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Healthy aging (HA) is associated with certain declines in cognitive functions, even in
individuals that are free of any process of degenerative illness. Functional magnetic
resonance imaging (fMRI) has been widely used in order to link this age-related
cognitive decline with patterns of altered brain function. A consistent finding in the
fMRI literature is that healthy old adults present higher activity levels in some brain
regions during the performance of cognitive tasks. This finding is usually interpreted
as a compensatory mechanism. More recent approaches have focused on the study
of functional connectivity, mainly derived from resting state fMRI, and have concluded
that the higher levels of activity coexist with disrupted connectivity. In this review, we
aim to provide a state-of-the-art description of the usefulness and the interpretations of
functional brain connectivity in the context of HA. We first give a background that includes
some basic aspects and methodological issues regarding functional connectivity. We
summarize the main findings and the cognitive models that have been derived from
task-activity studies, and we then review the findings provided by resting-state functional
connectivity in HA. Finally, we suggest some future directions in this field of research.
A common finding of the studies included is that older subjects present reduced
functional connectivity compared to young adults. This reduced connectivity affects
the main brain networks and explains age-related cognitive alterations. Remarkably,
the default mode network appears as a highly compromised system in HA. Overall,
the scenario given by both activity and connectivity studies also suggests that the
trajectory of changes during task may differ from those observed during resting-state. We
propose that the use of complex modeling approaches studying effective connectivity
may help to understand context-dependent functional reorganizations in the aging
process.

Keywords: fMRI, brain networks, aging, memory, connectivity, independent component analysis, default mode
network

Introduction

For many years, studies of human brain function typically associated specific cognitive domains to
discrete brain anatomical structures. The evidences of brain-behavior relationships mainly emerged
from studies on the consequences of focal lesions on the loss of specific cognitive functions. More
recently, and mostly thanks to magnetic resonance imaging (MRI), the neuroscientific community
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has moved to the idea that themajority of functions are supported
by coordinated activity between distinct, separated brain regions,
so that the brain works in networks. These ideas have lead to
the definition of Brain Connectivity (Catani et al., 2013; Sporns,
2013b), and Connectomics (Smith et al., 2013).

Brain connectivity refers to patterns of links connecting dis-
tinct units within the nervous system. It can be studied at
different scales, and therefore, units or nodes can be defined
as individual neurons, neural populations, or segregated brain
regions, described by anatomical or functional landmarks. Recent
advances in “in vivo” neuroimaging techniques allow themeasure-
ment of connectomics in a non-invasiveway (Behrens and Sporns,
2012). In addition, the progress made on both neuroscience
and computational sciences has motivated new approaches for
studying brain structure and function from a complex systems
perspective (Sporns, 2013a). These current trends have suggested
that connectivity-based methods may provide good tools in order
to understand brain functioning in healthy subjects, as well as
to study changes during lifespan, or during the timecourse of
neurodegenerative diseases.

In general terms, in neuroimaging, human brain connectivity
can be studied at the structural and functional levels. By one hand,
brain structural connectivity refers to the presence of fiber tracts
directly connecting different brain regions (Basser et al., 1994).
The use of Diffusion MRI allows investigating structural connec-
tions in the brain’s white matter by estimating the directionality
of white matter fibers. On the other hand, brain functional con-
nectivity refers to the temporal synchrony of brain activity at
different regions, and it can be measured using functional MRI
(fMRI).

The focus of the present review is functional connectivity in
healthy aging (HA), and therefore, the results of structural con-
nectivity studies will not be included. In this regard, it should be
mentioned that the relationship between structural and functional
connectivity is not always straightforward. It has been suggested
that whereas functional connectivity depends on structural con-
nectivity, structural connectivity is not sufficient to predict func-
tional connectivity patterns (Friston, 2011). This statement should
be understood under the idea that a single brain structure may
support a wide variety of functions, and that functional networks
usually have context-dependent or time-dependent characteristics
(Park and Friston, 2013).

Furthermore, within the general term of functional connectiv-
ity, it is possible to differentiate between functional and effective
connectivity. Functional connectivity aims to describe statistical
dependence between measurements of neuronal activity, whereas
effective connectivity refers to more complex approaches that
measure the causal influence of one neural system over another.
Effective connectivity is highly dependent on the context and
the system dynamics, and its derived methods usually search for
directionality and information flow (Friston, 2011). Here, we will
first review the main findings as regards functional connectiv-
ity in aging and we will then discuss how the new approaches
focused on effective connectivity may help understanding func-
tional changes in the aging brain. InTable 1, we provide a glossary
of the main terms related with connectivity within the field of
neuroimaging.

Methods for the Study of Functional
Connectivity with MRI

Functional magnetic resonance imaging allows measuring
changes in blood-oxygen-dependent (BOLD) signal in the brain
across time. In its more traditional application, task-fMRI has
been used to identify areas of increased or decreased neuronal
activity during the performance of a task (Logothetis et al., 2001;
Logothetis, 2003; Raichle and Mintun, 2006).

Another popular type of fMRI is the so-called resting-state
fMRI (rs-fMRI), which refers to the sequential acquisition of fMRI
scans, of duration typically between 5 and 10 min. During this
time, subjects are asked to lie down, not to fall asleep and not
to think in anything particular. The potential of rs-fMRI has
been used to identify temporal coherences between spontaneous
fluctuations that occur during rest, measured as low-frequency
oscillations of the BOLD signal (Biswal et al., 1995).

During the last years, the use of rs-fMRI to study functional
connectivity has increased massively and has revealed meaning-
ful low frequency BOLD fluctuations that are correlated across
distant brain regions, allowing the study of what has been called
resting state functional connectivity (RSFC). Although, the ori-
gin and interpretation of these spontaneous fluctuations are still
under debate (Schölvinck et al., 2010), RSFC seems to be highly
informative about both brain architecture and brain organiza-
tion, and it has a high variability in humans, probably reflecting
behavioral inter-individual differences (Fox et al., 2007).

The analysis of rs-fMRI connectivity covers an elevated number
of methodological approaches, and this number increases day-to-
day thanks to technical advances and ongoing inter-disciplinary
research. Basically, it is possible to differentiate between three
main methodologies: seed-based connectivity analysis, indepen-
dent component analysis (ICA), and whole-brain approaches
using graph-theory.

Seed-based Connectivity
This method consists on identifying whole-brain, voxel-wise con-
nectivity maps of areas showing correlated activity with a seed,
which is a delimitated brain region (a voxel or a group of voxels)
defined a priori with data from previous analyses, from the liter-
ature or from an atlas. Although seed-based correlation methods
usually have an elevated number of confounds and they are highly
dependent on the seed definition and the preprocessing applied to
the data, they still represent the best approach to answer directly
some questions related to connectivity. The use of these methods
is the best option to find, for example, correlation patterns from
a certain region when there is a strong hypothesis previously for-
mulated, providing a straightforward interpretability (Cole et al.,
2010).

Independent Component Analysis
Independent component analysis is used to find spatio-temporal
patterns of synchronized brain activity. It decomposes the data
into a set of independent components (IC), where each IC is
formed by a spatial map and a timeseries and is independent
from the other components (Beckmann and Smith, 2004). In
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TABLE 1 | Glossary of neuroimaging definitions.

Term Definition

Association matrix Matrix containing the connectivity of all possible pairs of nodes in a network.

Blood-oxigen level dependent
(BOLD)

MRI-related signal that measures the hemodynamic response process in the brain. It is based on the different magnetic susceptibility
between oxygenated and deoxygenated blood.

Brain atlas Structured representation of the brain in parcels. The definition of parcellations can be derived from anatomical or functional data.

Connectomics Field within neuroscience that aims to study the brain by estimating the connections between brain regions.

Clustering Measure of the cliquishness of connections between nodes from a topological point of view. Measures the number of triangles
around a node.

Data-driven analysis The set of techniques used to obtain patterns that exist in the data regardless of the model.

Default mode network (DMN) Set of brain regions that are active during resting-state and that deactivate during the performance of goal-directed tasks.

Diffusion tensor imaging (DTI) MRI modality that measures random motion of molecules. In brain’s white matter is used to estimate the direction of the fibers and to
track the major fiber bundles.

Dynamic causal modeling
(DCM)

Technique that estimates states and parameters of effective connectivity using observed data underlying biological or physical
quantities. Used with fMRI data using Bayesian techniques.

Effective connectivity Measurement of the causal connectivity and its directionality between brain regions. It measures information flow.

Functional connectivity As a generic term, it refers to any pattern of connectivity obtained with functional data. More specifically, and compared with
effective connectivity, it refers to the measurement of any functional connection between regions, direct or indirect, as the statistical
dependence between timeseries.

Functional integration Coordinated activity of different brain units.

Functional MRI (fMRI) Sequential acquisition of T2*-weighted MRI volumes during the time-couse of a task or a set of events.

Functional segregation Existence of specialized neurons and brain units that selectively respond to specific stimuli.

Granger causality analysis
(GCA)

Estimation of effective connectivity between activated brain areas using vector autoregression of fMRI timeseries.

Graph A model of a complex system, of any nature, defined by a set of nodes and the edges between them.

Independent component
analysis (ICA)

A data-driven method used to obtain patterns of spatio-temporal independent processes in the data.

Model-driven analysis The set of techniques used to analyze fMRI data that estimate patterns of activity based on the experimental model.

Pearson correlation coefficient Measure of the linear relationship between two variables. It is used between timeseries from different regions to estimate functional
connectivity.

Positron emission tomography
(PET)

Technique from nuclear functional imaging that detects pairs of gamma rays emitted indirectly by a tracer introduced into the body
on a biologically active molecule.

Resting-state fMRI (rs-fMRI) A specific fMRI acquisition that measures spontaneous temporal fluctuations in brain activity “at rest.”

Resting state functional
connectivity (RSFC)

Measure of the functional connectivity estimated as the temporal synchrony between spontaneous temporal fluctuations at different
brain regions.

Resting state network (RSN) Functional brain networks most commonly estimated from rs-fMRI data.

Small-worldness Characteristic of a network, obtained from graph-theory, with high clustering and short characteristic path length. Also defined as a
network with high global and local efficiency.

Structural connectivity Estimation of structural links between brain regions. For example, the study of white matter fiber pathways.

Structural equation modeling
(SEM)

Modeling for estimating effective connectivity, where model parameters are obtained as the statistical relationship between
timeseries. It uses the covariance structure of fMRI timeseries to infer steady-state coupling. It does not refer to biological or physical
quantities of the data.

Topology Properties of a network obtained considering the connectivity between nodes regardless of their physical or anatomical localization.

Tractography Method for identifying anatomical connections in the human brain in vivo and non-invasively using Diffusion MRI data.

T2* indicates T2 star MRI sequence.

comparison with seed-based correlation, one of its advantages is
that it does not require the specification of any a priori seeds
or hypothesis. Thus it is very useful for exploratory analysis. In
addition, ICA appears as a good approach to identify signals of
no-interest, such as artifacts, head motion, physiological noise or
CSF-related signals, which can be then easily removed from the
original fMRI data (Griffanti et al., 2014).

Graph-theory Approaches
These kind of studies aim to investigate the overall brain connec-
tivity by describing the brain as a single interconnected network
(Bullmore and Sporns, 2009). They belong to the set of higher-
level models used to evaluate functional connectivity in a more
integrative way than the two methods described above. Graph-
theory studies require, in general, a first stage in order to parcellate

Frontiers in Psychology | www.frontiersin.org May 2015 | Volume 6 | Article 6633

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Sala-Llonch et al. Aging and functional connectivity

the brain into a set of regions or nodes. Then, in a second
stage, one would find the relationships between all possible node
pairs, defining a “big” whole-brain network. Once the whole-
brain network is defined, it can be studied at different levels of
complexity or specificity. For example, it is possible to obtain
connectivity characteristics at regional level, and it is possible to
obtain parameters reflecting whole-brain organization, including
efficiency, integration or segregation (Rubinov and Sporns, 2010).
Furthermore, using measures of nodal connectivity or centrality
it has been possible to define cortical hubs as a key-connected
brain regions, that have an special role in controlling connectivity
paths across thewhole brain (Buckner et al., 2009; Cole et al., 2010;
Power et al., 2013).

Network Discovery in Healthy Subjects

There is an outstanding interest in understanding functional brain
organization in normal or healthy brains. It appears as an essential
need in order to further define neuropsychological correlates and
potential clinical biomarkers for neurodegenerative diseases, giv-
ing that the majority of these diseases have been described as dis-
connection syndromes (Geshwing and Kaplan, 1962; O’Sullivan
et al., 2001; Seeley et al., 2009). In addition, it brings new insight
to the design of interventional studies and to track brain changes
longitudinally.

The use of rs-fMRI to study functional connectivity has allowed
the identification of a reduced set of networks or connectivity
patterns named resting state networks (RSNs). These networks are
commonly identified across subjects (Damoiseaux et al., 2006),
and have shown high reproducibility rates (Guo et al., 2012).
In addition, RSNs have been associated with networks of brain
functions (Sadaghiani and Kleinschmidt, 2013).

The most-studied RSNs is the default mode network (DMN),
which has the specific property of being deactivated during the
performance of goal-directed tasks and shows high levels of activ-
ity at rest. It was first identified as a set of regions commonly
activated during passive compared with active conditions, using
positron emission tomography (PET; Shulman et al., 1997; Raichle
et al., 2001) and task-fMRI (Gusnard and Raichle, 2001). The
DMN was further identified in a series of resting-state func-
tional connectivity studies (Greicius et al., 2003; Fox et al., 2005;
Fransson, 2005; Damoiseaux et al., 2006; Vincent et al., 2006).
By gathering together studies of task-induced deactivations and
functional connectivity analyses, Buckner et al. (2008) defined
the core regions associated with the brain’s default network: the
ventral/dorsal medial prefrontal cortex (PFC), the posterior cin-
gulate and retrosplenial cortex, the inferior parietal lobule and the
hippocampal formation (including entorhinal cortex and parahip-
pocampal cortex).

Besides the DMN, other networks of intrinsic brain connec-
tivity have been consistently described in healthy population.
Different parcellations can be derived from resting-state func-
tional connectivity data. For example, by using resting state data
from 1000 subjects, Yeo et al. (2011), divided the human cortex
into 7 and 17 networks of functionally coupled regions, with
hierarchical relationship between the two parcellation schemes.
Other studies have focused on the similarity between resting-state

connectivity patterns, and task-based functional networks. In this
regard, several studies agree in a set of 10 RSNs, covering the
full repertory of task-related brain activation patterns (Fox et al.,
2005; Damoiseaux et al., 2006; Smith et al., 2009). These findings
indicate that the human brain has a network-based organization
even at rest. In this regard, Smith et al. (2009) used ICA on
rs-fMRI data and compared the components with task-patterns
averaged from the BrainMap database (Laird et al., 2005) which
assembled results from more than 7000 task-fMRI experiments.
They found that the patterns of RSFC could be easily associated
with patterns of task-related co-activations from a wide range of
cognitive domains. The spatial maps of the 10 most commonly
defined networks are illustrated in Figure 1.

Apart from the studies that have used ICA to describe the main
RSNs, other researchers have focused on whole-brain approaches
to investigate patterns of RSFC in healthy brains. For example,
Crossley et al. (2013) used graph-theory to define a network
from rs-fMRI, and they compared this network with a network of
task-co-activation patterns obtained from the BrainMapDatabase
(Laird et al., 2005). They described a brain structure based on
functional connectivity patterns that showed modular organiza-
tion andwhich was very similar between task and rest. Concretely,
they defined four modules that were associated with different
functions: the occipital module (perception), the central and sen-
sorimotor module (action), the frontoparietal module (executive
functions) and the DMN (emotion). The authors concluded that
there is a well-defined network organization in the brain that
is equally evidenced at rest and during task performance. In
another study, Cole et al. (2014) studied connectivity patterns
by creating whole-brain networks from data obtained at rest and
while subjects performed a variety of cognitive tasks. They defined
an intrinsic network structure obtained from rs-fMRI, which
was highly dominant in the resting brain and even during the
performance of a task. Interestingly, they also found that this net-
work structure is slightly modulated by task-evoked connectivity
changes that were both task-general and task-specific.

FMRI in Healthy Aging

From the behavioral point of view, it is known that some adults
are able to maintain their cognitive capabilities at high levels, in
contrast with other persons who show clear cognitive declines
with advancing age. It has been hypothesized that this variability
depends on neurofunctional resources. However, the exact mech-
anisms that lead to such wide differences are still unclear (Park
and Reuter-Lorenz, 2009).

The use of task-fMRI in aging has revealed a complex pattern
of brain activity changes, which is characterized by both, decreases
and increases in old subjects compared to young subjects (Grady,
2012). In some cases, the diversity of findings depends on many
variables, such as the cognitive tests used and their level of diffi-
culty (Grady et al., 2006). Nonetheless, there is a relative consensus
that there is an age-related increase of brain activity in the (PFC;
Turner and Spreng, 2012), while the findings as regards reduced
activation are localized more heterogeneously in the brain.

In this part, wewill review someof thesemain theories that have
appeared in the attempt to explain the trajectories of brain changes
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FIGURE 1 | Spatial maps of the main RSNs. Paterns are obtained using ICA
with a group of healthy young subjects. Adapted from Palacios et al. (2013).
(A) Visual medial network, (B) Visual occipital network, (C) Visual lateral

network, (D) Default mode network, (E) Cerebellum, (F) Sensorimotor network,
(G) Salience network, (H) Auditory network, (I) Right fronto-parietal network,
and (J) Left fronto-parietal network.

and their relationship with cognition. It is important to note
that whereas earlier or “more classical” views aimed to provide
meaningful interpretations of a variety of isolated phenomena,
such as the increased or the decreased regional brain activity in
old compared with young subjects, more recent theories aim to
provide a global, integrative interpretation of brain changes.

Classical Theories Derived from Task-fMRI
Studies
In general, regional hyperactivation has been interpreted as com-
pensation (or an attempt to compensate), whereas a failure to
activate or reduced activation has been typically related with
cognitive deficits associated with aging. Two main hypotheses
were proposed to explain the nature of these age-related activity
changes: the dedifferentiation hypothesis and the compensation
hypothesis.

By one hand, the term dedifferentiation is described as the
loss of functional specificity in the brain regions that are engaged
during the performance of a task (Park et al., 2004; Rajah and
D’Esposito, 2005). In neurobiological terms, it has been suggested
that this pattern of changes is caused by a chain of processes

which starts from a decline in the dopaminergic neuromodulation
that produces increases in neural noise, leading to less distinctive
cortical representations (Li et al., 2001).

On the other hand, the compensation hypothesis in aging states
that older adults are able to recruit higher levels of activity in
comparison to young subjects in some brain areas to compensate
for functional deficits located somewhere else in the brain. This
increased activity is often seen in frontal regions (Park andReuter-
Lorenz, 2009; Turner and Spreng, 2012). The first studies sug-
gesting compensatorymechanisms appeared early in the literature
andusedPETduring the performance of visuospatial (Grady et al.,
1994) or episodic memory (Cabeza et al., 1997; Madden et al.,
1999) tasks. Later on, these findings were replicated with fMRI
(Cabeza et al., 2002).

Furthermore, the different patterns of spatial localization of the
compensation-related mechanisms leaded to the formulation of
three main cognitive models:

(1) The Hemispheric Asymmetry Reduction in Old Adults
(HAROLD) model (Cabeza, 2002) states that older adults
use a less lateralized pattern of activity in comparison with
young subjects during the performance of a task, which
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is compensatory. This reduced lateralization was mainly
observed in frontal areas, during the performance of episodic
memory and working memory tasks (Cabeza et al., 2002;
Cabeza, 2004).

(2) The Compensation-Related Utilization of Neural Circuits
Hypothesis (CRUNCH; Reuter-Lorenz and Cappell, 2008;
Schneider-Garces et al., 2010) defends that, in older adults,
higher neural recruitment occurs in cognitive levels that typi-
cally imply lower brain activity in younger subjects. This effect
has been observed in the PFC and also in the parietal cortex,
concretely in the precuneus and posterior cingulate and both
in episodic memory tasks (Spaniol and Grady, 2012) and in
working memory tasks (Mattay et al., 2006; Reuter-Lorenz
and Cappell, 2008).

(3) The Posterior-Anterior Shift with Aging (PASA) was exper-
imentally proved by Davis et al., who used two different
tasks, visuoperceptive and episodic retrieval and found that
older subjects had deficits to activate regions in the posterior
midline cortex accompanied with increased activity in medial
frontal cortex (Davis et al., 2008).

Global, Integrative Theories of Cognitive
Function and the Aging Brain
With the unique information provided by fMRI activity and with
the classification described above, which presents the models as
being exclusive between them, it seems difficult to discern which
of the proposed model better explains the age-related changes in
cognition.

More recently, an important contribution to the interpretation
of these models has been given by multimodal studies that inte-
grate structural and functional brain measures. For example, in
some cases, it has been reported that reduced activity in task-
related regions correlated positively with brain atrophy in the
same brain regions (Brassen et al., 2009; Rajah et al., 2011),
whereas other studies have reported correlations between the
increased functional activity in the PFC and the preserved struc-
tural integrity of the entorhinal cortex and other medial temporal
lobe (MTL) structures (Rosen et al., 2005; Braskie et al., 2009).
Given this, some authors have theorized that while increased
activity in the PFC may be triggered by the atrophy of frontal GM,
which is a commonly reported feature in aging, the compensatory
role of this increased activity may depend on the preserved struc-
tural integrity of distal regions mainly in the MTL (Maillet and
Rajah, 2013).

Therefore, and mainly thanks to the new advances in neu-
roimaging techniques, it has been suggested that cognitive func-
tion in aging is a result of a sum of processes, including structural
and functional brain measures as well as external factors. In this
regard, the scaffolding theory of aging and cognition (STAC) states
that there is a process in the aging brain, called compensatory scaf-
folding that entails the engagement of additional neural resources
(in terms of network reorganization) providing a support to pre-
serve cognitive function in the face of structural and functional
decline (Park and Reuter-Lorenz, 2009). This theory has been
recently revised in order to include the more recent findings on
the field, obtained mainly from longitudinal and interventional

studies. As a result, the STAC-r is a conceptual model that extends
the STAC by incorporating life-course influences that enhance,
preserve, or compromise brain status, compensatory potential and
cognitive function over time (Reuter-Lorenz and Park, 2014).

In a similar sense, Walhovd et al. (2014) proposed a system-
vulnerability view of cognition in aging. According to them, the
age-associated cognitive decline would be the result of a life-long
accumulation of impact that alters brain function and structure
in a multidimensional way, affecting a wide range of neuroimage
markers such as structural integrity, functional activity and con-
nectivity, glucose metabolism, or amyloid deposition. According
to this view some particular brain systems such as the hippocam-
pus and posteromedial regionswould be particularly vulnerable to
ageing effects, related to its central role asmechanisms subtending
lifetime brain plasticity (Fjell et al., 2014).

Finally, a complementary hypothesis, also emerged from the
results of longitudinal studies is the “brain maintenance,” which
states that the lack of changes in brain structural and functional
markers would allow some people to show little or no age-related
cognitive decline. The conceptual idea of brain maintenance was
motivated by the fact that increased functional activity in HA do
not necessarily imply up-regulation of functional networks over
time. Therefore, according to maintenance, the best predictors of
successful performance in aging would be the minimization of
chemical, structural and functional changes over time (Nyberg
et al., 2012).

Connectivity-related Changes in Aging

Results from task-activation fMRI studies in aging are sometimes
controversial and difficult to interpret. Therefore, more recently,
studies on HA have also taken advantage from the advances as
regards brain connectivity (Dennis and Thompson, 2014). Brain
connectivity changes related with aging are thought to be useful in
order to interpret functional reorganizations in the context of the
models mentioned above of functional brain compensation and
dedifferentiation.

Some evidences of task-related connectivity changes in aging
are found in the working memory literature. Nagel et al. (2011)
found load-related increases in PFC activity accompanied with
decreases in the functional coupling between PFC and premotor
cortex. Madden et al. (2010) studied task switching and found
similar levels of brain activity between young an old groups,
with lower functional connectivity in older subjects. Similarly, in
episodic memory tasks, connectivity changes have been described
(Daselaar et al., 2006; Dennis et al., 2008; Addis et al., 2010).
Concretely, these studies reported reduced connectivity from the
hippocampus andMTL to posterior and occipital regions together
with increased connectivity from the same regions to frontal
areas, such as the PFC. These results support the PASA model
and indicate that functional connectivity changes follow similar
patterns than those described with task-related activity.

In addition to task-fMRI studies, functional connectivity in
aging has been primarily studied with rs-fMRI. Alterations of
RSFC in aging include disconnection or dysfunction within some
of the large-scale networks as well as alterations in whole-brain
connectivity patterns. A summary of the most relevant studies
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TABLE 2 | Summary of functional connectivity studies in healthy aging.

Study Sample Methodology RSN Changes Other results Relationship with
cognition

Achard and
Bullmore (2007)

17 young
(18–33 years)
13 old
(62–76 years)

Graph-theory – Global efficiency
Localized effects in
frontal and temporal
regions

–

Andrews-Hanna
et al. (2007)

93 (18–93 years) Seed-based DMN
DAN

FC relates to white
matter integrity

Executive functions, memory
and processing speed

Meunier et al.
(2009)

17 young
(18–33 years)
13 old
(62–76 years)

Graph-theory – Equal modularity
number of modules
segregation

–

Wang et al. (2010) 17 (62–83 years) Seed-based DMN FC hippocampus-PPC Prediction of memory
performance

Jones et al. (2011) 341 (64–91 years) ICA Seed-based DMN Anterior DMN FC
Posterior DMN FC

Correlation with mental state
test

Campbell et al.
(2012)

12 young
(18–28 years)
12 old
(60–78 years)

Seed-based FPN
CN

FC relates to
task-activity

–

Onoda et al.
(2012)

73 (36–86 years) ICA Seed-based SN
DMN

SN-Visual
SN-Auditory
DMN-Visual

SN correlates with frontal and
visuospatial functions

Tomasi and
Volkow (2012)

913 (13–85 years) FC density mapping
(whole-brain).

DMN
DAN
SomMotor
Subcortical

long-range FC
short-range FC

–

Betzel et al.
(2014)

126 (7–85 years) Whole-brain FC
Graph-theory

CN
DMN
VisPeri
SNÙ ∧

SomMotor ∧

VisCen ∧

FC between RSNs –

Geerligs et al.
(2014)

40 young
(18–26 years)
40 old
(59–74 years)

Graph-theory DMN
CingOper
FPN
SomMotor =
Visual =

Modularity
Locaf efficiency
DMN–CN
Visual–CN

–

Song et al. (2014) 26 young
(24.46 ± 3 years)
24 old
(58 ± 6.1 years)

Graph-theory DMN
SomMotor

Modularity
Local efficiency

Change in hubness

–

Zhang et al.
(2014)

18 young
(22–33 years)
22 old
(60–80 years)

Seed-based DMN
SN
CN
DAN
Visual =

Selective vulnerability
of networks

–

Sala-Llonch et al.
(2014)

98 old
(64.87 ± 11.8 years)

Graph-theory – Long-range FC
Short-range FC
Clustering
Minimum path length

Clustering correlates with
verbal and visual memory
function

CingOper, Cingulo-Opercular network; CN, Control Network; DAN, Dorsal Anterior Network; DMN, Default Mode Network; FC, Functional Connectivity; PPC, Precuneus/Posterior
Cingulate; RSN, Resting-State Networks; SN, Salience Network; VisCen, Visual Central; VisPeri, Visual Pericalcarine; SomMotor, somatosensory/motor network; , indicates
increases/decreases in connectivity; =, indicates no changes in connectivity; ∧, indicates non-linear changes in connectivity.

in aging and functional connectivity using rs-fMRI, including
those that reported correlations with cognitive changes, is given
in Table 2.

It is noteworthy that a great majority of articles have focused
on the DMN. This fact can be explained because the DMN
has been related to the functional and neurobiological changes
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underlying Alzheimer’s Disease (AD), specially at its first stages
(Buckner et al., 2009), which is the most common neurodegener-
ative disease affecting aged population.

A common finding of the studies reviewed in Table 2 is
the decreased connectivity within the nodes of some of the
main RSNs, including the DMN and the Salience and executive/
attention networks. This result has been observed using ICA
(Damoiseaux et al., 2008; Jones et al., 2011; Onoda et al.,
2012), and also using seed-based connectivity (Andrews-Hanna
et al., 2007; Wang et al., 2010) and graph-theory or whole-
brain approaches (Tomasi and Volkow, 2012; Betzel et al., 2014;
Geerligs et al., 2014; Song et al., 2014). Disrupted connectivity in
aging persists even controlling for brain atrophy or age-related
structural changes (Ferreira and Busatto, 2013). Connectivity
decreases directly imply reductions in how information is trans-
ferred between different brain regions. In this regard, a com-
monly result is the disconnection between the anterior and the
posterior nodes of the DMN, which correlates with age-related
cognitive decline (Andrews-Hanna et al., 2007; Damoiseaux et al.,
2008), and with white-matter alterations (Andrews-Hanna et al.,
2007).

The results as regards somatosensory, motor and subcortical
networks are not as consistent as with the DMN. Some studies
have reported connectivity increases (Tomasi and Volkow, 2012;
Song et al., 2014), no changes in connectivity (Geerligs et al., 2014)
or non-linear changes (Betzel et al., 2014).

Connectivity changes have been further explored using higher-
level analysis methods. Tomasi and Volkow (2012) found that
long-range connectivity decreased with age whereas short-range
connections were stronger. These results were interpreted under
the hypothesis that some brain regions, with key roles in whole-
brain connectivity, named hubs (Buckner et al., 2009; Crossley
et al., 2013), could experiment strengthening of functional con-
nectivity with their closest regions, leading to an increase in local
connectivity (Ferreira andBusatto, 2013). In addition, another line
of research refers to the study of functional connectivity within
and between the main large-scale networks. In this regard, it
has been described that the age-related decreases in connectivity
between regions of a network are accompanied by increases in
the connectivity of these network toward regions of other RSNs,
affecting the overall functional connectivity architecture (Betzel
et al., 2014; Geerligs et al., 2014).

Finally, few papers have reported relationships between con-
nectivity and cognition. In some cases, connectivity changes
have been related to executive and memory functions (Andrews-
Hanna et al., 2007; Damoiseaux et al., 2008; Wang et al., 2010;
Onoda et al., 2012; Sala-Llonch et al., 2014). Decreased functional
connectivity has been also correlated with decreased structural
connectivity in aging (Andrews-Hanna et al., 2007).

Future Directions

Importantly, in the upcoming years, multi-centric interna-
tional projects such as the Human Connectome Project (HCP,
http://www.humanconnectome.org/) will represent an important
contribution to understand human brain connectivity. The HCP
consortium has recently presented a database for housing and

disseminating publicy available human brain connectivity data
(Hodge et al., 2015). This database includes data from multiple
MRI modalities, magnetoencephalography (MEG) data, as well as
its associated cognitive and behavioral data. It currently includes
data from young subjects, but additional related projects will focus
on life-span trajectories of human brain connectivity. We believe
that these initiatives will provide an excellent tool to test the
cognitive models of the aging brain and to understand changes
that are related to network reorganization processes.

It should be noted that all the studies mentioned in this review
are based on the study of functional connectivity as the statisti-
cal dependence between timeseries. This definition of functional
connectivity, as opposite to effective connectivity, does not allow
inferring causality and it is less biologically meaningful. However,
in general, functional connectivity analyses are more robust and
faster to compute (Smith et al., 2013). In addition, they still
represent the best and most used approach for rs-fMRI data.

On the other hand, these more complex network modeling
approaches, relatedwith effective connectivity, canmeasure direc-
tional and causal relationships between network nodes and they
are thought to provide more biologically interpretable results
(Friston, 2011). These methods were initially designed to study
task-fMRI data, giving the fact that they refer to the study of how
information flows among the regions of a network as a response to
a specific stimulus. Several approaches have been proposed to esti-
mate effective connectivity, including structural equation model
(SEM; McLntosh and Gonzalez-Lima, 1994), granger causality
analysis (GCA; Goebel et al., 2003), and dynamic causal modeling
(DCM; Friston et al., 2003). Of the three, both SEM and GCA
methods have shown many controversies as regards their applica-
bility for fMRI data, and DCM seems the best approach for fMRI
timeseries (Friston, 2011; Di and Biswal, 2014).

Only few studies have reported results as regards effective
connectivity in aging (Addis et al., 2010; Waring et al., 2013).
These studies have shown age-related modulations in networks
involved in selective memory in emotional domains. For example,
Waring et al. (2013) reported that older adults showed stronger
connectivity during task within frontal regions and from frontal
regions to MTL. Models of effective connectivity have been also
applied in the context of neurodegenerative diseases, such as
Alzheimer’s Disease (Rosenbaum et al., 2010; Jacobs et al., 2012)
or Parkinson’s Disease (Trujillo et al., 2015).

We believe that the use of effective connectivity to study net-
work models in aging can provide a more meaningful interpreta-
tion of the results reported so far both as regards patterns of brain
activity and connectivity. For example, DCM has been used in
healthy young samples to study context-dependent modulations
within the fronto-parietal network (Dima et al., 2014; Harding
et al., 2015). These studies described patterns reflecting the func-
tional adaptability of different neural representations within a
common system. From the set of studies included in the present
review, we have concluded that increased activity during task
coexists with decreased connectivity, mainly measured at rest,
suggesting that age-related changes in the brain networks would
have a strong context-related component. In addition, the PFC
appeared as a core region related to compensatory mechanisms.
Therefore, as an example, a potential application of effective
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connectivity models in old adults could address how functional
signals from this area toward other structures is modified from
resting-state acquisitions to task-related fMRI studies tapping on
cognitive domains typically affected in ageing such as memory or
executive functions.

However, although the use of such complex models seems
promising, there are still several limitations as regards their appli-
cability and their implementation that need to be solved. First,
they are computationally sophisticated and not very robust. In
addition, they were originally meant for task-fMRI data, and

their adaptations for resting-state data are still on their early
developments (Friston et al., 2014).
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