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Ultraviolet (UV) irradiation is a major mutagenic environmental agent, causing the appearance of DNA adducts that, if unrepaired,
may give rise to mutations. Ultraviolet radiation has been indicated as a major risk factor in the development of nonmelanoma skin
cancers; however, recent reports have suggested that infections with human papillomaviruses, a widespread family of epitheliotropic
DNA viruses, may also contribute to the tumorigeneic process. Here, we investigated whether expression of the E6 protein from
different HPV types interfere with the repair of thymine dimers caused by UV-B radiation. Results show that unrepaired DNA
damage can be observed in UV-B-irradiated cells expressing the E6 protein of HPV types found in cervical and epithelial cancers.
Moreover, such cells have the ability to overcome the G1 cell cycle checkpoint induced as a result of unrepaired DNA.
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On a worldwide basis, nonmelanoma skin cancers (NMSCs) are the
most commonly diagnosed cancers amongst Caucasians (de
Villiers et al, 1999; Kiviat, 1999). The major contributing factor
to the development of NMSCs at sun-exposed sites is through DNA
damage caused by ultraviolet radiation (UVR). The importance of
effective DNA damage repair is highlighted by studies on patients
affected with the inherited disease Xeroderma pigmentosum (XP),
who are at greatly increased risk of developing NMSCs at sun-
exposed body sites (Ellis, 1997). This propensity is due to disabling
mutations in the XP genes, which are involved in the repair of
DNA damage via the nucleotide excision repair (NER) pathway. A
similar susceptibility to develop NMSCs is observed in patients
with the rare genetic disease epidermodysplasia verruciformis
(EV) (Orth, 1986), which predisposes to infection with a particular
class of HPV (EV-HPV). In EV-patients, skin tumours are found at
sun-exposed sites and appear to associate with and arise from
HPV-infected lesions. This suggests that EV-HPV types, princi-
pally types 5 and 8, may have a role in promoting the tumorigenic
process. Likewise, renal transplant recipients (RTRs), who also are
subject to extensive HPV-verrucosis, display an increased risk of
developing NMSCs at sun-exposed sites (Surentheran et al, 1998;
Harwood et al, 2000), with the tumours arising from wart sites.
Overall, these clinical data suggest that, in addition to UV-
radiation, HPV infections may contribute towards the appearance
of NMSCs at sun-exposed sites. Recently, it has been observed that
cells expressing the HPV E6 protein of type 16, which can promote

the degradation of the tumour suppressor p53, also display
reduced ability to repair DNA damage (El-Mahdy et al, 2000). As
the repair of UV damage is, at least in part, dependent on the p53
status of the cells (Ford and Hanawalt, 1995, 1997), the failure to
repair DNA damage effectively may be due to the cells being
functionally p53 null.
The ability to promote degradation of p53 is however restricted

to a handful of HPV types such as 16, 18 and 33, which are
commonly associated with the development of cervical cancers.
Conversely, other HPV types, more commonly associated with
NMSCs development, do not possess this activity (Elbel et al, 1997;
Jackson and Storey, 2000). It was therefore of interest to determine
whether the repair of DNA damage was compromised in cells
expressing the E6 protein of other HPV types which do not promote
p53 degradation, but are yet associated with the development of
NMSCs at sun-exposed sites. To this aim, we investigated the repair
of UV-B-induced thymine dimers in wild-type p53 cells that express
the E6 proteins from a variety of EV and other cutaneous HPV
types. These included HPV type 5, associated with NMSCs of EV-
patients; type 10, found in plantar warts; type 18 that is associated
cervical cancers and type 77, found in NMSCs of RTRs. Our results
show that cells expressing HPV 5 and 18 E6, but not HPV 10 or 77
E6, display a reduced ability to repair thymine dimers, compared to
the control cells. Furthermore, cells expressing HPV 5 or 18 E6 are
able to bypass the UV-induced G1/S checkpoint despite the
presence of unrepaired thymine dimers, which may ultimately
result in incorrect replication of the genetic material. We extended
these initial findings to show that this impairment of thymine
dimers repair was restricted to cancer-associated HPVs, and did not
occur in cells expressing the E6 protein from EV-HPV types such as
types 23, 24 and 49 that are rarely found in cancers.
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MATERIALS AND METHODS

Plasmids and cloning

The coding sequences of the E6 genes of HPV type 5, 10, 18 and 77
were excised from pcDNA 3 vectors described previously (Jackson
et al, 2000). The fragments obtained were purified and subcloned
into the BamHI–EcoRI sites of the bicistronic vector pIres
(Clontech, Oxford, UK). The E6 genes of HPV 23, 24 and 49 were
amplified from pBR322 (types 23 and 24) and pGem 4 (type 49)
plasmids by PCR using the following primers:

E6 primers Sequence
23E6REco CAC gaa TTC TCA TTC TAT TTC CTT ACA

ATG
24E6FBam CAC GGA TTC ATG GCT CAA CCA GGT AAA

CCT
24E6REco CAC GAA TTC TTA TAT CTG CTT ACA CTG

CCT
49E6FBam CAC GGA TTC TGG CTA GAC CTG GTT AAG

GTA
49E6REco CAC GAA TTC TCA TTC TAT AAC TCT GCA

ATG

The products were then digested with BamHI and EcoRI
enzymes, purified and inserted into the BamHI–EcoRI sites of
the pIres-neo vector (Invitrogen, Paisley, UK).

Cell culture

Cells lines expressing the control plasmid pIres or its derivatives
containing the E6 coding sequence of HPV 5, 10, 18, 77, 23, 24 and
49 were obtained by transfecting HT1080 cells that have wild-type
p53 (Rasheed et al, 1974) by calcium phosphate method (Wigler
et al, 1979). Cells were grown at 371C in 10% CO2/90% air in
DMEM (Gibco BRL, Paisley, UK) supplemented with 10% foetal
calf serum. Selection of transfected cells was carried out for 2
weeks by addition of G418 to the culture media at a final
concentration of 350 mgml�1.

Treatment with UV irradiation

Prior to irradiation, DMEM was removed by washing the cells
twice with PBS, which was then completely removed. A CL-1000 M

ultraviolet crosslinker (UVP) with 302/310 nm UVB lamps was
used to irradiate cells with a single dose of 10mJ cm�2. After
irradiation, fresh medium was added to the cells, which were
cultured as described until they were harvested.

Immunoassay for repair of thymine dimers

Thymine dimers present in cellular DNA were detected and
quantified using the following standard protocol.
From each cells line, 5� 105 cells were plated and 16 h

later either UV-B irradiated at 10mJ cm�2 or left unirradiated.
Total genomic DNA was extracted by using the Nucleon
BACC DNA purification kit, according to the manufacturers’
instructions. Slot blots of different amounts of human DNA
(100–1000 ng) were hybridised to demonstrate a linear relation-
ship between DNA on the filter and signal. To ensure complete
denaturation of the DNA, 5 M NaOH was added to the DNA
solution to reach the final concentration of 0.4 M NaOH. All
samples were then brought to the final volume of 50 ml by addition
of 0.4 M NaOH and then the mixture was incubated at 801C for
30min. DNA was transferred to a nitrocellulose filter (Hybond
XL) using a vacuum blotter (Bio-Dot microfiltration apparatus,
Bio-Rad, Hemel Hempstead, UK).
The membrane was allowed to air-dry for 1 h at room

temperature, then neutralised for 5min in 2� SSC. The filter

was baked at 801C for 150min to fix the DNA onto the membrane
and then stored at 41C in TBS-T (10mM Tris-HCl pH8, 0.1%
Tween-20, 200mM NaCl).
The filter was blocked in 10% milk/TBS-T for 1 h at room

temperature, before incubating with mouse monoclonal anti-
body raised against thymine dimers (MC-062, Kamiya Biomedical,
Seattle, WA, USA) diluited 1 : 500 in 5% nonfat milk/TBS-T
for 1 h. Following washing, membranes were incubated with a
secondary rabbit polyclonal anti-mouse fluorescein (FITC)-con-
jugated antibody (Dako, Ely, Cambs, UK), diluted 1 : 600 in 5%
nonfat milk/TBS-T for 1 h. The filter was then incubated with
tertiary swine polyclonal anti-rabbit alkaline phosphatase (AP)
conjugated antibody, diluted 1 : 1500 in 5% nonfat milk/TBS-T
for 1 h. After washing three times in TBS-T, the signal was
detected by overlaying the ECF substrate (APBiotech, Bucks, UK)
on the membrane for 7min, according to the manufacturers’
instructions.
To evaluate antibody binding, the filter underwent scanning

using the STORM 840 chemofluorescent imaging system. The
spots, corresponding to the signal generated from DNA damage,
were quantified using the IMAGEQuant programme.
To evaluate uniformity of DNA sample loading, each filter was

also hybridised with 32P-labeled human b-actin. b-Actin (25 ng)
DNA was radioactively labelled by using the Megaprime kit
(Amersham, Bucks, UK), according to the manufacturers’ instruc-
tions. Prehybridisation was carried out for 4 h at 601C in 5�
Denhart’s solution, 2� SSC, 1% SDS and 100 mgml�1 of preboiled
salmon sperm DNA.
Hybridisation took place for 16 h at 601C in the same solution to

which the radioactive probe is added. Finally, the membrane was
washed in 2� SSC, 1% SDS for 10min. To quantitate the amount
of DNA transferred, the membrane was analysed using the Storm
840 phosphorimaging system (Molecular Dynamics, Bucks, UK).
The intensity of the signal was converted to numerical data using
the ImageQuant programme. Each experiment was repeated three
times to ensure reproducibility and representative areas of the
filters were used in each case to measure background fluoresence.
From pilot experiments it was established that 200 ng of total
genomic DNA reproducibly gave a strong signal well within the
linear range of detection. Hence, 200 ng of total genomic DNA were
used in all the immunoassays thereafter, following the standard
protocol.

Quantification of DNA damage

The amount of residual DNA damage was assessed by the
immunoreactivity with the anti-thymine dimers antibody. The
strength of the signal was corrected for the amount of total DNA
spotted, as measured by radioactive probe hybridisation. Finally,
the value of 100% was arbitrarily assigned to the DNA damage
present at 1 s after irradiation, and all the other values were
assigned accordingly.

Immunocytochemistry

Antibodies used for the immunocytochemistry experiments
included a mouse monoclonal anti-thymine dimer (Kamiya
Biochemicals, Japan), 1 : 100 and rabbit polyclonal anti-cyclin A
(Santa Cruz, CA, USA), 1 : 300 as primary antibodies, a goat anti-
mouse FITC conjugated (Dako), 1 : 100 and goat anti-rabbit Alexa
546 conjugated (Molecular Probes, Cambridge, UK), 1 : 100 as
secondary antibodies.
Cells were plated onto glass coverslips, allowed to attach

overnight and treated as required. Cells were fixed by immersion
in 4% paraformaldehyde in PBS for 20min at room temperature,
then washed twice with fresh PBS and stored at 41C in PBS.
PBS was removed from the cells and a solution of 0.1% Triton
X-100 in PBS overlayed for 5min at room temperature to allow
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permeabilisation of the cell membranes. Cells were then
washed twice with PBS to remove any residual detergent. To
avoid nonspecific reaction with the secondary antibody, cells
were incubated with 3% goat serum in PBS for 15min at
room temperature. After removal of the serum in PBS, cells
were incubated with primary antibody diluted in PBS for 1 h at
371C. Cells were then washed three times with PBS and incubated
with the secondary antibody diluted in PBS for 1 h at room
temperature. Finally, cells were washed three times in PBS, once
in water, mounted onto glass slide using Immu-mount mount-
ing medium (Thermo-immuno) and visualised by immunofluo-
recent confocal microscopy, using the upright Zeiss LSM 510
microscope.

RESULTS

Thymine dimer repair is compromised in HPV 5- and HPV
18 E6-expressing cells

Cell lines expressing the E6 protein of HPV types 5, 10, 18 and 77
were generated as described in Material and Methods, and
expression of the desired gene was verified by RT–PCR (data
not shown). In all, 5� 105 cells from each cell line were UV-B
irradiated with 10mJ cm�2 and collected at different time points
thereafter. A histogram showing the detection of thymine dimers
vs time in HT1080 cell lines expressing either the control plasmid
or the selected HPV E6-expressing plasmid is shown in Figure 1A.

Figure 1 (A) Repair of thymine dimers with time in HT1080 cells transfected with the vector control plasmid piers and its derivatives expressing the E6
protein of HPV types 5, 10, 18 and 77. DNA damage repair is compromised in cells expressing HPV 18 E6 or HPV 5 E6, while in cells expressing 10 E6 or 77
E6, the DNA damage repair is comparable to that of the control cell line, HT1080 IRES. The bars represent the standard deviation of three independent
experiments. (B) Representative dot blots showing the detection of thymine dimers using a specific monoclonal antibody together with quantification of
total DNA by Southern blotting. The pIres cells were used in the example shown. The cells were harvested immediately following irradiation (1 s¼ 1
second), at 20 and 30min or at 1, 2, 16 and 24 h after irradiation, total DNA extracted, spotted onto nitrocellulose membranes and denatured. The
membrane was first probed with the anti-thymine dimer antibody, followed by detection using a secondary rabbit polyclonal anti-mouse FITC-conjugated
antibody and then incubated with tertiary swine polyclonal anti-rabbit AP. The fluoresence was quantitated using a Storm 840 imaging system and
ImageQuant software. Total DNA spotted was determined by Southern blotting.
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Representative blots that were used to detect and quantify the
thymine dimers, which were then reprobed to determine the total
DNA loading, are shown in Figure 1B. In the control cell line,
expressing only the neomycin-resistance gene of the backbone
vector pIres, the DNA damage signal increased immediately
following irradiation, possibly increasing further at around 1 h
after stimulus, following a pattern similar to that observed
previously (Lu et al, 1999). After this time, the signal began to
decrease and was undetectable by 16 h postirradiation. This
pattern of repair was closely mirrored in cell lines expressing
either HPV 10 E6 or HPV 77 E6, in which the level of DNA damage,
as judged by the decrease in anti-thymine dimers antibody
reactivity, was also undetectable by 16 h post-UV-B treatment. In
marked contrast, a different pattern of thymine dimers repair was
seen for cell lines expressing either HPV 18 E6 or HPV 5 E6, with
between 20 and 30% of the initial signal still detectable 24 h after
irradiation (Figure 1A). The delay of DNA damage repair was
expected for HPV 18 E6-expressing cell line, as expression of the
HPV 18 E6 protein in these cells promotes p53 degradation and the
absence of p53 has been already reported to slow DNA damage
repair (El-Mahdy et al, 2000). However, as demonstrated elsewhere
(Jackson and Storey, 2000), HPV 5 E6, in contrast to HPV 18 E6,
has been shown to be unable to promote the degradation p53. It
cannot be ruled out at this stage that uncharacterised changes in
the HT1080 cells may contribute towards this phenotype. These
results suggest that HPV 5 E6 could nevertheless impair DNA
damage repair through mechanisms that do not involve p53
degradation, which may contribute towards the oncogenic
potential of his viral type.

Thymine dimer repair in cells expressing the E6 protein of
different EV-HPV types

HPV 5, in contrast to the other cutaneous HPV tested, belongs to
the group of EV-HPV types. It is possible that the oncogenic
potential of specific EV types could partly be explained in terms of
defective DNA damage repair. To test this possibility, additional
cell lines were generated that expressed other EV E6 genes, namely
of types 23, 24 and 49, which belong to different clusters within the
EV group. Their ability to interfere with the repair thymine dimers
was investigated and compared to that of cells expressing the HPV
5 or HPV 18 E6 protein. In addition, for this experiment, the time
course was extended to 48 h postirradiation to assess the extent to
which DNA damage repair was delayed. In contrast to HPV 5 and
8, which are strongly associated with the development of NMSC in
EV patients, types 23, 24 and 49 have been rarely found in the
tumours of EV patients, although their presence has been reported
in NMSC of RTRs (Harwood et al, 2000). It was of interest
therefore to establish whether delayed thymine dimers repair by
the E6 protein was a property shared between all EV types, or
whether only certain types that are frequently associated with
cancers, such as HPV 5, possess this activity.
For this experiment, 5� 105 cells from each cell line were UV-B

irradiated at 10mJ cm�2, the cells were collected at different time
points, and the presence of thymine dimers assessed as before. As
expected, in the HT1080 IRES control cell line (Figure 2), the time
course curve of the DNA damage signal was in accordance with
previous results and repair of thymine dimers was complete by
16 h postirradiation. Likewise, cells expressing HPV 5 E6 and HPV
18 E6 maintained 20–30% of the initial damage at 24 h after
irradiation, in good agreement with earlier experiments. Extending
the time course from Figure 1A showed that the DNA damage,
however, appeared to be mostly if not completely repaired by 36 h
in both cells lines, as judged by the decrease in anti-thymine dimer
antibody reactivity in our assay system. Cells expressing the HPV
23, 24 and 49 E6 genes displayed a similar pattern of DNA damage
repair to that observed in the control cell line, with the repair of
thymine dimers being judged to be complete by 16 h postirradia-

tion. These results suggest that the ability to compromise DNA
damage repair does not extend to all EV-HPVs, but may be
exclusive to types, such as 5, which are more frequently associated
with tumour development in EV.

UV-damaged cells expressing HPV 5 or HPV 18 E6 bypass
the G1 cell cycle checkpoint

If DNA damage is not repaired correctly, mutagenic events might
occur. For these potentially tumour-promoting mutations to have
physiological importance in tumour formation, the cells that
would normally be growth arrested by UV treatment would have to
re-enter the cell cycle in order to replicate the mutated DNA and
generate progeny cells with tumorigenic potential. A long-term
growth arrest or failure of a damaged cell to divide prevents
mutagenic changes introduced during the repair process from
being passed on to the progeny cells. Therefore, it was then of
interest to determine whether the E6-expressing cells that retained
unrepaired DNA damage had resumed cycling.
Under normal conditions, repair of DNA damage would be

completed before the onset of the S phase. To investigate whether
cells displaying unrepaired thymine dimers were able to enter S
phase following UV-induced damage, the expression of the cell
cycle progression marker cyclin A in these cells was assessed by
immunocytochemical staining. Cyclin A expression is usually
repressed during early G1 and in quiescent (G0) cells, while marked
upregulation of the protein is required, starting from late G1 phase,
for progression to S phase and its expression is maintained
through to mid M phase. Transcriptional repression of cyclin A
expression results in a G1 arrest which can be relieved by ectopic
expression of cyclin A (Fajas et al, 2001) and induction of G1 arrest
correlates with reduced expression of cyclin A (Decker et al, 2003).
To determine whether cyclin A was still expressed in UV-

irradiated cells harbouring thymine dimers, 104 cells from the
piers, pIresH5E6 and pIresH18E6 lines, were seeded onto glass
coverslips and allowed to attach overnight. The following day, the
cells were serum starved for 3 days in order to arrest the cells in G0,
when expression of cyclin A is no longer observed. For each cell
line, one coverslip was fixed at that time to verify the cell cycle
arrest and lack of cyclin A expression (not shown). Cells on the
other coverslips were released from cell cycle arrest by addition of
fresh serum-containing media, or irradiated at 10mJ cm�2 and
then cultured in fresh serum-containing media for 24 h and then
fixed for further analysis. Cyclin A expression and thymine dimers
presence were then analysed by fluorescent immunocytochemistry.
As expected, no thymine dimer expression could be observed in
any of the unirradiated cells, irrespective of the cell line tested
(Figure 3). In all cell lines, nonirradiated cells released from cell
cycle blockage by addition of serum-containing medium showed a
readily detectable cyclin A within the nuclear compartment
(Figure 3). In UV-irradiated HT1080 pIres cells cultured for 24 h
in the presence of serum, strong nuclear staining for cyclin A was
observed in most cells, while others only showed a weak diffuse
staining. This pattern is consistent with recovery from G1 growth
arrest, which takes place after UV irradiation. None of the UV-
irradiated HT1080 IRES cells were positive for thymine dimers.
This is in agreement with previous findings that showed, in this
cell line, that these adducts were no longer detectable at 16 h after
UV irradiation and indicates that these cells did not enter late G1/S
phase while containing detectable levels of thymine dimers
(Figure 3).
In marked contrast in HPV 5- or HPV 18 E6-expressing cells, a

proportion of the population showed strong nuclear staining for
cyclin A, suggesting that cycling had resumed in these cells. Within
these cyclin A-positive cells, only a few showed absence of nuclear
staining for thymine dimers, suggesting that in such cells the DNA
damage had been completely repaired. However, in the majority of
these cells that were cyclin A positive, significant thymine dimers
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nuclear staining could be readily observed, indicating that these
cells are able to bypass cell cycle checkpoints despite the presence
of unrepaired thymine dimers (Figure 3).

DISCUSSION

This study has revealed that impairment of thymine dimers
repair after UV irradiation was observed in cells expressing
the E6 protein of HPV types 5 and 18. This suggested that these
HPV types may participate in the tumour development not
only by interfering with UV-induced apoptosis (Jackson et al,
2000; Jackson and Storey, 2000) but could also contribute to this
process by hindering the DNA damage repair process. Further-
more, interference with the cell cycle responses is observed in
both HPV 5- and HPV 18 E6-expressing cells. While these
findings could be partly explained by the inactivation of p53

functions in cells expressing HPV 18 E6, our results reveal that
this constitutes a novel activity for HPV 5 E6. Interestingly, as
HPV 5 E6 does not promote p53 degradation, expression of this
protein nevertheless appears sufficient to bypass the cell cycle
arrest response enforced by p53 via p21 expression (Jackson
and Storey, 2000), without causing degradation of either protein.
This suggests that HPV 5 E6 protein might influence other
molecules involved in the regulation of cell cycle progression. Our
observation on cyclin A immunoreactivity, showing that cells
expressing such viral oncogenes were able to bypass the cell cycle
checkpoints after UV irradiation while still retaining unrepaired
DNA damage, suggested that these findings could be of
physiological relevance. In nonarrested cells, the unrepaired
DNA could potentially be used as a template for DNA polymerases,
such as DNA pol x and Pol Z, that lack or have reduced
proofreading capabilities (Lehmann, 2000). This may ultimately
result in incorrect genetic information being passed to the

Figure 2 DNA damage levels in HT1080 cell lines expressing diverse EV HPV types. Repair of thymine dimers with time in HT1080 cells transfected with
the pIres plasmid or its derivatives expressing the E6 protein of HPV types, 5, 18, 23, 24 and 49. In all cell lines, DNA damage is completely repaired by 36 h.
DNA damage repair is delayed in cells expressing HPV 18 E6 or HPV 5 E6, while in cells expressing the E6 protein of EV HPV types 23, 24 or 49, the DNA
damage repair rate is comparable to that of the vector control cell line, HT1080 IRES. The bars represent the standard deviation from the mean of three
independent experiments.
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daughter cells, possibly translating in an increased rate of
mutagenesis and genomic instability. Indeed UV radiation might
cause mutations in specific genes involved in processes such as
apoptosis and cell proliferation, thus causing their deregulation or
inactivation. Indeed, p53 gene is the main target of UV-induced
mutations, such as C-T or CC-TT transitions, which are
clustered around nine mutation hot spots (Brash et al, 1991, 1997)
and are frequently found in SCC lesions. Similarly, SCC occurring
at sun-exposed sites harbour UV-associated mutations at specific
positions of the Ha-ras oncogene (Pierceall et al, 1991). It would be
of interest to determine the HPV status in such tumours, as this
might be correlated with tumorigenic progression.
In our assays, the quantity of thymine dimers detected was

maximal 1 h after irradiation and not when the cells were harvested
immediately after being irradiated, as might be expected. This
apparent increase has also been observed in other studies (Eller
et al, 1997; Therrien et al, 1999), although how this is brought
about is not clear. One possibility is that UV irradiation also
generates other adducts such as 6-4 photoproducts that are bulkier

than thymine dimers and distort the DNA helix more grossly. If
such an adduct occurred in the proximity of a thymine dimer, it is
possible that the anti-thymine dimer antibody may no longer be
able to recognise the dimer. As the repair of 6-4 photoproducts is
faster than that of thymine dimers, it is possible that this leads to
the apparent increase in thymine dimers at the 1 h time point. The
results of the DNA damage repair time course extended to 48 h
postirradiation showed that DNA damage could not be detected in
cells expressing HPV 5 and HPV 18 E6 beyond the 24 h time point.
The failure to detect thymine dimers beyond 24 h postirradiation
may be the result of either the repair process having resumed and
being completed between 24 and 36 h. Alternatively, it may be a
consequence of ‘diluting’ effect within a growing cell population to
a point where the assay lacks sufficient sensitivity to detect the
signal generated by the proportionally ever lower number of
damage sites per cell.
The ability to inhibit UV-induced apoptosis appears to be a

common property shared by diverse HPV E6 proteins, including
HPV 5, 10, 18 and 77. This viral activity may represent the baseline
upon which addition viral activities that predispose to malignant
change can be appended. Our results show that in addition to
antiapoptosis, HPV 5 and HPV 18 E6 can also promote a delay in
thymine dimers repair. Furthermore, our findings showed that the
E6 protein of other cutaneous HPV, such as type 10 and 77, and EV
types 23, 24 and 49 did not share this activity. Indeed, previous
studies (Proniewska and Jablonska, 1980) also reported that UV-
induced DNA repair synthesis was unaffected in patients infected
with HPV types 3 or 4. This suggests that such activity was not a
common property shared by all HPVs, but rather may be exclusive
to certain types, possibly those that are more frequently associated
with malignancy. Nevertheless, it is important to note that this
constitutes the first report of an EV type-promoting delay in the
DNA damage repair process. How the HPV 5 E6 protein can
interfere with the repair mechanism remains to be elucidated. As
HPV type 5 is frequently associated with the development of
squamous cell carcinomas at sun-exposed site in EV patients, it is
tempting to speculate that this property could at least in part
explain how infections with this EV type may promote the
carcinogenic process initiated by UV irradiation. Furthermore,
it is possible that both the antiapoptotic and the delayed
repair activities could potentially contribute HPV 5 to tumour
development.
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