicity under local quantum operations on one of the systems A or
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B in the same range of α (with the proof following from the Lieb concavity theorem44 and the

Ando convexity theorem4). Our proof for monotonicity under local operations depends on operator

orderings in the particular Rényi generalization of the conditional mutual information. For example,

we can show that monotonicity under operations on the B system holds for the quantity defined in

(2.3), due to the fact that ρBC is “placed in the middle.” We also consider several limiting cases,

the most important of which is the limit as α → 1. We prove that some of the α-Rényi conditional

mutual informations converge to I(A; B|C)ρ in this limit. Note that classical and quantum quantities

related to these have been explored in prior work.6,21

The sandwiched Rényi relative entropy50,72 is another variant of the Rényi relative entropy which

has found a number of applications recently in the context of strong converse theorems.72,49,26,15,67 It

is defined for α ∈ (0,1) ∪ (1,∞) as follows:

Dα (ρ∥σ) ≡


1

α − 1
log


[Tr {ρ}]−1Tr

(
σ(1−α)/2αρσ(1−α)/2α

)α if supp (ρ) ⊆ supp (σ) or

(α ∈ (0,1) and ρ ̸⊥ σ)

+∞ otherwise

.

(2.4)

In Sec. VI, we use this sandwiched Rényi relative entropy to establish a number of sandwiched

Rényi generalizations of the conditional mutual information, one of which is

Dα

(

ρABC







ρ
(1−α)/2α
AC

ρ
(α−1)/2α

C
ρ
(1−α)/α
BC

ρ
(α−1)/2α

C
ρ
(1−α)/2α
AC

α/(1−α) )

=
1

α − 1
log Tr

(
ρ

1/2

ABC
ρ
(1−α)/2α
AC

ρ
(α−1)/2α

C
ρ
(1−α)/α
BC

ρ
(α−1)/2α

C
ρ
(1−α)/2α
AC

ρ
1/2

ABC

)α
, (2.5)

where the equality follows from the fact that

Tr
(
σ(1−α)/2αρσ(1−α)/2α

)α
= Tr

(
ρ1/2σ(1−α)/αρ1/2

)α
. (2.6)

Although both Rényi generalizations of the conditional mutual information feature “operator sand-

wiches,” we give this particular generalization the epithet “sandwiched” because it is derived from

the sandwiched Rényi relative entropy. We prove that several of these sandwiched Rényi conditional

mutual informations are non-negative for all α ∈ [1/2,1) ∪ (1,∞) and that they are monotone under

local quantum operations on one of the systems A or B for the same range of α (with the proof

following from recent work in Refs. 31 and 24). We can prove that some of them converge to

I(A; B|C)ρ in the limit as α → 1, and there are other interesting quantities to consider for α = 1/2

or α = ∞, leading to a min- and max-version of conditional mutual information, respectively. There

are certainly other possible definitions for Rényi conditional mutual information that one could

consider and we discuss these in the conclusion.

One of the most curious non-classical properties of the conditional quantum mutual informa-

tion is that it obeys a duality relation.19,74 That is, for a four-party pure state ψABCD, the following

equality holds

I(A; B|C)ψ = I(A; B|D)ψ. (2.7)

In Sec. VII, we prove that some variants of the Rényi conditional mutual information obey duality

relations analogous to the above one.

A well known property of both the traditional and the sandwiched Rényi relative entropies

is that they are monotone non-decreasing in α. That is, for 0 ≤ α ≤ β, we have the following

inequalities:65,50

Dα (ρ∥σ) ≤ Dβ (ρ∥σ) , Dα (ρ∥σ) ≤ Dβ (ρ∥σ) . (2.8)

Section VIII states an open conjecture, that the Rényi generalizations of the conditional mutual

information obey a similar monotonicity. We prove that this conjecture is true in some special cases,

we prove that it is true when α is in a neighborhood of one, and numerical evidence indicates that it

is true in general. We finally conclude in Sec. IX with a summary of our results and a discussion of

directions for future research.
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III. NOTATION AND DEFINITIONS

A. Norms, states, channels, and measurements

Let B (H ) denote the algebra of bounded linear operators acting on a Hilbert space H . We

restrict ourselves to finite-dimensional Hilbert spaces throughout this paper. For α ≥ 1, we define

the α-norm of an operator X as

∥X ∥α ≡ Tr{(
√

X†X)α}1/α, (3.1)

and we use the same notation even for the case α ∈ (0,1), when it is not a norm. Let B(H )+ denote

the subset of positive semi-definite operators, and let B(H )++ denote the subset of positive definite

operators. We also write X ≥ 0 if X ∈ B(H )+ and X > 0 if X ∈ B(H )++. An operator ρ is in the

set S (H ) of density operators (or states) if ρ ∈ B(H )+ and Tr{ρ} = 1, and an operator ρ is in the

set S(H )++ of strictly positive definite density operators if ρ ∈ B(H )++ and Tr{ρ} = 1. The tensor

product of two Hilbert spaces HA and HB is denoted by HA ⊗ HB or HAB. Given a multipartite

density operator ρAB ∈ S(HA ⊗ HB), we unambiguously write ρA = TrB {ρAB} for the reduced

density operator on system A. We use ρAB, σAB, τAB, ωAB, etc., to denote general density operators

in S(HA ⊗ HB), while ψAB, ϕAB, φAB, etc., denote rank-one density operators (pure states) in

S(HA ⊗ HB) (with it implicit, clear from the context, and the above convention implying that ψA,

ϕA, φA may be mixed if ψAB, ϕAB, φAB are pure). In expressions like that in (2.3) and (2.5), an

identity operator is implicit when not written (and should be clear from the context), so that, for

example, the expression ρ1−α
BC

in (2.3) should be interpreted as IA ⊗ ρ1−α
BC

.

The trace distance between two quantum states ρ,σ ∈ S (H ) is equal to ∥ρ − σ∥1. It has a

direct operational interpretation in terms of the distinguishability of these states. That is, if ρ or σ

are prepared with equal probability and the task is to distinguish them via some quantum measure-

ment, then the optimal success probability in doing so is equal to (1 + ∥ρ − σ∥1/2) /2. Throughout

the paper, for technical convenience and simplicity, some of our statements apply only to states

in S(H )++. This might seem restrictive, but in the following sense, it is physically reasonable.

Given any state ω ∈ S (H ) \ S(H )++, there is a state ω (ξ) = (1 − ξ)ω + ξ I/ dim (H ) for a con-

stant ξ > 0, so that ω (ξ) ∈ S(H )++ and ∥ω − ω (ξ)∥1 ≤ 2ξ. Thus, the bias in distinguishing ω from

ω (ξ) is no more than ξ/2, so that ω (ξ) can “mask” as ω.

Throughout this paper, we take the usual convention that f (A) =


i f (ai) |i⟩ ⟨i | when given

a function f and a Hermitian operator A with spectral decomposition A =


i ai |i⟩ ⟨i |. So this

means that A−1 is interpreted as a generalized inverse, so that A−1 =


i:ai,0 a−1
i
|i⟩ ⟨i |, log (A) =



i:ai>0 log (ai) |i⟩ ⟨i |, exp (A) =


i exp (ai) |i⟩ ⟨i |, etc. Throughout the paper, we interpret log as the

natural logarithm. The above convention for f (A) leads to the convention that A0 denotes the

projection onto the support of A, i.e., A0 =


i:ai,0 |i⟩ ⟨i |. We employ the shorthand supp(A) and

ker(A) to refer to the support and kernel of an operator A, respectively.

A linear map NA→B : B (HA)→ B (HB) is positive if NA→B (σA) ∈ B(HB)+ whenever σA ∈
B(HA)+. A linear map NA→B : B (HA)→ B (HB) is strictly positive if NA→B (σA) ∈ B(HB)++
whenever σA ∈ B(HA)++. Let idA denote the identity map acting on a system A. A linear map

NA→B is completely positive if the map idR ⊗ NA→B is positive for a reference system R of

arbitrary size. A linear map NA→B is trace-preserving if Tr{NA→B (τA)} = Tr {τA} for all input

operators τA ∈ B (HA). If a linear map is completely positive and trace-preserving (CPTP), we say

that it is a quantum channel or quantum operation. A positive operator-valued measure (POVM) is a

set {Λm} of positive semi-definite operators such that


mΛ
m = I.

B. Relative entropies

We defined the relative entropy D(P∥Q) between P,Q ∈ B(H )+ in (1.7), with P , 0. The

definition is consistent with the following limit, so that

lim
ξ↘0

[Tr {P}]−1Tr {P [log P − log (Q + ξ I)]} = D(P∥Q), (3.2)
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where I is the identity operator acting onH . The statement in (3.2) follows because the quantity

lim
ξ↘0

Tr {P log (Q + ξ I)} (3.3)

is finite and equal to Tr{P log Q} if supp(P) ⊆ supp (Q). Otherwise, (3.3) is infinite. The relative

entropy D(P∥Q) is non-negative if Tr{P} ≥ Tr {Q}, a result known as Klein’s inequality.42 Thus,

for density operators ρ and σ, the relative entropy is non-negative, and furthermore, it is equal to

zero if and only if ρ = σ.

We defined the Rényi relative entropy in (1.8). This definition is consistent with the following

limit, so that for α ∈ [0,1) ∪ (1,∞)

lim
ξ↘0

1

α − 1
log Tr


[Tr {P}]−1Pα(Q + ξ I)1−α


= Dα(P∥Q), (3.4)

as can be checked by a proof similar to Ref. 50, Lemma 13. The quantity obeys the following

monotonicity inequality for all α ∈ [0,1) ∪ (1,2]:

Dα (P∥Q) ≥ Dα (N (P) ∥N (Q)) , (3.5)

where P,Q ∈ B(H )+ and N is a CPTP map.52 Thus, by applying this, we find that Dα (P∥Q) is

non-negative for all α ∈ [0,1) ∪ (1,2] whenever Tr{P} ≥ Tr {Q}, so that it is always non-negative

for density operators ρ and σ. Furthermore, it is equal to zero if and only if ρ = σ.

We also defined the sandwiched Rényi relative entropy in (2.4). Similar to the above quantities,

the definition is consistent with the following limit, so that

lim
ξ↘0

1

α − 1
log


[Tr {P}]−1Tr


(Q + ξ I)(1−α)/2αP(Q + ξ I)(1−α)/2α

α
= Dα(P∥Q), (3.6)

as proved in Ref. 50, Lemma 13. Whenever supp(P) ⊆ supp (Q) or (α ∈ (0,1) and P ̸⊥ Q), it admits

the following alternate forms:

Dα (P∥Q) ≡ 1

α − 1
log


[Tr {P}]−1Tr

(
Q(1−α)/2αPQ(1−α)/2α

)α
(3.7)

=
α

α − 1
log




Q(1−α)/2αPQ(1−α)/2α


α − 1

α − 1
log Tr {P} (3.8)

=
α

α − 1
log




P1/2Q(1−α)/αP1/2


α − 1

α − 1
log Tr {P} . (3.9)

It obeys the following monotonicity inequality for all α ∈ [1/2,1) ∪ (1,∞):

Dα (P∥Q) ≥ Dα (N (P) ∥N (Q)) , (3.10)

where P,Q ∈ B(H )+ and N is a CPTP map24 (see also Refs. 7, 49, 72, and 50 for other proofs of

this for more limited ranges of α). Thus, by applying this, we find that Dα (P∥Q) is non-negative

for all α ∈ [1/2,1) ∪ (1,∞) whenever Tr{P} ≥ Tr {Q}, so that it is always non-negative for density

operators ρ and σ. Furthermore, it is equal to zero if and only if ρ = σ.

IV. CONDITIONAL QUANTUM MUTUAL INFORMATION BASED ON VON NEUMANN
ENTROPY

In this section, we prove that the conditional quantum mutual information has many seemingly

different representations in terms of a relative-entropy-like quantity (however all of them being

equal). This paves the way for designing different Rényi generalizations of the conditional quan-

tum mutual information. Furthermore, we give a conceptually different proof of the fact that the

conditional quantum mutual information I (A; B|C) is monotone under local quantum operations

on systems A and B. This alternate proof will be the basis for similar proofs when we consider

Rényi generalizations in Secs. V and VI. Finally, we discuss how representing I (A; B|C) as we do

in Proposition 2 allows for a straightforward comparison of it with the minimum relative entropy

“distance” to quantum Markov states, a quantity originally considered in Ref. 32.
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A. Various formulations of the conditional quantum mutual information

One of the core quantities that we consider in this paper is the following function of four

density operators ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC):

∆ (ρABC, τAC, θBC,ωC) ≡ Tr {ρABC [log ρABC − log τAC − log θBC + logωC]} , (4.1)

where logarithms of density operators are understood in the usual sense described in Sec. III.

Let IABC denote the identity operator acting onHABC. A sufficient condition for

lim
ξ↘0
∆ (ρABC, τAC + ξ IABC, θBC + ξ IABC,ωC + ξ IABC) (4.2)

to be finite and equal to (4.1) is that

supp (ρABC) ⊆ supp (τAC) , supp (θBC) , supp (ωC) , (4.3)

for the same reason given after (3.2). When comparing with supp(ρABC), it is implicit through-

out this paper that supp(τAC) ≡ supp (IB ⊗ τAC), supp(θBC) ≡ supp (IA ⊗ θBC), and supp(ωC) ≡ supp

(IAB ⊗ ωC). The condition in (4.3) is equivalent to supp(ρABC) being in the intersection of the

supports of τAC, θBC, and ωC. Note that there are more general support conditions which lead to a

finite value for (4.2), but for simplicity, we focus exclusively on the above support condition. If the

support condition in (4.3) holds, then by inspection we can write

∆ (ρABC, τAC, θBC,ωC) = D (ρABC∥ exp {log τAC + log θBC − logωC}) . (4.4)

Furthermore, observe that

lim
ξ↘0
∆ (ρABC, ρAC + ξ IABC, ρBC + ξ IABC, ρC + ξ IABC) (4.5)

is finite and equal to (4.1) because the support condition in (4.3) holds when choosing τAC, θBC, and

ωC as the marginals of ρABC (see, e.g., Ref. 54, Lemma B.4.1).

Lemma 1. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC) and sup-

pose that the support condition in (4.3) holds. Then

∆ (ρABC, τAC, θBC,ωC) = I(A; B|C)ρ + D (ρAC∥τAC) + D (ρBC∥θBC) − D (ρC∥ωC) . (4.6)

Proof. This follows simply by adding to and subtracting from ∆ (ρABC, τAC, θBC,ωC) each

of Tr{ρABC log ρAC}, Tr{ρABC log ρBC}, and Tr{ρABC log ρC}. We then apply the definitions of

I(A; B|C)ρ, D (ρAC∥τAC), D (ρBC∥θBC), and D (ρC∥ωC). ■

For the mutual information, there are four seemingly different ways of writing it as a relative

entropy.14 However, for the conditional mutual information, there are many ways of doing so, as

summarized in the following proposition. The significance of Proposition 2 is that it paves the way

for designing many different Rényi generalizations of the conditional mutual information.

Proposition 2. Let ρABC ∈ S (HABC). Then

I(A; B|C)ρ = ∆ (ρABC, ρAC, ρBC, ρC) = inf
τAC

∆ (ρABC, τAC, ρBC, ρC) (4.7)

= inf
θBC

∆ (ρABC, ρAC, θBC, ρC) = sup
ωC

∆ (ρABC, ρAC, ρBC,ωC) (4.8)

= inf
τAC

∆ (ρABC, τAC, ρBC, τC) = inf
τAC

sup
ωC

∆ (ρABC, τAC, ρBC,ωC) (4.9)

= inf
θBC

∆ (ρABC, ρAC, θBC, θC) = inf
θBC

sup
ωC

∆ (ρABC, ρAC, θBC,ωC) (4.10)

= inf
σABC

∆ (ρABC,σAC,σBC, ρC) = inf
τAC,θBC

∆ (ρABC, τAC, θBC, ρC) (4.11)

= inf
σABC

∆ (ρABC,σAC,σBC,σC) = inf
τAC,θBC

∆ (ρABC, τAC, θBC, τC) (4.12)

= inf
τAC,θBC

∆ (ρABC, τAC, θBC, θC) = inf
σABC

sup
ωC

∆ (ρABC,σAC,σBC,ωC) (4.13)

= inf
τAC,θBC

sup
ωC

∆ (ρABC, τAC, θBC,ωC) , (4.14)
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where the optimizations are over states on the indicated Hilbert spaces obeying the support condi-

tion in (4.3) and over σABC for which supp (ρABC) ⊆ supp (σABC). The infima and suprema can be

interchanged in all of the above cases, are achieved by the marginals of ρABC, and can thus be

replaced by minima and maxima.

Proof. We only prove two of these relations, noting that the rest follow from similar ideas. We

first prove (4.14). Invoking Lemma 1, we have that

inf
τAC,θBC

sup
ωC

∆ (ρABC, τAC, θBC,ωC) = I(A; B|C)ρ

+ inf
τAC

D (ρAC∥τAC) + inf
θBC

D (ρBC∥θBC) − inf
ωC

D (ρC∥ωC) . (4.15)

Invoking the fact that the relative entropy is minimized and equal to zero when its first argument is

equal to its second, we see that the right hand side is equal to I(A; B|C)ρ.

We now prove the first equality in (4.12). Let σABC denote some tripartite state for which

supp (ρABC) ⊆ supp (σABC). By Lemma 1, we have that

∆ (ρABC,σAC,σBC,σC) = I(A; B|C)ρ + D (ρAC∥σAC) + D (ρBC∥σBC) − D (ρC∥σC) . (4.16)

But it is known that the relative entropy is monotone under a partial trace, so that

D (ρAC∥σAC) ≥ D (ρC∥σC) . (4.17)

Thus, we have that

D (ρAC∥σAC) + D (ρBC∥σBC) − D (ρC∥σC) ≥ 0. (4.18)

This implies that

inf
σABC

∆ (ρABC,σAC,σBC,σC) = I(A; B|C)ρ + inf
σABC

[D (ρAC∥σAC) + D (ρBC∥σBC) − D (ρC∥σC)] .

(4.19)

The three rightmost terms are non-negative (as shown above), so that we can minimize them (to

their absolute minimum of zero) by picking a state σABC such that

σAC = ρAC, logσBC − logσC = log ρBC − log ρC, (4.20)

or by symmetry, one such that

σBC = ρBC, logσAC − logσC = log ρAC − log ρC . (4.21)

One clear choice satisfying this is σABC = ρABC, but there could be others. ■

Remark 3. A priori, we require infima and suprema in the above proposition because the

sets over which the optimizations occur are not compact. More explicitly, suppose that ρABC =

ωAB ⊗ θC for ωAB ∈ S (HAB) and θC ∈ S (HC). Then the sequence of states,

ωAB (n) ≡
1

n

ω0
AB

Tr
�
ω0

AB

	 + (

1 − 1

n

)

IAB − ω0
AB

Tr
�
IAB − ω0

AB

	 , (4.22)

is such that supp (ρABC) ⊆ supp (ωAB (n)) for all n ≥ 1, but supp (ρABC) * supp (ωAB (∞)).

Corollary 4. Let ρABC ∈ S (HABC). Then there is a Pinsker-like lower bound on the conditional

mutual information I(A; B|C)ρ

I(A; B|C)ρ ≥ 1
4
∥ρABC − exp {log ρAC + log ρBC − log ρC}∥

2
1 . (4.23)

Proof. The corollary results from the following chain of inequalities:

D (ρABC∥ exp {log ρAC + log ρBC − log ρC})

≥ D1/2 (ρABC∥ exp {log ρAC + log ρBC − log ρC}) (4.24)

= −2 log Tr
√

ρABC



exp {log ρAC + log ρBC − log ρC}


(4.25)
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≥ −2 log

(

1 − 1
2




√ρABC −


exp {log ρAC + log ρBC − log ρC}



2

2

)

(4.26)

≥ 


√ρABC −


exp {log ρAC + log ρBC − log ρC}



2

2
(4.27)

≥ 1
4
∥ρABC − exp {log ρAC + log ρBC − log ρC}∥

2
1 . (4.28)

The first step follows from monotonicity of the Rényi relative entropy with respect to the Rényi

parameter (see (2.8)). The rest are from a line of reasoning similar to that in the proofs of Ref. 75,

Theorem 2.1 and Corollary 2.2, which in turn follows from some of the development in Ref. 11. ■

B. Monotonicity of the conditional quantum mutual information under local quantum
operations

In this section, we show that the ∆ quantity in (4.1) obeys monotonicity under tensor-product

quantum operations acting on the systems A and B, thus establishing it as a fundamental infor-

mation measure upon which the conditional mutual information is based. Later, we also establish

a Rényi generalization of this quantity, which is the core quantity underlying our various Rényi

generalizations of conditional mutual information.

Lemma 5. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC) and sup-

pose that the support condition in (4.3) holds. Let NA→A′ andMB→B′ be CPTP maps acting on the

systems A and B, respectively. Then the following monotonicity inequality holds

∆ (ρABC, τAC, θBC,ωC) ≥ ∆ ((NA→A′ ⊗MB→B′) (ρABC) ,NA→A′ (τAC) ,MB→B′ (θBC) ,ωC) . (4.29)

Proof. We first prove the inequality

∆ (ρABC, τAC, θBC,ωC) ≥ ∆ (NA→A′ (ρABC) ,NA→A′ (τAC) , θBC,ωC) . (4.30)

To prove this, we simply expand out the terms

∆ (ρABC, τAC, θBC,ωC) = D (ρABC∥τAC ⊗ IB) − Tr {ρBC log θBC} + Tr {ρC logωC} . (4.31)

Noting that supp (NA→A′ (ρABC)) ⊆ supp (NA→A′ (τAC)) if supp (ρABC) ⊆ supp (τAC) (see, e.g., Ref. 54,

Lemma B.4.2), we similarly have that

∆ (NA→A′ (ρABC) ,NA→A′ (τAC) , θBC,ωC) = D (NA→A′ (ρABC) ∥NA→A′ (τAC) ⊗ IB)

− Tr {ρBC log θBC} + Tr {ρC logωC} . (4.32)

Then the inequality in (4.30) follows from the ordinary monotonicity of relative entropy

D (ρABC∥τAC ⊗ IB) ≥ D (NA→A′ (ρABC) ∥NA→A′ (τAC) ⊗ IB) . (4.33)

An essentially identical approach gives us the following inequality:

∆ (ρABC, τAC, θBC,ωC) ≥ ∆ (MB→B′ (ρABC) , τAC,MB→B′ (θBC) ,ωC) . (4.34)

Combining this one with (4.30) gives us the inequality in the statement of the lemma. ■

One of the crucial properties of the conditional quantum mutual information is that it is mono-

tone under CPTP maps acting on the systems A and B, respectively. That is,

I(A; B|C)ρ ≥ I(A′; B′|C)ξ, (4.35)

where ξA′B′C ≡ (NA→A′ ⊗MB→B′) (ρABC). From the statement of Lemma 5, we can conclude with

a conceptually different proof (other than directly making use of strong subadditivity as done

in Ref. 13, Proposition 3) that the conditional mutual information is monotone under tensor-product

maps acting on systems A and B. The following theorem is a straightforward consequence of

Lemma 5 and the fact that I(A; B|C)ρ = ∆ (ρABC, ρAC, ρBC, ρC).



022205-10 Berta, Seshadreesan, and Wilde J. Math. Phys. 56, 022205 (2015)

Theorem 6 (Ref. 13, Proposition 3). Let ρABC ∈ S (HABC),NA→A′ andMB→B′ be CPTP maps

acting on the systems A and B, respectively, and ξA′B′C ≡ (NA→A′ ⊗MB→B′) (ρABC). Then the

following inequality holds

I(A; B|C)ρ ≥ I(A′; B′|C)ξ. (4.36)

C. Comparison with the minimum relative entropy to quantum Markov states

In classical information theory, a tripartite probability distribution pA,B,C (a,b,c) has condi-

tional mutual information I (A; B|C) equal to zero if and only if it can be written as a Markov

distribution pC (c) pA|C (a|c) pB |C (b|c). Equivalently, it is equal to zero if and only if the distribution

pA,B,C (a,b,c) is recoverable after marginalizing over the random variable A, that is, if there exists

a classical channel q (a|c) such that pA,B,C (a,b,c) = q (a|c) pB,C (b,c). Furthermore, the classical

conditional mutual information of pA,B,C can be written as the relative entropy distance between

pA,B,C and the nearest Markov distribution [Ref. 32, Sec. II].

The generalization of these ideas to quantum information theory is not so straightforward, and

we briefly review what is known from Refs. 28 and 32. Our main aim in doing so is to set the

stage for establishing a Rényi generalization of conditional mutual information and the subsequent

discussion in Sec. VIII D.

An important class of quantum states is the quantum Markov states, introduced in Ref. 1 and

studied for finite-dimensional tripartite states in Ref. 28. Following Ref. 28, we define a state ρABC

to be a quantum Markov state if I(A; B|C)ρ = 0. LetMA−C−B denote this class of states. The main

result of Ref. 28 is that such a state has the following explicit form:

ρABC =


j

q ( j)σACL
j
⊗ σCR

j
B, (4.37)

for some probability distribution q ( j), density operators {σACL
j
,σCR

j
B}, and a decomposition of the

Hilbert space for C asHC =


j

HCL
j
⊗ HCR

j
. We also know that a state ρABC is a quantum Markov

state if any of the following conditions hold:53,55

ρABC = ρ
1/2

AC
ρ
−1/2

C
ρBCρ

−1/2

C
ρ

1/2

AC
, (4.38)

ρABC = ρ
1/2

BC
ρ
−1/2

C
ρACρ

−1/2

C
ρ

1/2

BC
, (4.39)

ρABC = exp {log ρAC + log ρBC − log ρC} . (4.40)

Interestingly, if ρC is positive definite, then the map (·)→ ρ
1/2

AC
ρ
−1/2

C
(·) ρ−1/2

C
ρ

1/2

AC
is a quantum chan-

nel from system C to AC, as one can verify by observing that it is completely positive and trace

preserving. Otherwise, the map is trace non-increasing. These same statements also obviously apply

to the map (·)→ ρ
1/2

BC
ρ
−1/2

C
(·) ρ−1/2

C
ρ

1/2

BC
. See Refs. 33 and 34 for more conditions for a tripartite state

to be a quantum Markov state.

Let M (ρABC) denote the relative entropy “distance” to quantum Markov states32

M (ρABC) ≡ inf
σABC∈MA−C−B

D (ρABC∥σABC) , (4.41)

whereMA−C−B is the set of quantum Markov states defined above. Clearly, it suffices to restrict the

above infimum to the set of Markov states σABC for which supp (ρABC) ⊆ supp (σABC). We can now

easily compare I (A; B|C) with M (ρABC), as done in Ref. 32. First, since every quantum Markov

state satisfies the condition σABC = exp {logσAC + logσBC − logσC}, we see that this formula is

equivalent to

M (ρABC) = inf
σABC∈MA−C−B

D (ρABC∥ exp {logσAC + logσBC − logσC}) , (4.42)

from which we obtain the following inequality:
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M (ρABC) ≥ inf
ωABC

D (ρABC∥ exp {logωAC + logωBC − logωC}) (4.43)

= inf
ωABC

∆ (ρABC,ωAC,ωBC,ωC) (4.44)

= I(A; B|C)ρ, (4.45)

where the infimum is over all statesωABC satisfying supp (ρABC) ⊆ supp (ωABC). The above inequality

was already stated in Ref. 32, Theorem 4 (and with the simpler proof along the lines above given by

Jenčová at the end of Ref. 32), but one of the main contributions of Ref. 32 was to show that there are

tripartite statesωABC for which there is a strict inequality M (ωABC) > I(A; B|C)ω, and in fact Ref. 32,

Sec. VI showed that the gap can be arbitrarily large.

Thus, from the results in Ref. 32, we can already conclude that taking the Rényi relative

entropy distance to quantum Markov states will not lead to a useful Rényi generalization of condi-

tional mutual information as one might hope. After the completion of the present paper, we were

informed that this matter was pursued independently in Ref. 22.

V. RÉNYI CONDITIONAL MUTUAL INFORMATION

In this section, we establish many Rényi generalizations of the conditional mutual information

that bear some properties similar to its properties. Furthermore, we can prove that some of these

generalizations converge to it in the limit as the Rényi parameter α → 1. We are motivated to

define a Rényi conditional mutual information by considering the generalized Lie-Trotter product

formula60

exp {log τAC + log θBC − logωC} = lim
α→1


τ
(1−α)/2
AC

ω
(α−1)/2

C
θ1−α

BC ω
(α−1)/2

C
τ
(1−α)/2
AC

1/(1−α)
, (5.1)

where the equality holds when τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++. By plugging

the RHS above (before the limit is taken) into the Rényi relative entropy formula defined in (1.8),

we obtain the following expression:

1

α − 1
log Tr


ραABCτ

(1−α)/2
AC

ω
(α−1)/2

C
θ1−α

BC ω
(α−1)/2

C
τ
(1−α)/2
AC


. (5.2)

We can evaluate the above expression even in the case when τAC ∈ S (HAC), θBC ∈ S (HBC), and

ωC ∈ S (HC) (considering instead the generalized inverse mentioned in Sec. III). With this, we

consider the formula in (5.2) to be a Rényi generalization of the formula in (4.4).

The development above motivates some other core quantities that we consider in this paper.

Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC). We define the following

quantities for α ∈ [0,1) ∪ (1,∞):

Qα (ρABC, τAC,ωC, θBC) ≡ Tr

ραABCτ

(1−α)/2
AC

ω
(α−1)/2

C
θ1−α

BC ω
(α−1)/2

C
τ
(1−α)/2
AC


, (5.3)

∆α (ρABC, τAC,ωC, θBC) ≡
1

α − 1
log Qα (ρABC, τAC,ωC, θBC) . (5.4)

We stress that the formula in (5.4) is to be interpreted in the sense of generalized inverse, so that it is

always finite if

ρABC ̸⊥ ���τ(1−α)/2AC
ω

(α−1)/2

C
θ
(1−α)/2
BC

���2. (5.5)

The non-orthogonality condition in (5.5) is satisfied, e.g., if the support condition in (4.3) holds,

so that (5.5) is satisfied when τAC = ρAC, ωC = ρC, and θBC = ρBC. It remains largely open to

determine support conditions under which

lim
ξ↘0
∆α (ρABC, τAC + ξ IABC,ωC + ξ IABC, θBC + ξ IABC) (5.6)

is finite and equal to (5.4), with complications being due to the fact that (5.3) features the multi-

plication of several non-commuting operators which can interact in non-trivial ways. We can also

consider five other different operator orderings for the last three arguments of Qα, i.e.,

Qα (ρABC, θBC,ωC, τAC) ≡ Tr

ραABCθ

(1−α)/2
BC

ω
(α−1)/2

C
τ1−α

AC ω
(α−1)/2

C
θ
(1−α)/2
BC


, (5.7)
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Qα (ρABC,ωC, τAC, θBC) ≡ Tr

ραABCω

(α−1)/2

C
τ
(1−α)/2
AC

θ1−α
BC τ

(1−α)/2
AC

ω
(α−1)/2

C


, (5.8)

Qα (ρABC,ωC, θBC, τAC) ≡ Tr

ραABCω

(α−1)/2

C
θ
(1−α)/2
BC

τ1−α
AC θ

(1−α)/2
BC

ω
(α−1)/2

C


, (5.9)

Qα (ρABC, τAC, θBC,ωC) ≡ Tr

ραABCτ

(1−α)/2
AC

θ
(1−α)/2
BC

ωα−1
C θ

(1−α)/2
BC

τ
(1−α)/2
AC


, (5.10)

Qα (ρABC, θBC, τAC,ωC) ≡ Tr

ραABCθ

(1−α)/2
BC

τ
(1−α)/2
AC

ωα−1
C τ

(1−α)/2
AC

θ
(1−α)/2
BC


. (5.11)

In the above, we are abusing notation by always having the power (α − 1) /2 associated with ωC and

the power (1 − α) /2 associated with τAC and θBC, but we take the convention that the different Qα

quantities are uniquely identified by the operator ordering of its last three arguments. These different

Qα functions lead to different ∆α quantities, again uniquely identified by the operator ordering of

the last three arguments.

We can then use the above observations, the observation in Proposition 2, and the definition

of the Rényi relative entropy to define Rényi generalizations of the conditional mutual information.

There are many definitions that we could take for a Rényi conditional mutual information by using

the different optimizations summarized in Proposition 2 and the different orderings of operators as

suggested above.

In spite of the many possibilities suggested above, we choose to define the Rényi conditional

mutual information as the following quantity because it obeys some additional properties (beyond

those satisfied by many of the above generalizations) which we would expect to hold for a Rényi

generalization of the conditional mutual information.

Definition 7. Let ρABC ∈ S (HABC). The Rényi conditional mutual information of ρABC is defined

for α ∈ [0,1) ∪ (1,∞) as

Iα(A; B|C)ρ ≡ inf
σBC

∆α (ρABC, ρAC, ρC,σBC) , (5.12)

where the optimization is over density operators σBC such that supp (ρABC) ⊆ supp (σBC).

Note that unlike the conditional mutual information, this definition is not symmetric with

respect to A and B. Thus one might also call it the Rényi information that B has about A from the

perspective of C. Note also that, for trivial C, the definition reduces to the usual definition of Rényi

mutual information in (1.11).

One advantage of the above definition is that we can identify an explicit form for the minimiz-

ing σBC and thus for Iα(A; B|C)ρ, as captured by the following proposition:

Proposition 8. Let ρABC ∈ S (HABC). The Rényi conditional mutual information of ρABC has the

following explicit form for α ∈ (0,1) ∪ (1,∞):

Iα(A; B|C)ρ =
α

α − 1
log Tr



(

ρ
(α−1)/2

C
TrA


ρ
(1−α)/2
AC

ραABCρ
(1−α)/2
AC


ρ
(α−1)/2

C

)1/α


. (5.13)

This follows because the infimum in (5.12) can be replaced by a minimum and the minimum σBC is

unique with an explicit form.

A proof of Proposition 8 appears in Appendix A.

A. Limit of the Rényi conditional mutual information as α → 1

In this section, we consider the limit of the ∆α quantity as the Rényi parameter α → 1. This

allows us to prove that some variations of the Rényi conditional mutual information converge to the

conditional mutual information in the limit as α → 1.

Theorem 9. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC) and sup-

pose that the support condition in (4.3) holds. Then

lim
α→1
∆α (ρABC, τAC,ωC, θBC) = ∆ (ρABC, τAC,ωC, θBC) . (5.14)

The same limiting relation holds for the other ∆α quantities defined from (5.7) to (5.11).
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Proof. We will consider L’Hôpital’s rule in order to evaluate the limit of ∆α as α → 1, due to

the presence of the denominator term α − 1 in ∆α. To this end, we compute the following derivative

with respect to α

d

dα
Qα (ρABC, τAC,ωC, θBC) = Tr


(log ρABC) ρ

α
ABCτ

(1−α)/2
AC

ω
(α−1)/2

C
θ1−α

BC ω
(α−1)/2

C
τ
(1−α)/2
AC


− 1

2
Tr


ραABC (log τAC) τ

(1−α)/2
AC

ω
(α−1)/2

C
θ1−α

BC ω
(α−1)/2

C
τ
(1−α)/2
AC


+

1

2
Tr


ραABCτ

(1−α)/2
AC

(logωC)ω
(α−1)/2

C
θ1−α

BC ω
(α−1)/2

C
τ
(1−α)/2
AC


− Tr


ραABCτ

(1−α)/2
AC

ω
(α−1)/2

C
(log θBC) θ

1−α
BC ω

(α−1)/2

C
τ
(1−α)/2
AC


+

1

2
Tr


ραABCτ

(1−α)/2
AC

ω
(α−1)/2

C
θ1−α

BC (logωC)ω
(α−1)/2

C
τ
(1−α)/2
AC


− 1

2
Tr


ραABCτ

(1−α)/2
AC

ω
(α−1)/2

C
θ1−α

BC ω
(α−1)/2

C
(log τAC) τ

(1−α)/2
AC


. (5.15)

Thus, the function Qα (ρABC, τAC,ωC, θBC) is differentiable for α ∈ (0,∞). Applying L’Hôpital’s rule,

we consider

lim
α→1
∆α (ρABC, τAC,ωC, θBC) = lim

α→1

1

Qα (ρABC, τAC,ωC, θBC)

d

dα
Qα (ρABC, τAC,ωC, θBC) . (5.16)

We can evaluate the limits separately to find that

lim
α→1

Qα (ρABC, τAC,ωC, θBC) = Tr
�
ρABCτ

0
ACω

0
Cθ

0
BCω

0
Cτ

0
AC

	
, (5.17)

lim
α→1

d

dα
Qα (ρABC, τAC,ωC, θBC) = Tr

�
(log ρABC) ρABCτ

0
ACω

0
Cθ

0
BCω

0
Cτ

0
AC

	
− 1

2
Tr

�
ρABC (log τAC) τ

0
ACω

0
Cθ

0
BCω

0
Cτ

0
AC

	
+

1

2
Tr

�
ρABCτ

0
AC (logωC)ω

0
Cθ

0
BCω

0
Cτ

0
AC

	
− Tr

�
ρABCτ

0
ACω

0
C (log θBC) θ

0
BCω

0
Cτ

0
AC

	
+

1

2
Tr

�
ρABCτ

0
ACω

0
Cθ

0
BC (logωC)ω

0
Cτ

0
AC

	
− 1

2
Tr

�
ρABCτ

0
ACω

0
Cθ

0
BCω

0
C (log τAC) τ

0
AC

	
. (5.18)

Since by assumption supp(ρABC) is contained in each of supp(τAC), supp(ωC), and supp(θBC), we

exploit the relations ρABC = ρ
0
ABC

ρABCρ
0
ABC

, ρ0
ABC

τ0
AC
= ρ0

ABC
, ρ0

ABC
θ0

BC
= ρ0

ABC
, ρ0

ABC
ω0
C
= ρ0

ABC
and

their Hermitian conjugates to find that

lim
α→1

Qα (ρABC, τAC,ωC, θBC) = 1, (5.19)

lim
α→1

d

dα
Qα (ρABC, τAC,ωC, θBC) = ∆ (ρABC, τAC,ωC, θBC) , (5.20)

which when combined with (5.16) leads to (5.14). Essentially the same proof establishes the limit-

ing relation for the other ∆α quantities defined from (5.7) to (5.11). ■

Corollary 10. Let ρABC ∈ S (HABC). Then the following limiting relation holds

lim
α→1
∆α (ρABC, ρAC, ρC, ρBC) = I(A; B|C)ρ. (5.21)

Proof. This follows from the fact that supp(ρABC) ⊆ supp (ρAC), supp(ρC), supp(ρBC) (see, e.g.,

Ref. 54, Lemma B.4.1), from the above theorem, and by recalling that ∆ (ρABC, ρAC, ρC, ρBC) =

I(A; B|C)ρ. ■

Theorem 11. Let ρABC ∈ S(HABC)++. Then the Rényi conditional mutual information con-

verges to the conditional mutual information in the limit as α → 1

lim
α→1

Iα(A; B|C)ρ = I(A; B|C)ρ. (5.22)
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The idea behind the proof of Theorem 11 is the same as that behind the proof of Theorem 9.

However, we have the explicit form for Iα(A; B|C)ρ from Proposition 8, which allows us to evaluate

the limit without the need for uniform convergence of ∆α (ρABC, τAC,ωC, θBC) in τAC, ωC, and θBC as

α → 1. A proof of Theorem 11 appears in Appendix B.

Remark 12. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC) and sup-

pose that the support condition in (4.3) holds. If ∆α (ρABC, τAC,ωC, θBC) converges uniformly in τAC,

ωC, and θBC to ∆ (ρABC, τAC,ωC, θBC) as α → 1, then we could conclude that all Rényi generaliza-

tions of the conditional mutual information (as proposed at the beginning of Sec. V) converge to it in

the limit as α → 1.

B. Monotonicity with respect to local quantum operations on one system

The following lemma is the critical one which will allow us to conclude that the Rényi condi-

tional mutual information is monotone non-increasing with respect to local quantum operations

acting on one system for α ∈ [0,1) ∪ (1,2].

Lemma 13. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC) and sup-

pose that the non-orthogonality condition in (5.5) holds. Let NA→A′ and MB→B′ denote quantum

operations acting on systems A and B, respectively. Then the following monotonicity inequalities

hold for α ∈ [0,1) ∪ (1,2]:

∆α (ρABC, τAC,ωC, θBC) ≥ ∆α (MB→B′ (ρABC) , τAC,ωC,MB→B′ (θBC)) , (5.23)

∆α (ρABC,ωC, τAC, θBC) ≥ ∆α (MB→B′ (ρABC) ,ωC, τAC,MB→B′ (θBC)) , (5.24)

∆α (ρABC,ωC, θBC, τAC) ≥ ∆α (NA→A′ (ρABC) ,ωC, θBC,NA→A′ (τAC)) , (5.25)

∆α (ρABC, θBC,ωC, τAC) ≥ ∆α (NA→A′ (ρABC) , θBC,ωC,NA→A′ (τAC)) . (5.26)

Proof. We begin by proving (5.23). Consider that Qα (ρABC, τAC,ωC, θBC) is jointly concave in

ρABC and θBC when α ∈ [0,1). This is a result of Lieb’s concavity theorem,44 a special case of which

is the statement that the function

(S,R) ∈ B(H )+ × B(H )+→ Tr

SλX R1−λX†


(5.27)

is jointly concave in S and R when λ ∈ [0,1]. (We apply the theorem by choosing S = ρABC,

R = θBC, and X = τ
(1−α)/2
AC

ω
(α−1)/2

C
.) Furthermore, by an application of Ando’s convexity theorem,4

we know that Qα (ρABC, τAC,ωC, θBC) is jointly convex in ρABC and θBC when α ∈ (1,2].
By a standard (well known) argument due to Uhlmann,69 the monotonicity inequality in (5.23)

holds. For completeness, we detail this standard argument here for the case when α ∈ [0,1). Note

that it suffices to prove the following monotonicity under partial trace:

Qα

�
ρAB1B2C, τAC,ωC, θB1B2C

�
≤ Qα

�
ρAB1C, τAC,ωC, θB1C

�
, (5.28)

because the Qα quantity is clearly invariant under isometries acting on system B and the Stinespring

representation theorem59 states that any quantum channel can be modeled as an isometry followed

by a partial trace. To this end, let

U i

B2

d2
B2
−1

i=0
denote the set of Heisenberg-Weyl operators acting on

the system B2, with dB2
the dimension of system B2. Then

Qα

�
ρAB1B2C, τAC,ωC, θB1B2C

�

=
1

d2
B2

d2
B2
−1



i=0

Qα

(

U i
B2
ρAB1B2C

(

U i
B2

)†
, τAC,ωC,U

i
B2
θB1B2C

(

U i
B2

)†)
. (5.29)

We can then invoke the Lieb concavity theorem to conclude that
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Qα

�
ρAB1B2C, τAC,ωC, θB1B2C

�
≤ Qα

*,
1

d2
B2



i

U i
B2
ρAB1B2C

(

U i
B2

)†
, τAC,ωC,

1

d2
B2



i

U i
B2
θB1B2C

(

U i
B2

)†+- (5.30)

= Qα

�
ρAB1C ⊗ πB2

, τAC,ωC, θB1C ⊗ πB2

�
(5.31)

= Qα

�
ρAB1C, τAC,ωC, θB1C

�
, (5.32)

where π is the maximally mixed state. After taking logarithms and dividing by α − 1, we can

conclude the monotonicity for α ∈ [0,1). A similar development with Ando’s convexity theorem

gets the monotonicity for α ∈ (1,2]. The inequalities in (5.24)-(5.26) follow from a similar line of

reasoning. ■

Remark 14. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC) and sup-

pose that the non-orthogonality condition in (5.5) holds. It is an open question to determine whether

the ∆α quantities defined from (5.3), (5.7)-(5.11) are monotone non-increasing with respect to

quantum operations acting on either systems A or B for α ∈ [0,1) ∪ (1,2]. In particular, it is

an open question to determine whether ∆α (ρABC, ρAC, ρC, ρBC) and infθBC
∆α (ρABC, ρAC, ρC, θBC)

are monotone non-increasing with respect to quantum operations acting on system A for α ∈
[0,1) ∪ (1,2].

Corollary 15. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC). All

Rényi generalizations of the conditional mutual information derived from

∆α (ρABC, τAC,ωC, θBC) , ∆α (ρABC,ωC, τAC, θBC) (5.33)

are monotone non-increasing with respect to quantum operations acting on system B, for α ∈
[0,1) ∪ (1,2]. All Rényi generalizations of the conditional mutual information derived from

∆α (ρABC,ωC, θBC, τAC) , ∆α (ρABC, θBC,ωC, τAC) (5.34)

are monotone non-increasing with respect to quantum operations acting on system A, for α ∈
[0,1) ∪ (1,2]. The derived Rényi generalizations are optimized with respect to τAC, ωC, and θBC

satisfying the support condition in (4.3) (which implies the non-orthogonality condition in (5.5)).

Proof. We prove that a variation derived from (4.14) obeys the monotonicity (with the others

mentioned above following from similar ideas). Beginning with the inequality in Lemma 13, we

find that

sup
ωC

∆α (ρABC, τAC,ωC, θBC) ≥ sup
ωC

∆α (MB→B′ (ρABC) , τAC,ωC,MB→B′ (θBC)) (5.35)

≥ inf
τ′

AC
,θ′

BC

sup
ωC

∆α

�
MB→B′ (ρABC) , τ

′
AC,ωC, θ

′
BC

�
. (5.36)

Since this inequality holds for all τAC and θBC, it holds in particular for the infimum of the first

line over all such states, establishing monotonicity for the Rényi generalization of the conditional

mutual information derived from (4.14). ■

Corollary 16. We can employ the monotonicity inequalities from Lemma 13 to conclude that

some Rényi generalizations of the conditional mutual information derived from (5.33) and (5.34)

and Proposition 2 are non-negative for all α ∈ [0,1) ∪ (1,2]. This includes ∆α (ρABC, ρAC, ρC, ρBC)

and the one from Definition 7.

Proof. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC) and suppose

that the support condition in (4.3) holds. A common proof technique applies to reach the conclu-

sions stated above. We illustrate with an example for

inf
θBC

sup
ωC

∆α (ρABC, ρAC,ωC, θBC) . (5.37)
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We apply Lemma 13, choosing the local map on system B to be a trace-out map, to conclude that

∆α (ρABC, ρAC,ωC, θBC) ≥ ∆α (ρAC, ρAC,ωC, θC) . (5.38)

Then, we can conclude that

sup
ωC

∆α (ρABC, ρAC,ωC, θBC) ≥ sup
ωC

∆α (ρAC, ρAC,ωC, θC) (5.39)

≥ ∆α (ρAC, ρAC, θC, θC) (5.40)

=
1

α − 1
log Tr


ραACρ

(1−α)/2
AC

θ
(α−1)/2

C
θ1−α
C θ

(α−1)/2

C
ρ
(1−α)/2
AC


(5.41)

=
1

α − 1
log Tr

�
ρACθ

0
C

	
(5.42)

= 0, (5.43)

with the last inequality following from the support condition supp(ρABC) ⊆ supp (θBC) implying the

support condition supp(ρAC) ⊆ supp (θC) [Ref. 54, Lemma B.4.2]. Since the inequality holds for all

θBC satisfying the support condition, we can conclude that the quantity in (5.37) is non-negative. A

similar technique can be used to conclude that other Rényi generalizations of the conditional mutual

information are non-negative (including the one in Definition 7). ■

Remark 17. If the system C is classical, then the Rényi conditional mutual information given

in Definition 7 is monotone with respect to local operations on both A and B. This is because the

optimizing state is classical on system C and then we have the commutation

ρ
(1−α)/2
AC

ρ
(α−1)/2

C
σ1−α

BC ρ
(α−1)/2

C
ρ
(1−α)/2
AC

= σ
(1−α)/2
BC

ρ
(α−1)/2

C
ρ1−α

AC ρ
(α−1)/2

C
σ

(1−α)/2
BC

. (5.44)

Remark 18. It is an open question to determine whether all Rényi generalizations of the

conditional mutual information designed from the different optimizations in Proposition 2 and the

different orderings in (5.3), (5.7)-(5.11) are non-negative for α ∈ [0,1) ∪ (1,2].

VI. SANDWICHED RÉNYI CONDITIONAL MUTUAL INFORMATION

As in Sec. V, there are many ways in which we can define a sandwiched Rényi conditional

mutual information. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC). We

define the following core quantities for α ∈ (0,1) ∪ (1,∞):

Qα (ρABC, τAC,ωC, θBC) ≡ Tr
(
ρ

1/2

ABC
τ
(1−α)/2α
AC

ω
(α−1)/2α

C
θ
(1−α)/α
BC

ω
(α−1)/2α

C
τ
(1−α)/2α
AC

ρ
1/2

ABC

)α
, (6.1)

∆α (ρABC, τAC,ωC, θBC) ≡
1

α − 1
log Qα (ρABC, τAC,ωC, θBC) . (6.2)

We stress again that the formula above is to be interpreted in terms of generalized inverses. By

employing (3.1) and (6.1), we can write

Qα (ρABC, τAC,ωC, θBC) =



ρ1/2

ABC
τ
(1−α)/2α
AC

ω
(α−1)/2α

C
θ
(1−α)/2α
BC




2α

2α
, (6.3)

and we see that Qα (ρABC, τAC,ωC, θBC) = 0 if and only if

ρ
1/2

ABC
τ
(1−α)/2α
AC

ω
(α−1)/2α

C
θ
(1−α)/2α
BC

= 0. (6.4)

So Qα (ρABC, τAC,ωC, θBC) > 0 if

ρ
1/2

ABC
̸⊥ τ(1−α)/2α

AC
ω

(α−1)/2α

C
θ
(1−α)/2α
BC

. (6.5)

The non-orthogonality condition in (6.5) is satisfied, e.g., if the support condition in (4.3) holds, so

that (6.5) is satisfied when τAC = ρAC, ωC = ρC, and θBC = ρBC. It remains largely open to deter-

mine support conditions under which

lim
ξ↘0

∆α (ρABC, τAC + ξ IABC,ωC + ξ IABC, θBC + ξ IABC) (6.6)
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is finite and equal to (6.2), with complications being due to the fact that (6.1) features the multi-

plication of several non-commuting operators which can interact in non-trivial ways. As before,

we define five other different Qα quantities, again uniquely identified by the order of the last three

arguments

Qα (ρABC, θBC,ωC, τAC) ≡ 


ρ1/2

ABC
θ
(1−α)/2α
BC

ω
(α−1)/2α

C
τ
(1−α)/2α
AC




2α

2α
, (6.7)

Qα (ρABC,ωC, τAC, θBC) ≡ 


ρ1/2

ABC
ω

(α−1)/2α

C
τ
(1−α)/2α
AC

θ
(1−α)/2α
BC




2α

2α
, (6.8)

Qα (ρABC,ωC, θBC, τAC) ≡ 


ρ1/2

ABC
ω

(α−1)/2α

C
θ
(1−α)/2α
BC

τ
(1−α)/2α
AC




2α

2α
, (6.9)

Qα (ρABC, τAC, θBC,ωC) ≡ 


ρ1/2

ABC
τ
(1−α)/2α
AC

θ
(1−α)/2α
BC

ω
(α−1)/2α

C




2α

2α
, (6.10)

Qα (ρABC, θBC, τAC,ωC) ≡ 


ρ1/2

ABC
θ
(1−α)/2α
BC

τ
(1−α)/2α
AC

ω
(α−1)/2α

C




2α

2α
. (6.11)

These then lead to different ∆α quantities. We call the quantities above “sandwiched” because

they can be viewed as having their root in the sandwiched Rényi relative entropy, i.e., for ρABC ∈
S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++

∆α (ρABC, τAC,ωC, θBC) = Dα

(

ρABC







τ
(1−α)/2α
AC

ω
(α−1)/2α

C
θ
(1−α)/α
BC

ω
(α−1)/2α

C
τ
(1−α)/2α
AC

α/(1−α) )
. (6.12)

Although there are many different possible sandwiched Rényi generalizations of the condi-

tional mutual information, found by combining the different ∆α quantities discussed above with the

different optimizations summarized in Proposition 2, we choose the definition given below because

it obeys many of the properties that the conditional mutual information does.

Definition 19. Let ρABC ∈ S (HABC). The sandwiched Rényi conditional mutual information is

defined as

Iα(A; B|C)ρ ≡ inf
σBC

sup
ωC

∆α (ρABC, ρAC,ωC,σBC) , (6.13)

where the optimizations are over states obeying the support conditions in (4.3).

Again, unlike the conditional mutual information, this definition is not symmetric with respect

to A and B. Thus one might also call it the sandwiched Rényi information that B has about A from

the perspective of C. Also, for trivial C, the definition reduces to the usual definition of sandwiched

Rényi mutual information (see, e.g., Refs. 72, 26, and 15).

A. Limit of the sandwiched Rényi conditional mutual information as α → 1

This section considers the limit of the ∆α quantities as α → 1. For technical reasons, we restrict

the development to positive definite density operators. It remains open to determine whether the

following theorems hold under less restrictive conditions.

Theorem 20. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++.

Then

lim
α→1

∆α (ρABC, τAC,ωC, θBC) = ∆ (ρABC, τAC,ωC, θBC) . (6.14)

The same limiting relation holds for the other ∆α quantities defined from (6.7) to (6.11).

The proof of Theorem 20 is very similar to the proof of Theorem 9 and is presented in

Appendix C.

Corollary 21. Let ρABC ∈ S(HABC)++. The following limiting relation holds

lim
α→1

∆α (ρABC, ρAC, ρC, ρBC) = I(A; B|C)ρ. (6.15)
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Proof. This follows from the fact that supp(ρABC) ⊆ supp (ρAC), supp(ρC), supp(ρBC) (see,

e.g., Ref. 54, Lemma B.4.1), Theorem 20, and by recalling that ∆ (ρABC, ρAC, ρC, ρBC) = I(A; B|C)ρ.

■

Remark 22. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++. If∆α (ρABC, τAC,ωC, θBC) converges uniformly in τAC, ωC, θBC to ∆ (ρABC, τAC,ωC, θBC) as α → 1, then

we could conclude that all sandwiched Rényi generalizations of the conditional mutual information

(as proposed at the beginning of Sec. VI) converge to it in the limit as α → 1. In particular, uniform

convergence implies that Iα(A; B|C)ρ converges to I(A; B|C)ρ as α → 1.

B. Monotonicity under local quantum operations on one system

This section considers monotonicity of the ∆α quantities under local quantum operations. For

technical reasons, we restrict the development to positive definite density operators. It remains open

to determine whether the following theorems hold under less restrictive conditions.

Lemma 23. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++. Let

NA→A′ and MB→B′ denote quantum operations acting on systems A and B, respectively. Then the

following monotonicity inequalities hold for all α ∈ [1/2,1) ∪ (1,∞):
∆α (ρABC, τAC,ωC, θBC) ≥ ∆α (MB→B′ (ρABC) , τAC,ωC,MB→B′ (θBC)) , (6.16)

∆α (ρABC,ωC, τAC, θBC) ≥ ∆α (MB→B′ (ρABC) ,ωC, τAC,MB→B′ (θBC)) , (6.17)

∆α (ρABC,ωC, θBC, τAC) ≥ ∆α (NA→A′ (ρABC) ,ωC, θBC,NA→A′ (τAC)) , (6.18)

∆α (ρABC, θBC,ωC, τAC) ≥ ∆α (NA→A′ (ρABC) , θBC,ωC,NA→A′ (τAC)) . (6.19)

Proof. We first focus on establishing the inequality in (6.16) for α ∈ [1/2,1). From part (1)

of Ref. 31, Theorem 1.1, we know that the following function is jointly concave in S and T :

(S,T) ∈ B(H )++ × B(H )++ → Tr

Φ(Sp)1/2Ψ (Tq)Φ(Sp)1/2

 s
, (6.20)

for strictly positive maps Φ (·) and Ψ (·), 0 < p,q ≤ 1, and 1/2 ≤ s ≤ 1/ (p + q). We can then see

that Qα (ρABC, τAC,ωC, θBC) is of this form, with

Ψ = τ
(1−α)/2α
AC

ω
(α−1)/2α

C
(·)ω(α−1)/2α

C
τ
(1−α)/2α
AC

, (6.21)

q =
1 − α
α

, (6.22)

Φ (·) = id, (6.23)

p = 1, (6.24)

s = α. (6.25)

For the range α ∈ [1/2,1), we have that p ∈ (0,1] and 1/ (p + q) = α, so that the conditions of part

(1) of Ref. 31, Theorem 1.1 are satisfied. We conclude that Qα (ρABC, τAC,ωC, θBC) is jointly concave

in θBC and ρABC. From this, we can conclude the monotonicity in (6.16) for α ∈ [1/2,1). A similar

proof establishes the inequalities in (6.17)-(6.19) for α ∈ [1/2,1).
The proof of (6.16) for α ∈ (1,∞) is a straightforward generalization of the technique used for

Ref. 24, Proposition 3. To prove (6.16), it suffices to prove that the following function

(ρABC, θBC) ∈ S(HABC)++ × S(HABC)++ → Tr

ρ

1/2

ABC
K (α) ρ

1/2

ABC

α
(6.26)

is jointly convex for α ∈ (1,∞), where

K (α) ≡ τ(1−α)/2α
AC

ω
(α−1)/2α

C
θ
(1−α)/α
BC

ω
(α−1)/2α

C
τ
(1−α)/2α
AC

. (6.27)

To this end, consider that we can write the trace function in (6.26) as

Tr

ρ

1/2

ABC
K (α) ρ

1/2

ABC

α
= sup

H ≥0

αTr {H ρABC} − (α − 1)Tr

�
H1/2L (α) H1/2

�α/(α−1)


, (6.28)
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where

L (α) ≡ τ(α−1)/2α

AC
ω

(1−α)/2α
C

θ
(α−1)/α

BC
ω

(1−α)/2α
C

τ
(α−1)/2α

AC
, (6.29)

so that [L (α)]−1
= K (α). From the fact that the following map

S ∈ B(H )+ → Tr

�
T†SpT

�1/p
(6.30)

is concave in S for a fixed T ∈ B(H ) and for −1 ≤ p ≤ 1 [Ref. 24, Lemma 5] and the representation

formula given in (6.28), we can then conclude that the function in (6.26) is jointly convex in ρABC

and θBC for α ∈ (1,∞).
So it remains to prove the representation formula in (6.28). Recall from the alternative proof

of Ref. 24, Lemma 4 that for positive semi-definite operators X and Y and 1 < p,q < ∞ with

1/p + 1/q = 1, the following inequality holds

Tr {XY } ≤ 1

p
Tr {X p} +

1

q
Tr {Y q} , (6.31)

with equality holding if X p = Y q. To apply the inequality in (6.31), we set

X = K(α)1/2ρABCK(α)1/2, (6.32)

Y = L(α)1/2HL(α)1/2, (6.33)

p = α, (6.34)

q =
α

α − 1
. (6.35)

Applying (6.31), we find that

Tr {H ρABC} ≤
1

α
Tr


ρ

1/2

ABC
K (α) ρ

1/2

ABC

α
+
α − 1

α
Tr

�
H1/2L (α) H1/2

�α/(α−1)


, (6.36)

which can be rewritten as

αTr {H ρABC} − (α − 1)Tr

�
H1/2L (α) H1/2

�α/(α−1)


≤ Tr

ρ

1/2

ABC
K (α) ρ

1/2

ABC

α
. (6.37)

From the equality condition X p = Y q, we can see that the optimal H attaining equality is

L(α)−1/2

K(α)1/2 ρABC K(α)1/2

α−1
L(α)−1/2

. (6.38)

This proves the representation formula in (6.28). A proof similar to the above one demonstrates

(6.17)-(6.19) for α ∈ (1,∞). ■

Remark 24. It is open to determine whether Lemma 23 applies to ρABC ∈ S (HABC), τAC ∈
S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC). That is, it is not clear to us whether Lemma 23 can

be extended by a straightforward continuity argument as was the case in Ref. 24, Proposition 3,

due to the fact that ∆α features many non-commutative matrix multiplications which can interact in

non-trivial ways.

Remark 25. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++.

It is an open question to determine whether the ∆α quantities defined from (6.1), (6.7)-(6.11)

are monotone non-increasing with respect to quantum operations acting on either systems A

or B for α ∈ [1/2,1) ∪ (1,∞). It is also an open question to determine whether Iα(A; B|C)ρ is

monotone non-increasing with respect to local quantum operations acting on the system A for

α ∈ [1/2,1) ∪ (1,∞).

Corollary 26. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++.

All sandwiched Rényi generalizations of the conditional mutual information derived from

∆α (ρABC, τAC,ωC, θBC) , ∆α (ρABC,ωC, τAC, θBC) (6.39)
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are monotone non-increasing with respect to quantum operations on system B, for α ∈ [1/2,1) ∪
(1,∞). All sandwiched Rényi generalizations of the conditional mutual information derived from

∆α (ρABC,ωC, θBC, τAC) , ∆α (ρABC, θBC,ωC, τAC) (6.40)

are monotone non-increasing with respect to quantum operations on system A, for α ∈ [1/2,1) ∪
(1,∞).

Proof. The argument is exactly the same as that in the proof of Corollary 15. ■

Corollary 27. We can employ the monotonicity inequalities from Lemma 13 to conclude that

some Rényi generalizations of the conditional mutual information derived from (6.39) and (6.40)

and Proposition 2 are non-negative for all α ∈ [1/2,1) ∪ (1,∞). This includes ∆α(ρABC, ρAC, ρC,

ρBC) and the one from (6.13).

Proof. The argument proceeds similarly to that in the proof of Corollary 16. ■

Remark 28. It is an open question to determine whether all sandwiched Rényi generalizations

of the conditional mutual information designed from the different optimizations in Proposition 2 and

the different orderings in (6.1), (6.7)-(6.11) are non-negative for α ∈ [1/2,1) ∪ (1,∞).

C. Max- and min-conditional mutual information

Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++. In this section,

we define a max- and min-conditional mutual information from the following two core quantities:

∆max (ρABC, τAC,ωC, θBC) ≡ log



ρ1/2

ABC
τ
−1/2

AC
ω

1/2

C
θ−1

BCω
1/2

C
τ
−1/2

AC
ρ

1/2

ABC




∞ (6.41)

= inf

λ : ρABC ≤ exp (λ) τ

1/2

AC
ω
−1/2

C
θBCω

−1/2

C
τ

1/2

AC


, (6.42)

∆min (ρABC, τAC,ωC, θBC) ≡ ∆1/2 (ρABC, τAC,ωC, θBC) (6.43)

= − log






√
ρABC



τ
1/2

AC
ω
−1/2

C
θBCω

−1/2

C
τ

1/2

AC







2

1

(6.44)

= − log F
(

ρABC, τ
1/2

AC
ω
−1/2

C
θBCω

−1/2

C
τ

1/2

AC

)

. (6.45)

Also, the fidelity between P ∈ B(H )+ and Q ∈ B(H )+ is defined as F (P,Q) ≡ ∥
√

P
√

Q∥2
1
. These

quantities are inspired by the max-relative entropy from Ref. 17, defined as

Dmax (ρ∥σ) ≡ inf {λ : ρ ≤ exp (λ)σ} , (6.46)

when supp (ρ) ⊆ supp (σ) and +∞ otherwise, and the min-relative entropy from Ref. 40, defined as

Dmin (ρ∥σ) ≡ D1/2 (ρ∥σ) = − log F (ρ,σ) . (6.47)

We first state a generalization of the result that limα→∞ Dα (ρ∥σ) = Dmax (ρ∥σ) [Ref. 50, Theo-

rem 5]:

Proposition 29. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, andωC ∈ S(HC)++.

Then

lim
α→∞

∆α (ρABC, τAC,ωC, θBC) = ∆max (ρABC, τAC,ωC, θBC) . (6.48)

The idea for the proof is the same as that for the proof of Ref. 50, Theorem 5, and we provide it

in Appendix D. Next, we turn to monotonicity of ∆max under local quantum operations:

Proposition 30. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, andωC ∈ S(HC)++.

Let NA→A′ andMB→B′ denote local quantum operations acting on systems A and B, respectively.

Then the following monotonicity inequalities hold:

∆max (ρABC, τAC,ωC, θBC) ≥ ∆max (MB→B′ (ρABC) , τAC,ωC,MB→B′ (θBC)) , (6.49)
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∆max (ρABC,ωC, τAC, θBC) ≥ ∆max (MB→B′ (ρABC) ,ωC, τAC,MB→B′ (θBC)) , (6.50)

∆max (ρABC,ωC, θBC, τAC) ≥ ∆max (NA→A′ (ρABC) ,ωC, θBC,NA→A′ (τAC)) , (6.51)

∆max (ρABC, θBC,ωC, τAC) ≥ ∆max (NA→A′ (ρABC) , θBC,ωC,NA→A′ (τAC)) . (6.52)

Proof. We begin by establishing (6.49). Let λ∗ = ∆max (ρABC, τAC,ωC, θBC), so that

ρABC ≤ exp (λ∗) τ1/2

AC
ω
−1/2

C
θBCω

−1/2

C
τ

1/2

AC
. (6.53)

For any CPTP mapMB→B′, the inequality in (6.53) implies the following operator inequality:

MB→B′ (ρABC) ≤ exp (λ∗) τ1/2

AC
ω
−1/2

C
MB→B′ (θBC)ω

−1/2

C
τ

1/2

AC
. (6.54)

From the definition of ∆max, we can conclude that

λ
∗ ≥ ∆max (MB→B′ (ρABC) , τAC,ωC,MB→B′ (θBC)) , (6.55)

which is equivalent to (6.49). The inequalities in (6.50)-(6.52) follow from a similar line of reason-

ing. ■

We define a max-conditional mutual information as follows:

Imax(A; B|C)ρ |ρ ≡ ∆max (ρABC, ρAC, ρC, ρBC) . (6.56)

This generalizes the max-mutual information, defined in Ref. 8, and its variations.14 We define

min-conditional mutual information as follows:

Imin(A; B|C)ρ |ρ ≡ ∆min (ρABC, ρAC, ρC, ρBC) . (6.57)

The forms given above seem quite natural, as the operators ρ
1/2

AC
ρ
−1/2

C
ρBCρ

−1/2

C
ρ

1/2

AC
appear in our

review of quantum Markov states in Sec. III (however, note again that this operator is not a Markov

state unless ρABC = ρ
1/2

AC
ρ
−1/2

C
ρBCρ

−1/2

C
ρ

1/2

AC
). Note that other min- and max-conditional mutual infor-

mation quantities are possible by considering the other orderings and optimizations for the last three

arguments to ∆max and ∆min, but it is our impression that the above choice is natural.

VII. DUALITY

A fundamental property of the conditional mutual information is a duality relation: For a

four-party pure state ψABCD, the following equality holds

I(A; B|C)ψ = I(A; B|D)ψ. (7.1)

This can easily be verified by considering Schmidt decompositions of ψABCD for the different

possible bipartite cuts of ABCD (see Refs. 19 and 74 for an operational interpretation of this duality

in terms of the state redistribution protocol). Furthermore, since the conditional mutual information

is symmetric under the exchange of A and B, we have the following equalities:

I(B; A|C)ψ = I(A; B|C)ψ = I(A; B|D)ψ = I(B; A|D)ψ. (7.2)

In this section, we prove that the Rényi conditional mutual information in Definition 7 and the

sandwiched quantity in Definition 19 obey a duality relation of the above form. However, note that

other (but not all) variations satisfy duality as well. In order to prove these results, we make use of

the following standard lemma:

Lemma 31. For any bipartite pure state ψAB, any Hermitian operator MA acting on system

A, and the maximally entangled vector |Γ⟩AB ≡


j | j⟩A| j⟩B (with {| j⟩A} and {| j⟩B} orthonormal

bases), we have that

(MA ⊗ IB) |Γ⟩AB =
�
IA ⊗ MT

B

�
|Γ⟩AB, (7.3)

ψA|ψ⟩AB = ψB|ψ⟩AB, (7.4)

⟨ψ |MA ⊗ IB|ψ⟩AB = ⟨ψ |IA ⊗ MT
B |ψ⟩AB, (7.5)

where the transpose is with respect to the Schmidt basis.
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Theorem 32. The following duality relation holds for all α ∈ (0,1) ∪ (1,∞) for a pure four-

party state ψABCD:

Iα(A; B|C)ψ = Iα(B; A|D)ψ. (7.6)

Proof. Our proof exploits ideas used in the proof of Ref. 65, Lemma 6 and Ref. 64, Theorem 2.

We know from Proposition 8 that

Iα(A; B|C)ψ =
α

α − 1
log Tr



(

TrA

ψ
(α−1)/2

C
ψ
(α−1)/2

AC
ψαABCψ

(α−1)/2

AC
ψ
(α−1)/2

C

)1/α


, (7.7)

Iα(B; A|D)ψ =
α

α − 1
log Tr



(

TrB

ψ
(α−1)/2

D
ψ
(α−1)/2

BD
ψαABDψ

(α−1)/2

BD
ψ
(α−1)/2

D

)1/α


. (7.8)

Thus, we will have proved the theorem if we can show that the eigenvalues of

TrA

ψ
(α−1)/2

C
ψ
(α−1)/2

AC
ψαABCψ

(α−1)/2

AC
ψ
(α−1)/2

C


(7.9)

and

TrB

ψ
(α−1)/2

D
ψ
(α−1)/2

BD
ψαABDψ

(α−1)/2

BD
ψ
(α−1)/2

D


(7.10)

are the same. To show this, consider that

TrA

ψ
(α−1)/2

C
ψ
(α−1)/2

AC
ψαABCψ

(α−1)/2

AC
ψ
(α−1)/2

C


= TrA


ψ
(α−1)/2

C
ψ
(α−1)/2

AC
ψ
(α−1)/2

ABC
ψABCψ

(α−1)/2

ABC
ψ
(α−1)/2

AC
ψ
(α−1)/2

C


(7.11)

= TrAD

ψ
(α−1)/2

C
ψ
(α−1)/2

AC
ψ
(α−1)/2

ABC
ψABCDψ

(α−1)/2

ABC
ψ
(α−1)/2

AC
ψ
(α−1)/2

C


. (7.12)

The eigenvalues of the operator in the last line are the same as those of the operator in the first line

of what follows (from the Schmidt decomposition):

TrBC


ψ
(α−1)/2

C
ψ
(α−1)/2

AC
ψ
(α−1)/2

ABC
ψABCDψ

(α−1)/2

ABC
ψ
(α−1)/2

AC
ψ
(α−1)/2

C


= TrBC


ψ
(α−1)/2

C
ψ
(α−1)/2

AC
ψ
(α−1)/2

D
ψABCDψ

(α−1)/2

D
ψ
(α−1)/2

AC
ψ
(α−1)/2

C


(7.13)

= TrBC


ψ
(α−1)/2

D
ψ
(α−1)/2

C
ψ
(α−1)/2

AC
ψABCDψ

(α−1)/2

AC
ψ
(α−1)/2

C
ψ
(α−1)/2

D


(7.14)

= TrBC


ψ
(α−1)/2

D
ψ
(α−1)/2

C
ψ
(α−1)/2

BD
ψABCDψ

(α−1)/2

BD
ψ
(α−1)/2

C
ψ
(α−1)/2

D


(7.15)

= TrBC


ψ
(α−1)/2

D
ψ
(α−1)/2

BD
ψ
(α−1)/2

C
ψABCDψ

(α−1)/2

C
ψ
(α−1)/2

BD
ψ
(α−1)/2

D


(7.16)

= TrBC


ψ
(α−1)/2

D
ψ
(α−1)/2

BD
ψ
(α−1)/2

ABD
ψABCDψ

(α−1)/2

ABD
ψ
(α−1)/2

BD
ψ
(α−1)/2

D


(7.17)

= TrB

ψ
(α−1)/2

D
ψ
(α−1)/2

BD
ψ
(α−1)/2

ABD
ψABDψ

(α−1)/2

ABD
ψ
(α−1)/2

BD
ψ
(α−1)/2

D


(7.18)

= TrB

ψ
(α−1)/2

D
ψ
(α−1)/2

BD
ψαABDψ

(α−1)/2

BD
ψ
(α−1)/2

D


. (7.19)

In the above, we have applied (7.4) several times. ■

Theorem 33. The following duality relation holds for all α ∈ (0,1) ∪ (1,∞) for a pure four-

party state ψABCD:

Iα(A; B|C)ψ = Iα(B; A|D)ψ. (7.20)

Proof. Our proof uses ideas similar to those in the proof of Ref. 50, Theorem 10. We start by

considering the case α > 1. We recall that it is possible to express the α-norm with its dual norm

(see, e.g., Ref. 50, Lemma 12)

inf
σBC

sup
ωC




ψ1/2

ABC
ψ
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AC

ω
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C
σ

(1−α)/α
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C
ψ
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α =
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σBC
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ψ
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C
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ψ
1/2

ABC
τ
(α−1)/α

ABC


. (7.21)
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So it suffices to prove the following relation:

inf
σBC

sup
ωC

sup
τABC

Tr
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, (7.22)

becauseIα(B; A|D)ψ

= inf
σAD
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sup
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α
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log Tr
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(7.23)

Indeed, we will prove that
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(7.24)

from which one can conclude (7.22), which has the optimizations.
Proceeding, we observe that
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= ⟨Γ| ψ
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where we used standard transpose trick (7.3) for the maximally entangled vector |Γ⟩ABD |C and the

first identity from Lemma 31. For the vector

|ϕ⟩ABCD ≡
�
τTD

�(α−1)/2α
ψ
(1−α)/2α
BD

ψ
1/2

ABD

�
ωT

ABD

�(α−1)/2α
|Γ⟩ABD |C, (7.33)

we get from the second identity in Lemma 31 that
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= Tr
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. (7.38)

For the case α ∈ (0,1) the proof is similar, where we also use Ref. 50, Lemma 12. We omit the

details for this case. ■
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VIII. MONOTONICITY IN α

From numerical evidence and proofs for some special cases, we think it is natural to put

forward the following conjecture:

Conjecture 34. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++.

Then all of the Rényi core quantities ∆α and ∆α derived from (5.3), (5.7)-(5.11) and (6.1),

(6.7)-(6.11), respectively, are monotone non-decreasing in α. That is, for 0 ≤ α ≤ β, the following

inequalities hold

∆α (ρABC, τAC,ωC, θBC) ≤ ∆β (ρABC, τAC,ωC, θBC) , (8.1)

∆α (ρABC, τAC,ωC, θBC) ≤ ∆β (ρABC, τAC,ωC, θBC) , (8.2)

and similar inequalities hold for all orderings of the last three arguments of ∆α and ∆α.

If Conjecture 34 is true, we could conclude that all non-sandwiched and sandwiched Rényi

generalizations of the conditional mutual information are monotone non-decreasing in α for posi-

tive definite operators. Another implication of monotonicity in α ≥ 1/2 for ∆α (ρABC, ρAC, ρC, ρBC)

would be that a tripartite quantum state ρABC is a quantum Markov state if and only if

∆α (ρABC, ρAC, ρC, ρBC) = 0 (8.3)

(with α ≥ 1/2). This would generalize the results from Ref. 28 to the case α , 1.

Note that this conjecture does not follow straightforwardly from the following monotonicity

Dα (ρ∥σ) ≤ Dβ (ρ∥σ) , (8.4)

Dα (ρ∥σ) ≤ Dβ (ρ∥σ) , (8.5)

which holds for 0 ≤ α ≤ β.65,50 However, for classical states ρABC, the conjecture is clearly true for

∆α (ρABC, ρAC, ρC, ρBC) and ∆α (ρABC, ρAC, ρC, ρBC) by appealing to the above known inequalities.

Observe that some of the conjectured inequalities are redundant. For example, if

∆α (ρABC, τAC, θBC,ωC) ≤ ∆β (ρABC, τAC, θBC,ωC) (8.6)

holds for all ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++, then the

following monotonicity holds as well

∆α (ρABC, θBC, τAC,ωC) ≤ ∆β (ρABC, θBC, τAC,ωC) , (8.7)

due to a symmetry under the exchange of systems A and B. Similar statements apply to other pairs

of inequalities, so that it suffices to prove only six of the 12 monotonicities discussed above in

order to establish the other six. However, as we will see below, a single proof of the monotonicity

for each kind of Rényi conditional mutual information (non-sandwiched and sandwiched) should

suffice because we think one could easily generalize such a proof to the other cases.

A. Approaches for proving the conjecture

We briefly outline some approaches for proving the conjecture. One idea is to follow a proof tech-

nique from Ref. 65, Lemma 3 and Ref. 50, Theorem 7. If the derivative of ∆α (ρABC, τAC,ωC, θBC) and∆α (ρABC, τAC,ωC, θBC) with respect to α is non-negative, then we can conclude that these functions

are monotone increasing with α. It is possible to prove that the derivatives are non-negative when

α is in a neighborhood of one, by computing Taylor expansions of these functions. We explore this

approach further in Appendix E.

B. Numerical evidence

To test the conjecture in (8.1) and its variations, we conducted several numerical experiments.

First, we selected states ρABC, τAC, ωC, θBC at random,16 with the dimensions of the local systems

never exceeding six. We then computed the numerator in (E6) for values of γ ranging from −0.99
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to 10 with a step size of 0.05 (so that α = γ + 1 goes from 0.01 to 11). For each value of γ,

we conducted 1000 numerical experiments. The result was that the numerator in (E6) was always

non-negative. We then conducted the same set of experiments for the various operator orderings and

always found the numerator to be non-negative.

To test the conjecture in (8.2) and its variations, we conducted similar numerical experiments.

First, we selected states ρABC, τAC, ωC, θBC, µABC at random,16 with the dimensions of the local

systems never exceeding six. We then computed the numerator in (E15) for values of γ ranging from

−10 to 0.99 with a step size of 0.05 (so that α = 1/ (1 − γ) goes from ≈0.091 to ≈100). For each

value of γ, we conducted 1000 numerical experiments. The result was that the numerator in (E15)

was always non-negative. We then conducted the same set of experiments for the various operator

orderings and always found the numerator to be non-negative.

C. Special cases of the conjecture

We can prove that the conjecture is true in a number of cases, due to the special form that the

Rényi conditional mutual information takes in these cases. Let ρABC ∈ S(HABC)++. We define the

following quantities, which are the same as (2.3) and (2.5), respectively:

Iα(A; B|C)ρ |ρ ≡
1

α − 1
log Tr


ραABCρ

(1−α)/2
AC

ρ
(α−1)/2

C
ρ1−α

BC ρ
(α−1)/2

C
ρ
(1−α)/2
AC


, (8.8)

Iα(A; B|C)ρ |ρ ≡
α

α − 1
log




ρ1/2

ABC
ρ
(1−α)/2α
AC

ρ
(α−1)/2α

C
ρ
(1−α)/α
BC

ρ
(α−1)/2α

C
ρ
(1−α)/2α
AC

ρ
1/2

ABC




α, (8.9)

so that

I0(A; B|C)ρ |ρ = − log Tr

ρ0

ABCρ
1/2

AC
ρ
−1/2

C
ρBCρ

−1/2

C
ρ

1/2

AC


, (8.10)

I2(A; B|C)ρ |ρ = log Tr



ρ2
ABC

(

ρ
1/2

AC
ρ
−1/2

C
ρBCρ

−1/2

C
ρ

1/2

AC

)−1


. (8.11)

Recall that the following inequality holds for all α ∈ (0,1) ∪ (1,∞):18

Dα (ρ∥σ) ≤ Dα (ρ∥σ) . (8.12)

Using the monotonicity given in (8.5) and the above inequality, we can conclude that

I0(A; B|C)ρ |ρ ≤ I2(A; B|C)ρ |ρ, (8.13)

Imin(A; B|C)ρ |ρ ≤ Imax(A; B|C)ρ |ρ, (8.14)

Imin(A; B|C)ρ |ρ ≤ I2(A; B|C)ρ |ρ, (8.15)

where Imax(A; B|C)ρ |ρ and Imin(A; B|C)ρ |ρ are defined in (6.56) and (6.57), respectively. However,

we cannot relate to the (von Neumann entropy based) conditional mutual information because its

representation in terms of the relative entropy does not feature the operator ρ
1/2

AC
ρ
−1/2

C
ρBCρ

−1/2

C
ρ

1/2

AC

as its second argument but instead has exp {log ρBC + log ρAC − log ρC}.

Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, ωC ∈ S(HC)++, and θBC ∈ S(HBC)++. Tomamichel

has informed us that the inequality in (8.2) and its variations are true for 0 ≤ α ≤ β and such that

1/α + 1/β = 2.63 This is because in such a case, we have that α/ (1 − α) = −β (1 − β), so that


τ
(1−α)/2α
AC

ω
(α−1)/2α

C
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BC

ω
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C
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AC
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C
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BC

ω
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C
τ
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AC

 β/(1−β)
, (8.16)

and similar equalities hold for the five other operator orderings. Since this is the case, the

monotonicity follows directly from the ordinary monotonicity of the sandwiched Rényi relative

entropy. By a similar line of reasoning, the inequality in (8.1) and its variations are true for

0 ≤ α ≤ β and such that α + β = 2. Similarly, in such a case, we have that 1 − α = − (1 − β), so

that
τ
(1−α)/2
AC

ω
(α−1)/2

C
θ1−α

BC ω
(α−1)/2

C
τ
(1−α)/2
AC

1/(1−α)
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AC
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C
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C
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, (8.17)
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and similar equalities hold for the five other operator orderings. Then the monotonicity again follows

from the ordinary monotonicity of the Rényi relative entropy. The observations in (8.13) and (8.14)

are then special cases of the above observations.

D. Implications for tripartite states with small conditional mutual information

It has been an open question since the work in Ref. 28 to characterize tripartite quantum states

ρABC with small conditional mutual information I(A; B|C)ρ. That is, given that the various quantum

Markov state conditions in (4.37) and (4.38)-(4.40) are equivalent to I(A; B|C)ρ being equal to

zero, we would like to understand what happens when we perturb these various conditions. In this

section, we pursue this direction and explicitly show how Conjecture 34 could be used to address

this important question.

Several researchers have already considered what happens when perturbing the quantum Markov

state condition in (4.37), but we include a discussion here for completeness. To begin with, we know

that if there exists a quantum Markov state µABC ∈ MA−C−B such that

∥ρABC − µABC∥1 ≤ ε (8.18)

then

I(A; B|C)µ = 0, (8.19)

I(A; B|C)ρ ≤ 8ε log min {dA,dB} + 4h2 (ε) , (8.20)

where

h2 (x) ≡ −x log x − (1 − x) log (1 − x) (8.21)

is the binary entropy, which obeys

lim
ε↘0

h2 (ε) = 0. (8.22)

The first line is by definition and the second follows from an application of the Alicki-Fannes

inequality.3 However, the example in Ref. 12 and the subsequent development in Ref. 22 exclude a

particular converse of the above bound. That is, by Ref. 12, Lemma 6, there exists a sequence of

states ρd
ABC

such that

I(A; B|C)ρd = 2 log ((d + 2) /d) , (8.23)

which goes to zero as d → ∞. However, for this same sequence of states, the following constant

lower bound is known:

min
µABC∈MA−C−B

D0

�
ρdABC ∥µABC

�
≥ log



4/3, (8.24)

by Ref. 22, Theorem 1. By employing monotonicity of the Rényi relative entropy with respect to the

Rényi parameter, so that D1/2 ≥ D0, and the well-known relation 1 − ∥ω − τ∥1/2 ≤ Tr{
√
ω
√
τ} for

ω,τ ∈ S (H ) (see, e.g., Ref. 10, Eq. (22)), we can readily translate the bound in (8.24) to a constant

lower bound on the trace distance of ρd
ABC

to the set of quantum Markov states

�
ρdABC −MA−C−B

�
1
≡ min

µABC∈MA−C−B

�
ρdABC − µABC

�
1
≥ 2

(

1 − (3/4)1/4
)

≈ 0.139. (8.25)

So (8.23) and (8.25) imply that a Pinsker-like bound of the form I(A; B|C)ρ ≥ K ∥ρABC −MA−C−B∥
2
1

cannot hold in general, with K a dimension-independent constant.

We now focus on a perturbation of the conditions in (4.38) and (4.39). It appears that these

cases will be promising for applications if Conjecture 34 is true. The following proposition states

that the conditional mutual information is small if it is possible to recover the system A from

system C alone (or by symmetry, if one can get B from C alone). We note that (8.28) was proven

independently in Ref. 23, Eq. (8).
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Proposition 35. Let ρABC ∈ S (HABC), RC→AC be a CPTP “recovery” map, and ε ∈ [0,1].
Suppose that it is possible to recover the system A from system C alone, in the following sense:

∥ρABC − ωABC∥1 ≤ ε, (8.26)

where

ωABC ≡ RC→AC (ρBC) . (8.27)

Then the conditional mutual informations I(A; B|C)ρ and I(A; B|C)ω obey the following bounds:

I(A; B|C)ρ ≤ 4ε log dB + 2h2 (ε) , (8.28)

I(A; B|C)ω ≤ 4ε log dB + 2h2 (ε) , (8.29)

where dB is the dimension of the B system and h2 (ε) is defined in (8.21). By symmetry, a related

bound holds if one can recover system B from system C alone.

Proof. Consider that

I(A; B|C)ρ = H(B|C)ρ − H(B|AC)ρ (8.30)

≤ H(B|AC)ω − H(B|AC)ρ (8.31)

≤ H(B|AC)ω − H(B|AC)ω + 4ε log dB + 2h2 (ε) (8.32)

= 4ε log dB + 2h2 (ε) . (8.33)

The first inequality follows because the conditional entropy is monotone increasing under quantum

operations on the conditioning system (the map RC→AC is applied to the system C of state ρABC

to produce ωABC and the conditional entropy only increases under such processing). The second

inequality is a result of (8.26) and the Alicki-Fannes inequality3 (continuity of conditional entropy).

Similarly, consider that

I(A; B|C)ω = H(B|C)ω − H(B|AC)ω (8.34)

≤ H(B|C)ρ − H(B|AC)ω + 4ε log dB + 2h2 (ε) (8.35)

≤ H(B|AC)ω − H(B|AC)ω + 4ε log dB + 2h2 (ε) (8.36)

= 4ε log dB + 2h2 (ε) . (8.37)

The first inequality is from the fact that (8.26) implies that

∥ρBC − ωBC∥1 ≤ ε (8.38)

and the Alicki-Fannes’ inequality. The second is again from monotonicity of conditional entropy. ■

The implications of Conjecture 34 are nontrivial. For example, if it were true, then we could

conclude a converse of Proposition 35, that if the conditional mutual information is small, then it is

possible to recover the system A from system C alone (or by symmetry, that one can get B from C

alone). That is, the following relation would hold for ρABC ∈ S(HABC)++:

I(A; B|C)ρ ≥ Imin (A; B|C)ρ |ρ (8.39)

= − log F
(

ρABC, ρ
1/2

AC
ρ
−1/2

C
ρBCρ

−1/2

C
ρ

1/2

AC

)

(8.40)

= − log F
�
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�

(8.41)

≥ − log

1 −
(

1

2
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�

1

)2 (8.42)

≥ 1

4

�
ρABC − RP

C→AC (ρBC)
�2

1
, (8.43)

where RP
C→AC

is Petz’s transpose map discussed in Ref. 28

RP
C→AC(·) ≡ ρ

1/2

AC
ρ
−1/2

C
(·)ρ−1/2

C
ρ

1/2

AC
. (8.44)

In the above, the first inequality would follow from Conjecture 34, the second is a result of well

known relations between trace distance and fidelity,25 and the last is a consequence of the inequality
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− log (1 − x) ≥ x, valid for x ≤ 1. Thus, the truth of Conjecture 34 would establish the truth of an

open conjecture from Ref. 37 (up to a constant). As pointed out in Ref. 37, this would then imply

that for tripartite states ρABC with conditional mutual information I(A; B|C)ρ small (i.e., states that

fulfill strong subadditivity with near equality), Petz’s transpose map for the partial trace over A is

good for recovering ρABC from ρBC. Hence, even though ρABC does not have to be close to a quan-

tum Markov state if I(A; B|C)ρ is small (as discussed above), A would still be nearly independent

of B from the perspective of C in the sense that ρABC could be approximately recovered from ρBC

alone. This would give an operationally useful characterization of states that fulfill strong subad-

ditivity with near equality and would be helpful for answering some open questions concerning

squashed entanglement, as discussed in Ref. 73.

For the quantum Markov state condition in (4.40), for simplicity, we consider instead the

“relative entropy distance” between ρABC and ςABC, where

ςABC ≡ exp {log ρAC + log ρBC − log ρC} . (8.45)

So if

D (ρABC∥ςABC) ≤ ε, (8.46)

then we can conclude that

I(A; B|C)ρ = D (ρABC∥ςABC) ≤ ε. (8.47)

If desired, one can also obtain an ε-dependent upper bound on I(A; B|C)ς′, where ς ′
ABC
≡ ςABC/

Tr {ςABC}, which vanishes in the limit as ε goes to zero. This can be accomplished by employing the

bound in Corollary 4 and by bounding Tr{ςABC} from below by 1 − ∥ρABC − ςABC∥1. The bound in

Corollary 4 also serves as a converse of these bounds: if the conditional mutual information is small,

then the trace distance between ρABC and ςABC is small. However, it is not clear that a perturbation

of the quantum Markov state condition in (4.40) will be as useful in applications as a perturbation

of (4.38) and (4.39) would be, mainly because the map ρABC → exp {log ρAC + log ρBC − log ρC} is

non-linear (as discussed in Ref. 35).

IX. DISCUSSION

This paper has defined several Rényi generalizations of the CQMI quantities that satisfy

properties that should find use in applications. Namely, we showed that these generalizations are

non-negative and are monotone under local quantum operations on one of the systems A or B.

An important open question is to prove that they are monotone under local quantum operations

on both systems. Some of the Rényi generalizations satisfy a generalization of the duality relation

I(A; B|C) = I(A; B|D), which holds for a four-party pure state ψABCD. We conjecture that these

Rényi generalizations of the CQMI are monotone non-decreasing in the Rényi parameter α, and

we have proved that this conjecture is true when α is in a neighborhood of one and in some other

special cases. The truth of this conjecture in general would have implications in condensed matter

physics, as detailed in Ref. 37, and quantum communication complexity, as mentioned in Ref. 68.

Based on the fact that the conditional mutual information can be written as

I(A; B|C)ρ = D (ρABC∥ exp {log ρAC + log ρBC − log ρC}) , (9.1)

one could consider another Rényi generalization of the conditional mutual information, such as

Dα (ρABC∥ exp {log ρAC + log ρBC − log ρC}) , (9.2)

or with the sandwiched variant. However, it is unclear to us whether (9.2) is monotone under local

operations, which we have argued is an important property for a Rényi generalization of conditional

mutual information.

There are many directions to consider going forward from this paper. First, one could improve

many of the results here on a technical level. It would be interesting to understand in depth the limits

in (4.5), (5.6), and (6.6) in order to establish the most general support conditions for the ∆, ∆α,

and ∆α quantities, respectively, as has been done for the quantum and Rényi relative entropies, as
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recalled in (3.2), (3.4), and (3.6). Next, if one could establish uniform convergence of the ∆α and ∆α
quantities as α goes to one, then we could conclude that the optimized versions of these quantities

converge to the conditional mutual information in this limit. One might also attempt to extend

Theorem 11, Theorem 20, and Lemma 23 to hold for positive semi-definite density operators.

As far as applications are concerned, one could explore a Rényi squashed entanglement and

determine if several properties hold which are analogous to the squashed entanglement.13 Such a

quantity might be helpful in strengthening Ref. 13, Proposition 10, so that the squashed entan-

glement could be interpreted as a strong converse upper bound on distillable entanglement. More

generally, it might be helpful in strengthening the main result of Ref. 61, so that the upper bound

established on the two-way assisted quantum capacity could be interpreted as a strong converse

rate. The quantities defined here might be useful in the context of one-shot information theory,

for example, to establish a one-shot state redistribution protocol as an extension of the main result

of Ref. 19. Preliminary results on Rényi squashed entanglement and discord are discussed in our

follow-up paper.56 One could also explore applications of the Rényi conditional mutual informa-

tions in the context of condensed matter physics or high energy physics, as the Rényi entropy has

been employed extensively in these contexts.9

Finally, these potential applications in information theory and physics should help in singling

out some of our many possible definitions for Rényi conditional mutual information.
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APPENDIX A: SIBSON IDENTITY FOR THE RÉNYI CONDITIONAL
MUTUAL INFORMATION

The Rényi conditional mutual information in Definition 7 has an explicit form, much like other

Rényi information quantities.41,57,26,64 We prove this in two steps, first by proving the following

Sibson identity.58

Lemma 36. The following quantum Sibson identity holds when supp (ρABC) ⊆ supp (σBC) and

for α ∈ (0,1) ∪ (1,∞):

∆α (ρABC, ρAC, ρC,σBC) = ∆α
�
ρABC, ρAC, ρC,σ

∗
BC

�
+ Dα

�
σ∗BC∥σBC

�
, (A1)

with the state σ∗
BC

having the form

σ∗BC ≡

(

TrA

ρ
(α−1)/2

C
ρ
(1−α)/2
AC

ρα
ABC

ρ
(1−α)/2
AC

ρ
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C

)1/α

Tr
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(
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ρ
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C
ρ
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AC

ρα
ABC

ρ
(1−α)/2
AC

ρ
(α−1)/2

C

)1/α
 . (A2)

Proof. The relation for σ∗
BC

implies that


σ∗BCTr



(

TrA

ρ
(α−1)/2

C
ρ
(1−α)/2
AC

ραABCρ
(1−α)/2
AC

ρ
(α−1)/2

C

)1/α
α

= TrA

ρ
(α−1)/2

C
ρ
(1−α)/2
AC

ραABCρ
(1−α)/2
AC

ρ
(α−1)/2

C


. (A3)

Then consider that
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∆α (ρABC, ρAC, ρC,σBC)

=
1

α − 1
log Tr


ραABCρ

(1−α)/2
AC

ρ
(α−1)/2

C
σ1−α

BC ρ
(α−1)/2

C
ρ
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AC


(A4)

=
1

α − 1
log Tr
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ρ
(α−1)/2

C
ρ
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AC
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(1−α)/2
AC

ρ
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C
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
(A5)

=
1

α − 1
log Tr
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TrA
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ρ
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C
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AC
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AC

ρ
(α−1)/2

C


σ1−α

BC


(A6)

=
1

α − 1
log Tr

��
σ∗BC

�α
σ1−α

BC

	
+

α

α − 1
log Tr



(
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
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(A7)

Now consider expanding the following:

∆α

�
ρABC, ρAC, ρC,σ

∗
BC

�
=

1

α − 1
log Tr


ρ
(α−1)/2

C
ρ
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AC
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AC

ρ
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C
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=
1

α − 1
log Tr


TrA


ρ
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C
ρ
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AC

ραABCρ
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AC

ρ
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=
1

α − 1
log Tr

 
TrA


ρ
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C
ρ
(1−α)/2
AC
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(1−α)/2
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C
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(A10)

+ log Tr



(

TrA

ρ
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C
ρ
(1−α)/2
AC

ραABCρ
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AC

ρ
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C
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(A11)

=
α

α − 1
log Tr



(
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
ρ
(α−1)/2

C
ρ
(1−α)/2
AC

ραABCρ
(1−α)/2
AC

ρ
(α−1)/2

C

)1/α


. (A12)

Putting everything together, we can conclude the statement of the lemma. ■

Corollary 37. The Rényi conditional mutual information has the following explicit form for

α ∈ (0,1) ∪ (1,∞):

Iα(A; B|C)ρ =
α

α − 1
log Tr



(

ρ
(α−1)/2

C
TrA


ρ
(1−α)/2
AC

ραABCρ
(1−α)/2
AC


ρ
(α−1)/2

C

)1/α


. (A13)

The infimum in Iα(A; B|C)ρ is achieved uniquely by the state in (A2), so that it can be replaced by a

minimum.

Proof. This follows from the previous lemma:

Iα(A; B|C)ρ = inf
σBC

∆α (ρABC, ρAC, ρC,σBC) (A14)

= inf
σBC

�
∆α

�
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�
+ Dα

�
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��
(A15)

= ∆α
�
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∗
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�
(A16)

=
α

α − 1
log Tr



(

TrA

ρ
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C
ρ
(1−α)/2
AC

ραABCρ
(1−α)/2
AC

ρ
(α−1)/2

C

)1/α


. (A17)

■

Other Sibson identities hold for other variations of the Rényi conditional mutual information

(whenever the innermost operator is optimized over and the others are the marginals of ρABC). The

proof for this is the same as given above.

APPENDIX B: CONVERGENCE OF THE RÉNYI CONDITIONAL MUTUAL INFORMATION

Before giving a proof of Theorem 11, we first establish the following lemma, which is a slight

extension of Ref. 50, Proposition 15.

Lemma 38. Let Z (α) ∈ B(H )++ be an operator-valued function and let f (α) be a function,

both continuously differentiable in α for all α ∈ (0,∞). Then the derivative d
dα

Tr{Z(α) f (α)} exists
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and is equal to

d

dα
Tr


Z(α) f (α)


=

(

d

dα
f (α)

)

Tr

Z(α) f (α) log Z (α)


+ f (α)Tr



Z(α) f (α)−1 d

dα
Z (α)



. (B1)

Proof. We proceed as in Ref. 51, Theorem 2.7 or Ref. 50, Proposition 15. Consider that

Z(α + h) f (α+h) − Z(α) f (α)

=

 1

0

ds
d

ds


Z(α + h)s f (α+h)Z(α)(1−s) f (α)


(B2)

=

 1

0

ds Z(α + h)s f (α+h)

log Z(α + h) f (α+h) − log Z(α) f (α)


Z(α)(1−s) f (α). (B3)

Taking the trace, we get

Tr

Z(α + h) f (α+h)


− Tr


Z(α) f (α)


= f (α + h)

 1

0

ds Tr

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

( f (α + h) − f (α))

 1

0

ds Tr

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
. (B4)

Dividing by h and taking the limit as h → 0, we find

lim
h→0

1

h


Tr


Z(α + h) f (α+h)


− Tr


Z(α) f (α)
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0
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, (B5)

which is equal to

f (α)Tr



Z(α) f (α)
d

dα
[log Z (α)]



+

(

d

dα
f (α)

)

Tr

Z(α) f (α) log Z (α)


. (B6)

Carrying out the same arguments as in Ref. 51, Theorem 2.7 or Ref. 50, Proposition 15 in order to

compute d
dα

[log Z (α)], we recover the formula in the statement of the lemma. ■

We now provide a proof of Theorem 11. The idea is similar to that in the proof of Theorem 9.

To this end, we again invoke L’Hôpital’s rule. We begin by defining

G (α) ≡ ρ(α−1)/2

C
TrA


ρ
(1−α)/2
AC

ραABCρ
(1−α)/2
AC


ρ
(α−1)/2

C
, (B7)

which implies that

Iα(A; B|C)ρ =
1

1 − 1
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log Tr

G(α)1/α


. (B8)

Applying Lemma 38 to G (α) and the function 1/α, we find that

d
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Also, we have that
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Applying L’Hôpital’s rule gives

lim
α→1

Iα(A; B|C)ρ = lim
α→1

−Tr
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Consider that

lim
α→1

G(α)(1−α)/α =
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= ρ0
BC. (B13)

Evaluating the limits above one at a time and using that supp(ρABC) ⊆ supp (ρAC) ⊆ supp (ρC) (see,

e.g., Ref. 54, Lemma B.4.1), we find that

lim
α→1
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= 1, (B15)
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Putting all of this together, we can see that the limit in (B11) evaluates to

lim
α→1

Iα(A; B|C)ρ = ∆ (ρABC, ρAC, ρC, ρBC) (B19)

= I(A; B|C)ρ. (B20)

APPENDIX C: CONVERGENCE OF THE ∆α QUANTITIES

This section presents a proof of Theorem 20. We will consider L’Hôpital’s rule in order to evaluate

the limit of ∆α as α → 1, due to the presence of the denominator term α − 1 in ∆α. Consider that

Qα (ρABC, τAC,ωC, θBC) = Tr {[ZABC (α)]
α} , (C1)

where

ZABC (α) ≡ ρ1/2
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We begin by computing
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Applying Lemma 38 to ZABC (α) and the function α, we find that
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and
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, (C6)

we find that
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Since we assume that supp(ρABC) is contained in each of supp(τAC), supp(ωC), and supp(θBC), we

can see that

lim
α→1

d

dα
Qα (ρABC, τAC,ωC, θBC) = ∆ (ρABC, τAC,ωC, θBC) , (C8)

lim
α→1

Qα (ρABC, τAC,ωC, θBC) = 1, (C9)

by applying the relations ρABC = ρ
0
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ρABCρ
0
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, ρ0
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,
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0
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, and their Hermitian conjugates. Applying L’Hôpital’s rule, we find that

lim
α→1

∆α (ρABC, τAC,ωC, θBC) = lim
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d
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= ∆ (ρABC, τAC,ωC, θBC) . (C11)

Essentially the same proof establishes the limiting relation for the other ∆α quantities defined from

(6.7) to (6.11).



022205-34 Berta, Seshadreesan, and Wilde J. Math. Phys. 56, 022205 (2015)

APPENDIX D: CONVERGENCE TO ∆max

This section gives a proof of Proposition 29. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈
S(HBC)++, and ωC ∈ S(HC)++. We prove that

lim
α→∞

∆α (ρABC, τAC,ωC, θBC) = ∆max (ρABC, τAC,ωC, θBC) . (D1)

The method of proof is the same as that for Ref. 50, Theorem 5. By the reverse triangle inequality

for the α norm, we have that
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Then
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= ∆max (ρABC, τAC,ωC, θBC) (D7)

and

lim
α→∞
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= ∆max (ρABC, τAC,ωC, θBC) . (D12)

APPENDIX E: APPROACHES FOR PROVING CONJECTURE 34 AND PROOF
FOR A SPECIAL CASE

This section gives more details regarding the approach outlined in Sec. VIII A for proving

Conjecture 34. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++. We

begin by introducing a variable

γ = α − 1, (E1)
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and with

Y (γ) ≡ ρ1+γ

ABC
τ
−γ
2

AC
ω

γ

2

C
θ
−γ
BC
ω

γ

2

C
τ
−γ
2

AC
, (E2)

it follows that ∆α (ρABC, τAC,ωC, θBC) is equal to

1

α − 1
log Tr



ραABCτ
1−α

2

AC
ω

α−1
2

C
θ1−α

BC ω
α−1

2

C
τ

1−α
2

AC



=
1

γ
log Tr {Y (γ)} . (E3)

Since dγ/dα = 1,

d

dα


1

α − 1
log Tr



ραABCτ
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2

AC
ω
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1−α
2
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


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d

dγ


1

γ
log Tr {Y (γ)}


. (E4)

We can then explicitly compute the derivative

d

dγ


1

γ
log Tr {Y (γ)}


= − 1

γ2
log Tr {Y (γ)} +

Tr


d
dγ

Y (γ)


γTr {Y (γ)}
(E5)

=
γTr


d
dγ

Y (γ)

− Tr {Y (γ)} log Tr {Y (γ)}

γ2Tr {Y (γ)}
. (E6)

So

γ
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. (E7)

If it is true that the numerator in (E6) is non-negative for all ρABC, then we can conclude the

monotonicity in α.

A potential path for proving the conjecture for the sandwiched version is to follow a similar

approach developed by Tomamichel et al. (see the proof of Ref. 50, Theorem 7). Since we can write

∆α (ρABC, τAC,ωC, θBC) = max
γABC

Dα (ρ, τ,ω,θ,γ) , (E8)

where

Dα (ρ, τ,ω,θ, µ) ≡
α

α − 1
log Tr


ρ

1/2

ABC
τ
(1−α)/2α
AC

ω
(α−1)/2α

C
θ
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BC

ω
(α−1)/2α

C
τ
(1−α)/2α
AC

ρ
1/2

ABC
µ
(α−1)/α

ABC


,

(E9)

it suffices to prove that Dα (ρ, τ,ω,θ, µ) is monotone in α. For this purpose, the idea is similar to the

above (i.e., try to show that the derivative of Dα (ρ, τ,ω,θ, µ) with respect to α is non-negative). To

this end, now let

γ =
α − 1

α
, (E10)

and with

Z (γ) ≡ ρ1/2

ABC
τ
−γ
2

AC
ω

γ

2

C
θ
−γ
BC
ω

γ

2

C
τ
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2

AC
ρ

1/2

ABC
µ
γ

ABC
, (E11)

it follows that (E9) is equal to

Dα (ρ, τ,ω,θ, µ) =
1

γ
log Tr {Z (γ)} . (E12)

Then since dγ/dα = 1/α2,

d

dα

Dα (ρ, τ,ω,θ, µ)

=

1

α2

d

dγ


1

γ
log Tr {Z (γ)}


. (E13)
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Computing the derivative then results in

d

dγ


1

γ
log Tr {Z (γ)}


= − 1

γ2
log Tr {Z (γ)} +

Tr


d
dγ

Z (γ)


γTr {Z (γ)}
(E14)

=
γTr


d
dγ

Z (γ)

− Tr {Z (γ)} log Tr {Z (γ)}

γ2Tr {Z (γ)}
. (E15)

The calculation of the derivative γTr


d
dγ

Z (γ)


is very similar to what we have shown above. So,

in order to prove the conjecture, it suffices to prove that the numerator of the last line above is

non-negative.

If the above approach is successful, one could take essentially the same approach to prove all of

the other conjectured monotonicities detailed in Conjecture 34.

1. Proof of Conjecture 34 for α in a neighborhood of one

We can prove that the numerator of (E6) is non-negative for γ in a neighborhood of zero. To

this end, consider a Taylor expansion of Y (γ) in (E2) around γ equal to zero (so around α equal to

one). Indeed, consider that

X1+γ = X + γX log X +
γ2

2
X log2X +O

�
γ3
�
, (E16)

Xγ = I + γ log X +
γ2

2
log2 X +O

�
γ3
�
. (E17)

For our case, we make the following substitutions into Tr{Y (γ)}:

ρ
1+γ

ABC
= ρABC + γρABC log ρABC +

γ2

2
ρABC log2 ρABC +O

�
γ3
�
, (E18)

θ
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BC
= I − γ

2
log θBC +
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8
log2 θBC +O

�
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�
, (E19)

ω
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2

C
= I +

γ

2
logωC +

γ2

8
log2 ωC +O

�
γ3
�
, (E20)

τ
−γ
AC
= I − γ log τAC +

γ2

2
log2 τAC +O

�
γ3
�
. (E21)

After a rather tedious calculation, we find that

Tr {Y (γ)} = Tr {ρABC} + γ∆ (ρ, τ,ω,θ) +
γ2

2


V (ρ, τ,ω,θ) + [∆ (ρ, τ,ω,θ)]2


+O

�
γ3
�
, (E22)

where V (ρ, τ,ω,θ) is a quantity for which it seems natural to call the tripartite information variance

V (ρ, τ,ω,θ) ≡ Tr

ρABC[log ρABC − log τAC − log θBC + logωC − ∆ (ρ, τ,ω,θ)]2


. (E23)

A special case of this is a quantity which we can call the conditional mutual information variance of

ρABC

V (A; B|C)ρ ≡ Tr



ρABC


log ρABC − log ρAC − log ρBC + log ρC − I(A; B|C)ρ

2


. (E24)

The mutual information variance defined in Ref. 66 is a special case of the above quantity when C is

trivial. For any Hermitian operator H , we have that

H2

�
ρ
− ⟨H⟩2

ρ ≥ 0. (E25)

So taking H ≡ log ρABC − log τAC − log θBC + logωC, we conclude that V (ρ, τ,ω,θ) ≥ 0, an obser-

vation central to our development here. We will make the abbreviations ∆ ≡ ∆ (ρ, τ,ω,θ) and

V ≡ V (ρ, τ,ω,θ) from here forward, so that

Tr {Y (γ)} = 1 + γ∆ +
γ2

2

�
V + ∆2

�
+O

�
γ3
�
. (E26)
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So this implies that

γTr



d

dγ
Y (γ)


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�
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�
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�
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�
, (E27)

Tr {Y (γ)} log Tr {Y (γ)} =


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�
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(E28)

Then for small γ, we have the following Taylor expansion for the logarithm:

log
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= γ∆ +
γ2

2
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�
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, (E30)

which gives

Tr {Y (γ)} log Tr {Y (γ)} =
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Finally, we can say that

γTr



d

dγ
Y (γ)
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− Tr {Y (γ)} log Tr {Y (γ)} = γ∆ + γ2
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. (E32)

If V > 0, we can conclude that as long as γ is very near to zero, all terms O
�
γ3
�

are negligible

in comparison to
γ2

2
V , and the monotonicity holds in such a regime. A development similar to the

above, one establishes the other variations of (8.1) for γ in a neighborhood of zero. (Note that this

argument does not work if V = 0.)

A similar kind of development shows that the conjecture in (8.2) and its variations hold for

γ in a neighborhood of zero. We only sketch the main idea since it is similar to the previous

development. We first observe that we can rewrite Tr{Z (γ)} in the following way:

Tr {Z (γ)} = ⟨ϕ| τ
−γ
2

AC
ω

γ

2

C
θ
−γ
BC
ω

γ

2

C
τ
−γ
2

AC
ρ

1/2

ABC
⊗
�
µTA′B′C′

�γ
|ϕ⟩ , (E33)

where A′B′C ′ are some systems isomorphic to ABC and

|ϕ⟩ABC,A′B′C′ ≡ ρ1/2

ABC
⊗ IA′B′C′|Γ⟩ABC,A′B′C, (E34)

with |Γ⟩ the maximally entangled vector. Then a Taylor expansion about γ = 0 (another tedious

calculation) gives that

Tr {Z (γ)} = Tr {ρABC} + γ ⟨ϕ| HABC,A′B′C′ |ϕ⟩ +
γ2

2
⟨ϕ| H2

ABC,A′B′C′ |ϕ⟩ +O
�
γ3
�
, (E35)

where

HABC,A′B′C′ ≡ logωC − log τAC − log θBC + log µTA′B′C′. (E36)

Then we know that

⟨ϕ| H2
ABC,A′B′C′ |ϕ⟩ −

�
⟨ϕ| HABC,A′B′C′ |ϕ⟩

�2 ≥ 0. (E37)

From here, we can show that the numerator of (E15) is non-negative for small γ by following the

same development as in (E26)-(E32) (substitute ⟨ϕ| HABC,A′B′C′ |ϕ⟩ for ∆ and the LHS in (E37) for

V ). The development for the other variations of (8.2) is similar.
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APPENDIX F: DIMENSION BOUNDS AND OTHER INEQUALITIES

For the bounds in this appendix, we make the following definitions:

I ′′α (A; B|C)ρ ≡ inf
σABC

∆α (ρABC,σAC,σC,σBC) , (F1)

I ′′α (A; B|C)ρ ≡ inf
σABC

∆α (ρABC,σAC,σC,σBC) , (F2)

where the optimizations are over σABC such that supp(ρABC) ⊆ supp (σABC).

Proposition 39. Let ρABC ∈ S (HABC). The following dimension bound holds for α ∈ [0,1) ∪
(1,2]:

I ′′α (A; B|C)ρ ≤ 2 min {log dA, log dB} , (F3)

and the following one holds for α ∈ (1/2,1) ∪ (1,∞):

I ′′α (A; B|C)ρ ≤ 2 min {log dA, log dB} . (F4)

Proof. We first prove that the following dimension bounds hold

I ′′α (A; B|C)ρ ≤ log dA − Hα(A|BC)ρ, (F5)

I ′′α (A; B|C)ρ ≤ log dB − Hα(B|AC)ρ, (F6)

I ′′α (A; B|C)ρ ≤ log dA − Hα(A|BC)ρ, (F7)

I ′′α (A; B|C)ρ ≤ log dB − Hα(B|AC)ρ. (F8)

The inequality in (F6) follows from

I ′′α (A; B|C)ρ = inf
σABC

1

α − 1
log Tr


ραABCσ
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AC

σ
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C
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
(F9)

≤ inf
σAC

1

α − 1
log Tr


ραABCσ

(1−α)/2
AC

σ
(α−1)/2

C
(πB ⊗ σC)

1−α
σ

(α−1)/2

C
σ

(1−α)/2
AC


(F10)

= inf
σAC

1

α − 1
log Tr

�
ραABCπ

1−α
B σ1−α

AC

	
(F11)

= log dB −
(

−min
σAC

1

α − 1
log Tr

�
ραABCσ

1−α
AC

	)
(F12)

= log dB − Hα(B|AC)ρ, (F13)

where πB = IB/dB and Hα(B|AC)ρ ≡ − infσAC
Dα(ρABC∥IB ⊗ σAC) as in (1.10). The bound in (F5)

follows similarly by choosing σABC = πA ⊗ σBC. The proofs for the sandwiched Rényi CMIs follow

similarly, except we end up with the sandwiched Rényi conditional entropy in the upper bound.

To prove (F3), we use the duality relation proved in Ref. 65, Lemma 6. From (F5), we know

that

I ′′α (A; B|C)ρ ≤ log dA + inf
σBC

1

α − 1
log Tr

�
ραABCσ

1−α
BC

	
(F14)

≤ log dA +
1

α − 1
log Tr

�
ραABCρ

1−α
BC

	
(F15)

≡ log dA − Hα(A|BC)ρ |ρ (F16)

= log dA + Hβ(A|D)ρ |ρ (F17)

≤ log dA + Hβ(A)ρ (F18)

≤ 2 log dA, (F19)

where Hα(A|BC)ρ |ρ ≡ −Dα(ρABC∥IA ⊗ ρBC). The second equality follows from the duality from

Ref. 65, Lemma 6, i.e.,

Hα(A|BC)ρ |ρ = −Hβ(A|D)ρ |ρ, (F20)
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where ρABCD is a purification of ρABC and β is chosen so that α + β = 2. The third inequality

follows from data processing and the last from a dimension bound on the Rényi entropy.

The inequality (F4) follows from the duality of the sandwiched conditional Rényi entropy

Ref. 50, Theorem 10:

Hα(A|BC)ρ = −Hβ(A|D)ρ, (F21)

where Hα(A|BC)ρ ≡ − infσBC
Dα(ρABC∥IA ⊗ σBC), ρABCD is a purification of ρABC and β is chosen

so that 1
α
+ 1

β
= 2. So this means that

I ′′α (A; B|C)ρ ≤ log dA − Hα(A|BC)ρ (F22)

= log dA + Hβ(A|D)ρ (F23)

≤ log dA + Hβ(A)ρ (F24)

≤ 2 log dA, (F25)

where the second inequality follows from data processing and the last is a universal bound on the

Rényi entropy. ■

Proposition 40. Let ρABC ∈ S (HABC). The following bounds hold for α ∈ [0,1) ∪ (1,∞):
I ′′α (A; B|C)ρ ≤ Iα(A; BC)ρ, (F26)

I ′′α (A; B|C)ρ ≤ Iα(B; AC)ρ, (F27)

and the following hold for α ∈ (0,1) ∪ (1,∞):
I ′′α (A; B|C)ρ ≤ Iα(A; BC)ρ, (F28)

I ′′α (A; B|C)ρ ≤ Iα(B; AC)ρ. (F29)

Proof. A proof for the first inequality follows from

I ′′α (A; B|C)ρ = inf
σABC

1

α − 1
log Tr


ραABCσ

(1−α)/2
AC

σ
(α−1)/2

C
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BC σ
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C
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(F30)

≤ inf
σBC

1

α − 1
log Tr


ραABC(ρA ⊗ σC)
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(α−1)/2

C
σ1−α

BC σ
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C
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(F31)

= inf
σBC

1

α − 1
log Tr

�
ραABC

�
ρ1−α
A ⊗ σ1−α

BC

�	
(F32)

≡ Iα(A; BC)ρ, (F33)

as defined in (1.11). A proof for the second inequality follows similarly by choosing σABC =

ρB ⊗ σAC. Proofs for the last two inequalities are similar, except the sandwiched Rényi mutual

information is defined for a bipartite state ρAB as

Iα(A; B)ρ ≡ inf
σB

1

α − 1
log Tr

 
(ρA ⊗ σB)

1−α
2α ρAB(ρA ⊗ σB)

1−α
2α

α
. (F34)
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