
J
H
E
P
0
5
(
2
0
1
7
)
0
3
6

Published for SISSA by Springer

Received: February 25, 2017

Accepted: April 23, 2017

Published: May 8, 2017

Reopening the Higgs portal for single scalar dark

matter

J.A. Casas,a D.G. Cerdeño,a,b J.M. Morenoa and J. Quilisa
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minimal, renormalizable extension that could evade detection, consisting of the addition of

an extra real singlet scalar field in the dark sector. We analyze the physical constraints on

the model and show that the new annihilation and/or coannihilation channels involving the

extra singlet allow to reproduce the correct DM relic abundance while avoiding the bounds

from direct and indirect searches for any DM mass above 50GeV. We also show that, in

some interesting regions of the parameter space, the extra particle can be integrated-out,

leaving a “clever” effective theory (just involving the DM particle and the Higgs), that

essentially reproduces the results.
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1 Introduction

The nature of more than 80% of the matter in our Universe is still unknown. Over the past

century, substantial evidence has been collected from astrophysical and cosmological obser-

vations that supports the existence of a new type of dark matter (DM), that does not emit

or absorb light, and that cannot be explained by the Standard Model (SM). This window

to new physics is currently being thoroughly probed by dedicated direct and indirect DM

experiments, as well as by the Large Hadron Collider (LHC), with increasing sensitivities.

Among the many particle physics candidates for DM, the singlet-scalar Higgs portal

(SHP) model stands out as one of the most economical and popular scenarios. [1–3]. It

simply consists of one extra singlet scalar, S (the DM particle), which is minimally coupled

to the SM through interactions with the ordinary Higgs (the only ones allowed at the

renormalizable level). The corresponding Lagrangian reads

LSHP = LSM +
1

2
∂µS∂

µS − 1

2
m2

0S
2 − 1

2
λS |H|2S2 − 1

4!
λ4S

4. (1.1)

In the previous equation S has been assumed to be a real field, but the modification for the

complex case is trivial. Furthermore, a discrete symmetry S → −S has been imposed in

order to ensure the stability of the DM particle; apart from this, the above renormalizable

Lagrangian is completely general. After electroweak (EW) symmetry breaking, the Higgs

field acquires a vacuum expectation value, H0 = (v+h)/
√
2, and new terms appear, includ-

ing a trilinear coupling between S and the Higgs boson, (λSv/2)hS
2. The phenomenology

of this model has been explored in other contexts as well [4–7].

Assuming that the S−particles are in thermal equilibrium in the early universe, the

final DM relic density is determined by their primordial annihilation rate into SM-particles.
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Figure 1. Singlet-scalar Higgs portal scenario (SHP): annihilation processes of the DM candi-

date, S.

The relevant processes, illustrated in figure 1, are usually dominated by the s−channel

annihilation through a Higgs boson (leftmost diagram of the figure).

The efficiency of the annihilation depends on just two parameters, {m0, λS} or, equiv-

alently, {mS , λS}, where m2
S = m2

0 + λSv
2/2 is the physical S−mass after EW breaking.

Figure 2 shows the (black) line in the {mS , λS} plane along which the relic abundance of

S, ΩSh
2, coincides with the Planck result ΩCDMh2 = 0.1198± 0.003 at 2σ [8]. The (gray)

region below is in principle excluded, as it corresponds to a higher relic density.

The model is subject to a number of experimental and observational constraints, which

rule out large regions of the parameter space. These include limits from direct detection

experiments [9–21], indirect searches [22–48], as well as collider bounds [49–57]. We illus-

trate the effects of these limits in figure 2. In deriving direct and indirect detection bounds,

we are assuming by default (left panel) that the density of S scales up in the same way

as its cosmological relic abundance. Thus, we consider a scale factor ξ ≡ ΩS/ΩCDM for

direct detection and ξ2 for indirect detection. In the region where ξ < 1, S cannot be the

only DM component, so contributions from other particles (e.g., axions) are needed. The

region where ξ > 1 (gray area) is obviously excluded (though perhaps could be rescued if

some non-standard cosmology is invoked, see below). For this reason, we have not showed

the shadowed regions inside this gray area. It is worth noting that the excluded areas

are extremely sensitive to astrophysical uncertainties in the DM halo parameters [58] and

nuclear uncertainties in the hadronic matrix elements [47].

Current bounds from direct DM detection, most notably from the new results from

LUX [59] and PandaX-II [60], set an upper bound on the DM-nucleon elastic scattering

cross section (and hence on the DM coupling to the Higgs). This rules out the red area

in figure 2. Next-generation experiments, with larger targets and improved sensitivity are

going to further explore this parameter space. We indicate in the figure the expected

reach of the LZ detector by means of a green dashed line. Similarly, Fermi-LAT data on

the continuum gamma-ray flux from dwarf spheroidal galaxies (dSPh) and monochromatic

gamma-ray lines from the Galactic Centre set upper bounds on the DM annihilation cross

section which also rule out some areas of the parameter space, mainly for DM masses

below 100GeV (light brown and cyan areas respectively). It should be noticed that, as

λS decreases, the ξ−factor increases, so that the indirect detection rate increases as well.

Consequently, the excluded areas from indirect detection extend downwards in the plot.
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Figure 2. Excluded regions on the parameter space of the SHP model from different experimental

constraints. The gray area (below the black line) is excluded since the relic density exceeds the

Planck result. The blue area (labeled Γinv

H
) is ruled out from the invisible Higgs width. The red

area (LUX) is excluded by direct DM detection limits. Yellow (dSph) and cyan (GC) areas are

excluded by indirect detection constraints on the continuum spectrum of gamma-rays (from dwarf

Spheroidal galaxies) and monochromatic gamma-ray lines (from the Galactic Centre), respectively.

The dashed green line represents the predicted reach of the future LZ detector. The left panel

includes a scale factor, ξ, in the calculations while in the right plot it is assumed that some extra

non-thermal effects amend the prediction for the relic density, so that ξ = 1.

Finally, for masses below ∼ 63GeV, the DM can contribute to the invisible decay of the

SM Higgs boson. Current LHC constraints on this quantity set an upper bound on the

DM-Higgs coupling [53]. The blue region in figure 2 is excluded for this reason.

For comparison, the right panel of figure 2 shows the direct and indirect detection

constraints when the local DM density is assumed to take the canonical value, ρ0 =

0.3GeV cm−3, regardless of the computed thermal relic abundance; in other words, we

have set ξ = 1. This would apply if non-thermal effects modified the final relic abundance,

reconciling it with the observed one (see, e.g., ref. [61]). Note that, since the value of ξ has

been fixed, the areas excluded by indirect detection bounds now extend upwards.

In either case, the conclusion is that the combination of experimental constraints and

the requirement of obtaining the correct relic abundance rules out a big and interest-

ing portion of the viable parameter space of the Higgs portal (see ref. [62] for a recent

comprehensive study), leaving only the white areas in figure 2. Interestingly, as previous

analyses have shown [63–66] there still remains a narrow window of S−masses in the Higgs-

funnel region (mS ≃ mh/2) and, besides, there is a large allowed range for higher masses,

mS
>
∼ 500GeV. Next generation experiments such as XENON1T [67] and, especially,

LZ [68] (shown explicitly) will test completely the region of large DM masses and a large

part of the narrow window at the Higgs-resonance. In particular, LZ could exclude the

Higgs-portal scenario almost completely, or, hopefully, get a positive detection. The possi-

bility of totally closing the Higgs-portal windows in the near future using complementary

constraints from indirect detection has been analyzed in refs. [62, 63, 65].

Various solutions have been proposed in order to avoid experimental constraints in the

SHP model. In general, in order to break the correlation between the relic abundance and
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direct detection predictions, the model has to be extended. For example, the mediator

(Higgs) sector can be enlarged with new scalars [69–71]. Non-linear Higgs portals [72] and

high-dimensional operators in models with composite Higgs [73] have been considered as

well. One can also extend the dark sector to include new particles charged under the SM

gauge group, such as a doublet, a triplet, or a top-partner (see, e.g., [74–77]), or even

consider multicomponent dark matter scenarios [71, 78–81]. More complex scenarios have

also been analysed, where both the dark matter and mediator sectors are enlarged [82], for

example, adding new portals related to neutrino physics [83–86]. There is also the possi-

bility that the dark matter is a singlet-fermion, in which case the Higgs-portal interactions

occur at the non-renormalizable level. Finally, one can consider changing the nature of the

DM candidate, see for example refs. [87, 88].

The goal of this paper is to consider and examine the most economical modification

of the conventional SHP model that could escape the present and future searches, thus

offering a viable (slightly modified) Higgs-portal scenario if a positive detection does not

occur. The model consists of the addition of a second singlet scalar in the dark sector,

which opens up new annihilation and coannihilation channels (previous work in this line

has been carried out in ref. [89]). We should stress that our solution is not unique: for

example, this model has a simplicity similar to the secluded-dark-matter scenario [90], but

it works in a different way.

The article is organised as follows. The model is introduced in section 2, where we

explain how the correct relic abundance can be achieved for large regions of the parameter

space. In section 2.2, we describe the various experimental constraints to which the model

is subject, and explain the way we have evaluated them. They include bounds from direct

and indirect DM detection, the lifetime of the extra particle and the invisible decay of the

Higgs boson. In section 3 we perform a scan in the parameter space, explicitly showing that

our model is viable for any DM mass above 50GeV, thereby reopening the Higgs portal for

scalar DM. In section 4 we discuss the interpretation of this model in terms of an Effective

Field Theory. Finally, the conclusions of our study are presented in section 5. The appendix

is devoted to the calculation of the relevant radiative corrections for DM processes.

2 The extended singlet-scalar Higgs portal (ESHP)

The modification of the conventional SHP model that we consider consists simply of ex-

tending the DM sector with the addition of a second scalar. Denoting S1, S2 the two scalar

particles, and imposing a global Z2 symmetry (S1 → −S1, S2 → −S2) in order to guarantee

the stability of the lightest one, the most general renormalizable Lagrangian reads

LESHP = LSM +
1

2

∑

i=1,2

[

(∂µSi)
2 −m2

iS
2
i −

1

12
λi4S

4
i

]

− 1

6
λ13S1S

3
2 −

1

6
λ31S

3
1S2

−1

4
λ22S

2
1S

2
2 −

1

2
λ1S

2
1 |H|2 − 1

2
λ2S

2
2 |H|2 − λ12S1S2

(

|H|2 − v2

2

)

, (2.1)

where the subscript ESHP stands for “extended singlet-scalar Higgs portal”. The terms in

the second line describe the DM/SM interactions, which occur through the Higgs sector.
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Figure 3. Extended Higgs-portal scenario (ESHP): annihilation processes involving particles of

the dark sector, Si, i = 1, 2.
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Figure 4. Tree-level S1S1h vertex and main 1-loop corrections.

After EW breaking, H0 = (v + h)/
√
2, there appear new terms, including trilinear terms

between S1,2 and the Higgs boson, such as (λ12v)hS1S2. Stability constraints in this type

of models have been studied in ref. [91]. We have chosen S1, S2 to be the final mass

eigenstates (after EW breaking), with physical masses, m2
Si

= m2
i + λiv

2/2, thus the form

of the last term in eq. (2.1). From now on, S1 will represent the lightest mass eigenstate

of the dark sector, and thus the DM particle.

2.1 The relic density

The extra terms in the Lagrangian open up new ways of DM annihilation, illustrated

in figure 3. These include processes mediated by S2 (in t−channel) and co-annihilation

processes. Besides, if S1 and S2 are in thermal equilibrium between them (thanks to

the interaction terms in the first line of eq. (2.1)), the processes driving S2−annihilation

contribute to the DM annihilation as well.

We are interested in the possibility that S1 plays the role of DM, and that it reproduces

the observed relic density while evading the bounds discussed in the previous section for

the usual SHP model. Hence we will mainly focus in the regime where λ1 (the equivalent to

λS in the ordinary Higgs-portal) is small. As a matter of fact, λ1 might be even vanishing,

and the processes of figure 3 could still produce the necessary annihilation. However, this is

not a natural choice from the point of view of quantum field theory. Since 1-loop diagrams

with two λ12 vertices generate S2
1 |H|2 interactions, a conservative attitude is to assume

that λ1 is not smaller than ∼ λ2
12/(4π)

2. The same argument holds for λ2. Actually, for

the sake of definiteness we will set λ2 = λ2
12/(4π)

2 through the paper.
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Figure 5. Range of values in the {λ12, mS2
} plane leading to the correct DM relic density for three

illustrative values of the DM mass: (from left to right) mS1
= 40GeV, 60GeV, and 200GeV. The

DM-Higgs coupling has been fixed to λ1 = λ2
12/(4π)

2. The solid black line represents the Planck

result. The grey area below this line is excluded since ΩS1
> ΩCDM.

Moreover, all the processes where a λ1−vertex is involved get new radiative correc-

tions. In particular, the trilinear vertex (after EW breaking) S1S1h, which appears in

DM annihilation and scattering processes (relevant for indirect and direct detection), has

to be corrected by 1-loop diagrams, such as the ones depicted in figure 4. Due to the

adopted smallness of λ2, other 1-loop diagrams are subdominant. Assuming for simplicity

that λ31 (involved in the second diagram of figure 4) is of the same order as λ12, all these

contributions are O(λ2
12/(4π)

2), which is precisely the smallest natural value for λ1. This

means that only when λ1 is close to this lower limit the contributions of these diagrams

may be significant.1 Nevertheless, for consistency, we have included the contribution of the

1-loop diagrams in all cases. A detailed discussion of these radiative corrections is given in

the appendix.

Let us now turn our attention to the computation of the relic density. We will start by

considering a scenario in which λ1 is as small as possible (λ1 = λ2
12/(4π)

2). Then, λ1 can

be neglected for all the relevant physical processes in most cases, so the only significant

parameters to describe the DM physics are mS1
, mS2

, and λ12. For each value of the DM

mass, mS1
, we are interested in finding out which combinations of mS2

and λ12 lead to the

correct relic density.

Figure 5 shows the line along which the correct DM relic abundance is obtained for

three representative cases, namely mS1
= 40, 60, and 200GeV, i.e., below, around and

above the Higgs resonance (left, middle and right panels, respectively). Let us discuss each

case separately.

For small DM masses (left panel), the correct relic density can be obtained through

coannihilation effects with S2 for a wide range of values of λ12 when mS2
−mS1

. 5GeV.

As mS2
grows and departs from mS1

, the required value of λ12 is larger and, at some point,

it becomes non-perturbative.

1In that case, there may be accidental cancellations between the tree-level and the radiative corrections,

as can be checked from the explicit expressions given in the appendix. Moreover these cancellations can be

more or less significant depending on the external momenta entering the vertex. This opens the possibility

of blind spots for direct or indirect detection, while keeping a sizable annihilation in the early universe.
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When mS1
is not far from the Higgs resonance (middle panel), we observe two different

regimes. If mS1
+mS2

is smaller than mh, but such that mS1
+mS2

≈ mh, the resonant

condition for the s-channel S1S2 → h → SM SM can still be satisfied (S1 and S2 can

have the correct energy due to their kinetic energy in the thermal bath) and the required

value of λ12 is small.2 On the other hand, when mS1
+ mS2

> mh the resonant effect is

not possible. Consequently λ12 has to increase to reproduce the correct relic density. For

sufficiently large mS2
and λ12, the corresponding value of the λ1 coupling (which in this

example is set to λ1 = (λ12/4π)
2) and the size of the 1-loop diagrams of figure 4 become

large enough for the DM to be efficiently annihilated through the usual SHP process,

S1S1 → h → SM SM. In this regime, the model works essentially as the conventional SHP

and the S2 particle is irrelevant. Then the line in the plot becomes horizontal since the

required value of λ1 is related to that of λ12 through the above identification. However,

the model could also work with essentially the same λ1 and a smaller λ12.

Finally, for mS1
> mh/2 (right panel), we can distinguish two regimes. When mS2

∼
mS1

, coannihilation effects are still present and the dependence with λ12 resembles that of

the left panel. However, for large mS2
coannihilation effects are not effective and the relic

density becomes less sensitive to mS2
. In that case, if mS1

> mh (as in the example of the

figure), the t-channel diagram of figure 5, with S1 in the external legs annihilating through

S2−exchange into a pair of Higgs bosons, is kinematically accessible and it becomes the

main contribution to the annihilation cross section.

2.2 Observational and experimental constraints

From the discussion in the previous subsection, it seems that for any value of mS1
, we can

suitably choose {mS2
, λ12} to reproduce the correct relic density. Since λ1 can be very

small, one might expect that the ESHP model can evade easily the usual constraints on

the singlet-scalar Higgs-portal.

However, this is not so straightforward. First, a sizable λ12 has potential impact on

several observables, as we are about to see. Also, one must check that the existence of

the second dark (unstable) species, S2, does not produce any cosmological disaster in the

early universe. Finally, we might actually be interested in varying the value of λ1 above

its minimal value (in order to be as general as possible).

In this subsection we discuss the various physical constraints to which the model

is subject.

Invisible width of the SM Higgs boson. From the observed decay channels of the

SM Higgs boson, an experimental constraint can be derived on its invisible decay width.

Namely, using the recent ATLAS and CMS results [53, 92–94], we will impose BR(h →
inv) ≤ 0.20 (at a 90% confidence level) throughout this article. In the scenario presented

here, the DM sector can contribute to the invisible width of the SM Higgs through the

2Actually, it is quite independent of mS2
, for the following reason. The amount of DM annihilated in

this way is proportional to the product of two Boltzman factors: the one that suppresses the S2−density

and the one that kinematically suppresses the S1S2 → h process. As mS2
increases, the first Boltzman

factor decreases and the second one increases, keeping the product almost constant.
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decays h → S1S1, h → S1S2, and h → S2S2, when these are kinematically allowed (see

also ref. [89]).

The corresponding decay widths at tree level read

Γh→S1S1
=

λ2
1v

2

32πmh

(

1−
4m2

S1

m2
h

)1/2

,

Γh→S1S2
=

λ2
12v

2

64πmh

(

1− (mS2
+mS1

)2

m2
h

)1/2(

1− (mS2
−mS1

)2

m2
h

)1/2

,

Γh→S2S2
=

λ2
2v

2

32πmh

(

1−
4m2

S2

m2
h

)1/2

. (2.2)

In our calculation, we have included the radiative corrections to the S1S1h coupling (see

figure 4), as explained in the previous section. As mentioned in the Introduction, in the

conventional SHP this constraint excludes areas with large coupling for small dark matter

masses. In the ESHP, both λ1 and λ2 can be chosen small and, therefore, h → S1S2 is the

most relevant process, setting an upper bound on λ12.

Lifetime of the extra scalar particle. The heavy scalar S2 is unstable and decays

into S1 (plus SM products). We will require that the decay occurs before Big Bang nu-

cleosynthesis, so as not to spoil its predictions. In fact, if S2 is substantially heavier than

S1, namely mS2
> mS1

+ mh, it rapidly decays as S2 → S1h through the corresponding

trilinear coupling λ12. However, if mS2
< mS1

+mh, we need to consider the three-body

decay S2 → S1ff̄ . The latter is in general fast enough when the S1bb̄ channel is open, but

the lifetime of S2 increases rapidly below this mass. We have computed the lifetime of S2

using CalcHEP [95], and excluded points in the scan where τS2
> 1 s.

Direct detection. The tree-level scattering of S1 off quarks occurs via a t-channel Higgs

exchange, as depicted in figure 6, where the gray circle represents the sum of the (tree-level

and 1-loop) vertices of figure 4. Since λ1 can be very small, the constraints from direct

detection experiments are substantially alleviated, in contrast with the situation of the

canonical Higgs portal, as has also been observed in ref. [89].

We have explicitly computed the spin-independent contribution to the DM-nucleon

elastic scattering cross section, σSI
S1p

, which occurs through the exchange of a Higgs boson,

as illustrated in figure 6. The Higgs-nucleon coupling can be parametrized as fNmN/v

where mN ≃ 0.946GeV is the mass of the nucleon. According to this, the spin-independent

cross section, σSI
S1p

, reads

σSI
S1p =

λ2
1f

2
Nµ2m2

N

4πm4
hm

2
S1

, (2.3)

where µ = mNmS1
/(mN + mS1

) is the nucleon-DM reduced mass. The fN parameter

contains the nucleon matrix elements, and its full expression can be found, e.g., in ref. [63].

Using the values for the latter obtained from the lattice evaluation [96–101], one arrives

at fN = 0.30 ± 0.03, in agreement with ref. [63]. Finally, we have included one-loop

– 8 –
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h

Figure 6. Diagrams contributing to the direct detection of S1. The gray circle represents the sum

of the (tree-level and 1-loop) vertices of figure 4.

contributions to the S1S1h coupling, shown in figure 4, according to the computation given

in the appendix.

Then, we have implemented the most recent upper bounds obtained by the LUX

collaboration [59] (which improves the bound obtained by PandaX-II [60]) for DM particles

with masses above 6GeV.3 Notice that since S1 is a scalar field, there is no contribution

to spin-dependent terms.

Although in principle we could also have inelastic scattering processes at tree level,

S1q → S2q, the typical mass difference in our scenario is such that mS2
− mS1

> 1GeV,

significantly larger than the kinetic energy of the incoming DM particle (which is smaller

than ∼ 1MeV for DM particles lighter than ∼ 1TeV), and this process does not take place.

Indirect detection. Regarding indirect dark matter searches, the most relevant bounds

for this model can be derived from gamma-ray searches from dwarf spheroidal galax-

ies (for the continuum spectrum) and the galactic centre (for gamma ray lines and

spectral features).

In order to apply the dwarf spheroidal galaxies data on the continuum, we have com-

puted the thermally-averaged annihilation cross section, 〈σv〉, in the dwarf galaxies using

MicrOMEGAs [104, 105], assuming that the initial particles are at rest (a good approxi-

mation since the velocity of the DM is low). We have then confronted the results with the

combined analysis of Fermi-LAT and Magic [106], considering the upper bounds on 〈σv〉
for annihilation into bb̄ (again a good approximation since the annihilation is through the

Higgs and this is the main final state when it is open).

On the other hand, for gamma ray lines in the galactic centre, we have calculated

the annihilation cross section into a pair of photons, 〈σv〉γγ , again using MicrOMEGAs,

and confronted it with the upper bound given by Fermi-LAT [107]. We have chosen the

Einasto [108, 109] profile for the DM halo, since is more restrictive than Navarro-Frenk-

White (NFW) [110, 111] and has a good fit to results of numerical simulations. As in the

SHP model, a Breit-Wigner enhancement near the Higgs resonance takes place,4 although,

3The SuperCDMS [102] and CRESST [103] collaborations have obtained more stringent constraints for

light DM particles, but this range of masses is excluded in our model, mainly because of the experimental

constraint on the invisible decay width of the Higgs boson.
4This has been studied in various models [112–116].

– 9 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
6

given the small decay width of the Higgs boson, it only occurs for a narrow range of masses.

This leads to a sizable annihilation cross section in that region.

Finally, let us recall that indirect detection constraints are very sensitive to whether

the gamma-ray flux is re-scaled by the dark matter density squared (ξ2).

3 Results

In this section we explore the parameter space of the ESHP model, incorporating all the

experimental constraints and computing the theoretical predictions of observables for di-

rect and indirect DM searches. As mentioned in the previous section, we have used Mi-

crOMEGAs [104] to compute the relic abundance and indirect detection observables (the

thermal average of the annihilation cross section of S1 particles in the DM halo, 〈σv〉0,
and the resulting gamma-ray flux). The spin independent S1-nucleon scattering cross sec-

tion, σSI
S1p

, and the invisible Higgs decay width, have been computed including one-loop

corrections, as explained in section 2.2.

In order to facilitate the comparison of the model with the usual SHP, we have carried

out a series of numerical scans, for fixed values of λ12, in the three dimensional parameter

space {mS1
, λ1, mS2

}, searching for points where S1 is a viable candidate for dark matter.

Note that the first two parameters are those of the SHP, i.e. the mass and quartic coupling

of the DM. As already mentioned, we will set λ2 at its lowest natural value, λ2 = λ2
12/(4π)

2.

This is also the lower limit of λ1 in the scans.

We have represented the results of the scans in figures 7 and 8, where {mS1
, λ1} and

{mS1
, mS2

} are plotted for fixed values of λ12. From top to bottom, we have chosen

λ12 = 0.01, 0.1, and 1, respectively, thereby gradually switching on the effect of the extra

singlet in the model. The different experimental constraints are added sequentially from

left to right. The left column includes the bounds from the invisible Higgs decay width and

lifetime of S2. The central column incorporates indirect detection bounds from Fermi-LAT

results on the Galactic Centre and dSphs. Finally, in the right column we add the direct

detection limits from LUX. In all the plots, black dots correspond to those in which the

(thermal) relic abundance of S1 matches the results from the Planck satellite, whereas grey

points are those in which S1 is a subdominant dark matter component.

In all the plots of figure 7 an accumulation of black dots along a thick line is visible,

which coincides with the relic-density line of the standard SHP (the black line of figure 2).

For these points, the presence of the extra particle, S2, has no effect, because the λ12

coupling is too small or/and S2 is substantially heavier than S1. These points appear as

uniformly scattered in the {mS1
, mS2

} plane in figure 8. Besides this (somehow trivial)

thick line, there are new regions of interest, which we discuss below.

The results for the top row (λ12 = 0.01) resemble those of the usual SHP due to the

smallness of λ12. This can also be checked from the fact that the black dots in the plots in

the first row of figure 8, appear uniformly scattered in the allowed regions. Consequently,

the parameter space is extremely constrained by the combined effect of of the invisible

Higgs width, indirect detection and (most notably) direct detection limits. Once all the

bounds are included, only the points in the Higgs resonance and those with mS1
> 500GeV

– 10 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
6

Γinv
H Γinv

H + ID Γinv
H + ID +DD

λ
1
2
=

0.
01

λ
1
2
=

0.
1

λ
1
2
=

1

Figure 7. Effect of the experimental constraints in the {λ1, mS1
} parameter space of the ESHP

model. From up to down, we have fixed λ12 = 0.01, 0.1, 1, and λ2 = λ2
12/(4π)

2. In all the plots,

black (gray) points correspond to those where Ωh2 = 0.119± 0.003 (Ωh2 < 0.116). The left column

incorporates only constraints from lifetime of S2 and invisible decay width of the Higgs boson.

The central column includes also the indirect detection (dSph and gamma ray lines). Finally, the

bottom row includes the bound from the LUX constraint.

survive. Still, when these results are compared to the left panel of figure 2, we observe a new

(small) population of points at the Higgs resonance, with very small values of the coupling

λ1. This occurs when the masses of S2 and S1 are close enough so that coannihilation

effects become important (first diagram of figure 3). Away from the resonance region, the

coannihilation effect is irrelevant due to the small size of λ12 assumed here, so the correct

relic density is obtained only for the usual value of λ1, independently of how close mS1
and

mS2
are.

As we increase the value of λ12, new areas of the parameter space become available.

In the middle row of figure 7, (λ12 = 0.1), we observe a region of black dots with masses
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Figure 8. Effect of the experimental constraints in the {mS1
, mS2

} parameter space of the ESHP

model. We have used the same examples and colour conventions as in figure 7.

mS1
≈ 100 − 200GeV and a very small λ1 coupling. These points have the correct relic

abundance thanks to coannihilation effects, which requires mS1
∼ mS2

. They can be

observed in the second row of figure 8 as a thick line of black dots in that range of masses.

When λ12 = 1 (last row of figure 7), the effect of the DM annihilation in two Higgses,

S1S1 → hh, exchanging S2 in t−channel as in the last diagram of figure 3, becomes more

remarkable, as soon as it is kinematically allowed, i.e. for mS1
≥ mh. This is the reason

for the denser clouds of black dots out from the standard Higgs-portal thick line. For

smaller values of mS1
co-annihilation is still the main responsible for DM annihilation, thus

requiring the S1, S2 masses to be closer. All this can be seen in figure 8. In the bottom

panels of that figure we see that, for mS1
≤ mh, there is a thin “black line” made of points

close to mS1
= mS2

. The short distance of this line to the perfect degeneracy shows the

required closeness between mS1
and mS2

to produce the amount of co-annihilation that

gives the observed relic density. Below that line co-annihilation is too strong, so there

are only gray dots (too low relic density). For mS1
≥ mh the line moves far away from
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λ12 = 0.01 λ12 = 0.1 λ12 = 1

Figure 9. Spin-independent scattering cross section of S1 with protons as a function of its mass

in the ESHP model. From left to right, we have fixed λ12 = 0.01, 0, 1, and 1, respectively.

mS1
= mS2

. As mentioned above, this behavior is due to the opening of the S1S1 → hh

process with both Higgses on-shell, which occurs via exchange of S2 in t−channel (see

figure 3). This process is very efficient, thus mS2
has to get much larger to appropriately

decrease its effect and keep the relic density at the right value. However, as mS1
continues

to increase, the black line again approaches mS2
≃ mS1

. The reason is that the larger

mS1
the less efficient the annihilation process, an effect that must be compensated in the

t−channel diagram by a larger λ12 or a smaller mS2
; and the latter is the only possibility

since we have set λ12 = 1 in the plot. This can be easily understood by considering the

t−channel diagram as generating an effective vertex, S2
1h

2, with strength λeff ∝ λ2
12/m

2
S2
.

In the next section we will elaborate more on this aspect.

As in the case of the conventional SHP model, we expect future direct detection ex-

periments (and in particular LZ) to be able to test large areas of the parameter space of

our extended, ESHP, scenario. We represent in figure 9 the theoretical predictions for the

elastic scattering cross section of S1 with protons, after all experimental constraints are

applied. We indicate by means of a green line the expected reach of LZ. As we can observe,

although a large area of the parameter space might be probed by these searches, there is a

substantial region for which the predictions are beyond LZ sensitivity. For λ12 = 0.1 − 1,

this is possible for a range of DM masses between 100GeV and 1TeV (besides the usual

narrow region at the Higgs resonance for mS1
≃ mh/2), while satisfying the constraint on

the relic abundance. None of these points can be probed by indirect detection either.

We should stress at this point that the solution put forward in this article is not unique.

For example, using the same field content as the ESHP defined by equation (2.1), one could

have constructed a secluded dark matter scenario in the same spirit as in ref. [90], where

the singlet S1 only annihilates into a pair of semistable S2 (which subsequently decay into

SM particles). This would require a different choice of Z2 charges, such that the terms

S3
1S2, S1S

3
2 , and S1S2 are forbidden.

4 Effective-theory description

As we have seen in the previous sections, the presence of the second particle, S2, in the

dark sector can enable the efficient annihilation of the DM particle, S1, even if the usual
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quartic coupling of the latter, λ1S
2
1 |H|2, is small enough to evade direct and indirect

detection constraints.

Since mS2
> mS1

, one can wonder whether S2 might be integrated-out. Then, one

would be left with a usual Higgs-portal scenario with just one particle, S1, plus some

higher-order operators, involving S1 and H. If this procedure is sound, these additional

operators should be “clever” enough to mimic the effects of the heavy particle, S2. Actually,

the possibility of opening the allowed parameter-space of the Higgs-portal by adding new

operators in the spirit of an effective field theory (EFT) has been considered in refs. [72, 73].

In our case, the coefficients of the EFT expansion are not completely independent, since

they are determined by the ultraviolet (UV) completion, i.e., the Lagrangian of eq. (2.1).

As we are about to see, this produces a quite special EFT, which is indeed very efficient

in rescuing the excluded regions of the usual Higgs-portal for singlet scalar DM. Without

the knowledge of the UV completion, such EFT could be seen as designed ad hoc for

that purpose.

In fact, it is not always possible to mimic the effects of S2 by integrating it out in

some approximation. In particular, when mS2
≃ mS1

, such integration is not appropriate.

Consequently, the EFT description is not suitable to describe the regions of the parameter

space where co-annihilation effects are dominant, e.g., for λ12
<
∼ 0.1, see figures 7 and 8.

However, there are other regimes in which S2 is substantially (though not enormously)

heavier than S1, see for example figure 5 and the bottom row of figure 8. In those cases

the EFT captures, at least qualitatively, the relevant physics.

Once S2 is integrated out at tree-level from eq. (2.1), the relevant new terms in the

effective Lagrangian are

∆Leff(S1, H) =
1

2

λ2
12

m2
S2

S2
1

(

|H|2 − v2

2

)2

+ · · · . (4.1)

Of course, this operator arises from the third tree-level diagram in figure 3, with S2 ex-

changed in t−channel. Here the dots stand for higher order terms in S1 or H. An im-

portant property of ∆Leff is that, after EW breaking, the operator (4.1) has the form
1
4S

2
1(h

2+2vh)2, triggering a contribution to the S2
1h

2 quartic coupling, without generating

new cubic couplings, S2
1h (as a usual quartic coupling does). This is extremely useful to

enhance the S1 annihilation without contributing to direct-detection processes or to the

Higgs invisible-width (if S1 is light enough).

Figure 10 shows the performance of this Higgs-portal scenario with the presence of

such extra operator, which we have parametrized as

L ′

SHP = LSHP +
1

2

λ′

m2
S1

S2
1

(

|H|2 − v2

2

)2

, (4.2)

where LSHP is the SHP Lagrangian, defined in equation (1.1), and λ′ = λ2
12(mS1

/mS2
)2.

The lines shown in the {λS , mS1
} plane correspond to the correct relic abundance for

different values of the effective coupling λ′. As we can observe, the contribution from the

effective operator triggers on when the annihilation channel into a pair of Higgs bosons gets

– 14 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
6

Figure 10. Contour lines of the correct relic DM abundance in an SHP effective theory consisting

of the usual SHP Lagrangian plus an extra operator, as given in eq. (4.2), for several values of the

λ′ coupling. This effective theory describes the ESHP in large regions of the parameter space.

kinematically allowed. Then, for each value of λ′ there are essentially two values of mS1

for which this channel annihilates the required amount of dark matter (the lower one is

not too far from the kinematic threshold, where the suppression due to the phase space is

relevant). At those points, the value of λS becomes essentially irrelevant, For mS1
beyond

the higher of those two values, the effective operator becomes less efficient and eventually

we recover the original SHP behaviour (black thick line). If we demand that λ′ < 1, then

the contribution from the effective operator is important for DM masses between 126GeV

and approximately 500GeV. In this range of masses, the usual quartic coupling λS can be

very small, thus helping to evade direct-detection limits.

In other words, in this region of DM masses, for any value of the λS coupling, there ex-

ists a value of λ′ that allows to recover the correct relic density. Since λ′ = λ2
12(mS1

/mS2
)2,

there are many combinations of the two underlying parameters of the U.V. theory,

{λ12,mS2
}, leading to the correct result. These findings are in good agreement with the

results presented in the previous section (Figure 7), in particular with those for large λ12

in the region of mS1
, where the co-annihilation effects are not dominant.

5 Conclusions

One of the most economical and explored models of dark matter (DM) is the so-called

singlet-scalar Higgs portal (SHP) model. It simply consists of an extra singlet scalar field

(the DM particle), which is minimally coupled to the SM through interactions with the

ordinary Higgs at the renomalizable level. Interestingly, the experimental advances in

direct and indirect dark matter searches, together with the latest results from the LHC,

have ruled out vast areas of the viable parameter space of this scenario. Moreover, it is
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expected that future experiments will completely probe it within the next years and rule

it out if no signal is found.

Motivated by the appealing simplicity of this model, we have considered in this article a

minimal extension (ESHP) that could evade detection. It consists of the addition of an extra

real singlet scalar field in the dark sector, coupled also in a minimal, renormalizable way.

We show that the new annihilation and/or co-annihilation channels involving the extra

singlet allow to reproduce the correct relic abundance, even if the usual interaction of the

DM particle with the Higgs were arbitrarily small. This allows to easily avoid the bounds

from direct and indirect DM searches.

Apart from the DM mass and its coupling to the Higgs, in its simplest version, the

ESHP model has just two extra (relevant) parameters: the mass of the extra scalar and

the quartic coupling between it, the DM particle and the Higgs field. Actually, the usual

DM-Higgs coupling becomes irrelevant in most cases, since it is unnecessary, so the model

has very few parameters. This permits to explore its phenomenology in an efficient way. In

fact, though much more viable than the usual SHP model, this extended scenario is subject

to a number of phenomenological constraints, most of them stemming from the mentioned

quartic coupling between the DM, the extra scalar and the Higgs. These include bounds

from the invisible width of the SM Higgs boson, the lifetime of the extra scalar particle, and

direct and indirect searches for DM. Still, large portions of the parameter space survive

all (present and even future) constraints.

We have also shown that, in the regions where the main extra effect is the annihila-

tion of DM particles into SM particles (essentially Higgses), through the interchange in

t−channel of the extra particle, the latter can be integrated-out, leaving a “clever” SHP

effective theory (just involving the DM particle and the Higgs) which can reproduce the

relic density, while avoiding the usual strong constraints from DM searches. This is not

possible however in the regions where the main extra effect is co-annihilation between the

DM and the extra particle.

A Radiative contributions to the S1S1h vertex

In this appendix we compute the dominant radiative contributions for relevant physical

processes involving DM in the context of the ESHP model, defined by the Lagrangian of

eq. (2.1). We will do it in the framework of the EW-broken theory.

Assuming for simplicity and convenience a small λ2 coupling, as has been done through-

out the paper, the most important radiative corrections are those contributing to the S1S1h

vertex, in particular the three 1-loop diagrams depicted in figure 4. This vertex plays a

crucial for a number of DM processes; namely DM annihilation in the early universe, direct

and indirect DM detection, and contributions to the invisible width of the Higgs boson.

Other relevant DM processes, in particular S1S1 → hh, receive radiative corrections as

well, but they are much smaller than the contribution from the tree-level diagram in which

a S2 particle is exchanged in t−channel, see figure 3.
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Therefore, in order to evaluate radiative corrections, the relevant terms of the La-

grangian in the broken phase are

L ⊃ − 1

4!
λh4 − 1

3!
λ1vh

3 − 1

2
λ12S1S2h

2 − λ12vS1S2h− 1

3!
λ31S

3
1S2 . (A.1)

In the following we will compute them, using the conventions of ref. [117] for Feynman

rules.

Let us start with the one-loop diagrams involving two propagators (second and third

diagrams of figure 4). Their contribution to the vertex is given by

iv

16π2

[

λ31λ12B0(p
2
h;mS1

,mS2
) + λ2

12

(

B0(p
2
S1
;mS2

,mh) +B0(p
2
S′

1

;mS2
,mh)

)]

, (A.2)

where pS1
and pS′

1
represent the momenta of the two S1 particles entering the vertex, and

B0(p
2,m1,m2) = (Divergent part) + B(p2,m1,m2) , (A.3)

with

B(p2,m1,m2) = −
∫ 1

0
dx log

xm2
1 + (1− x)m2

2 − x(1− x)p2

m1m2
. (A.4)

In our case, the divergent part and the momentum-independent piece of B(p2,m1,m2) can

be absorbed in the renormalized value of λ1. Moreover, B(p2,m1,m2) can be expanded in

powers of the momentum, as

B(p2,m1,m2) = 1− m2
1 +m2

2

m2
1 −m2

2

log
m1

m2
+ p2F (m1,m2) +O(p4) , (A.5)

with

F (m1,m2) =
m4

1 −m4
2 − 2m2

1m
2
2 log

m2

1

m2

2

2(m2
1 −m2

2)
3

. (A.6)

Keeping just the term proportional to p2 turns out to be a good approximation in

most cases (recall here that the p−independent terms in eq. (A.5) are absorbed in a finite

renormalization of λ1). Hence a good approximation for the contribution to the S1S1h

vertex from the one-loop diagrams involving two propagators is

Γ(2) ≃ iv

16π2

[

λ31λ12p
2
hF (mS1

,mS2
) + λ2

12(p
2
S1

+ p2S′

1

)F (mS2
,mh)

]

. (A.7)

Alternatively, this contribution to the vertex van be viewed as the Feynman rule stem-

ming from the corresponding term in the effective action, namely

16π2∆(2)L = −1

2
λ31λ12vF (mS1

,mS2
) S2∂2h− λ2

12v F (mS2
,mh) S(∂

2S)h . (A.8)

This is a convenient way to encode these contributions in the MicrOMEGAs code, as we

have done throughout the paper.

Let us now consider the one-loop diagrams involving three propagators (fourth diagram

of figure 4). The main difference with the previous two diagrams is that this represents
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a finite contribution which should be entirely counted, even the momentum-independent

contribution, since the latter corresponds to a S2
1 |H|4 operator in the unbroken theory and

cannot be absorbed in a finite renormalization of λ1. Using the same momentum expansion

as before, the corresponding contribution to the S1S1h vertex reads

Γ(3) ≃ i

16π2
λ2
12λv

3
[

F3(mS2
,mh,mh) + (p2S1

+ p2S′

1

)G(mS2
,mh,mh)

+p2hG(mh,mh,mS2
)
]

, (A.9)

with

F3(m1,m1,m2) = −
m2

1 −m2
2 −m2

2 log
m2

1

m2

2

(m2
1 −m2

2)
2

,

G(m1,m1,m2) = −
m6

1 − 6m4
1m

2
2 + 3m2

1m
4
2 + 2m6

2 + 6m2
1m

4
2 log

(

m2

1

m2

2

)

12m2
1(m

2
1 −m2

2)
4

,

G(m1,m2,m1) = −
m4

1 + 4m2
1m

2
2 − 5m4

2 − 2m2
2(2m

2
1 +m2

2) log
(

m2

1

m2

2

)

4(m2
1 −m2

2)
4

.

(A.10)

The corresponding terms in the effective action read

16π2∆(3)L =
1

2
λ2
12λv

3
[

F3(mS2
,mh,mh) S

2h− 2G(mS2
,mh,mh)S(∂

2S)h

−G(mh,mh,mS2
) S2∂2h

]

. (A.11)
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