
Repair-Optimal MDS Array Codes over GF(2)
Eyal En Gad∗, Robert Mateescu†, Filip Blagojevic† , Cyril Guyot† and Zvonimir Bandic†

∗Electrical Engineering, California Institute of Technology, Pasadena, CA 91125.
†HGST Research, San Jose, CA 95135.

∗eengad@caltech.edu, †{robert.mateescu, filip.blagojevic, cyril.guyot, zvonimir.bandic}@hgst.com

Abstract—Maximum-distance separable (MDS) array codes
with high rate and an optimal repair property were introduced
recently. These codes could be applied in distributed storage
systems, where they minimize the communication and disk access
required for the recovery of failed nodes. However, the encoding
and decoding algorithms of the proposed codes use arithmetic
over finite fields of order greater than 2, which could result in a
complex implementation.

In this work, we present a construction of 2-parity MDS array
codes, that allow for optimal repair of a failed information node
using XOR operations only. The reduction of the field order is
achieved by allowing more parity bits to be updated when a
single information bit is being changed by the user.

I. INTRODUCTION

MDS array codes are highly applicable in modern data
storage systems. Array codes are non-binary erasure codes,
where each symbol is a column of elements in a two dimen-
sional array, and is stored on a different storage node in the
system. In traditional erasure codes, the decoder uses all of
the available codeword symbols for the recovery of erased
symbols. However, in distributed storage systems, this property
requires the transmission of an entire array over the network
for the recovery of failed nodes. And since node failures are
common, the network load caused by node recovery became
a major constraint to the application of erasure codes in such
systems [5].

For that reason, a lot of attention has been drawn recently
to the minimization of the communication required for node
recovery. The total amount of information communicated in
the network during recovery is called the repair bandwidth
[4]. In this work we focus on the practical case of systematic
MDS array codes with 2 parity nodes. In this case, when 2
nodes are erased, the entire information must be transmitted
in order to repair the erased nodes. However, when only a
single node is erased, the required repair bandwidth can be
lower. It was shown in [4] that the repair bandwidth must be
at least 1/2 of the entire available information in the array.
Subsequently, several constructions were designed to achieve
that lower bound [2], [3], [6], [9]. Other constructions were
also presented for different parameters, such as for the case
of low rate in [7], [8].

Beside the repair bandwidth, another important parameter of
array codes is the update measure. In systematic array codes,
the elements of the information nodes are called information
elements, and those in the parity nodes are called parity ele-
ments. The update measure is defined as the number of parity
elements that need to change each time an information element
is being updated. For MDS array codes, the update measure

cannot be smaller than the number of parity nodes. For the
codes in [2], [3], [6], [9], the update measure is optimal.
Another property of these codes is that the elements of the
nodes belong to a finite field of order at least 3. This property
can make the codes difficult for hardware implementation.
However, it was shown in these papers that for MDS codes
with optimal repair bandwidth and optimal update measure,
the node elements cannot belong to GF(2). This is the point of
departure of this work. Instead of designing codes with optimal
update measure, we focus on the design of codes with node
elements in GF(2), with the price of a higher update measure.
This offers a different trade-off, that can find a wide array of
applications.

The main contribution of this work is a construction of
systematic MDS array codes with node elements in GF(2).
The construction has a similar structure to the ones described
in [2], [3], [6], [9]. The codes have 2 parity nodes, and a failure
of any information node can be recovered with the access to
only 1/2 of the available information in the array. Note that in
general, the amount of accessed information in node recovery
can be different from the repair bandwidth. Specifically, the
total access can be higher than the total bandwidth, but not
lower, since there is no reason to communicate more than what
is accessed. For that reason, our construction have both optimal
access and optimal repair bandwidth in the case of a single
information node failure. However, in the case of a parity node
failure, the entire information array needs to be transmitted for
the recovery. But this is not a major drawback, since a parity
node failure does not reduce the availability of the stored data
to the user, and thus its recovery can be done offline, and does
not affect the system performance significantly. The update
measure in our construction is different for different elements.
For k information nodes, where k is odd, the expected update
is 1/2 · bk/2c + 2, and the worst-case update is bk/2c + 2.

The rest of the paper is organized as following: In section
II we demonstrate the key principles of the construction by
simple examples. Next, the construction is described formally
in section III, with an additional example. Lastly, the properties
of the constructions are proven in section IV, and concluding
remarks are brought in section V.

II. DEMONSTRATING EXAMPLES

A basic principle of the construction can be demonstrated
in the case of two information nodes, shown in Figure 1. In
this case, each of the columns contains two elements. The
information element in row i and column j is denoted as ai,j.
As is the case in the rest of the paper, there are two parity

978-1-4799-0446-4/13/$31.00 ©2013 IEEE

2013 IEEE International Symposium on Information Theory

887

a0,0a0,1

a1,0a1,1

a0,1 a0,0 h0 = a0,1 + a0,0 b0 = a0,0 + a1,1
a1,1 a1,0 h1 = a1,1 + a1,0 b1 = a1,0 + a0,1 + a0,0

Figure 1. Decoding a butterfly cycle.

nodes. The first parity node is called the horizontal node, as its
elements are encoded as the horizontal parities. The horizontal
element in row i is denoted as hi, and its value is the parity
of the information elements in row i. The summations in the
table of Figure 1 are taken modulo 2 without mention, as are
all of the summations of bits in the rest of the paper.

The second parity node is called the butterfly node, and its
element in row i is denoted as bi. The reason for the name will
be clear in the next example. In the figure above the table, the
horizontal elements correspond to the horizontal lines, and the
butterfly elements to the diagonal lines. However, as shown in
the table, the encoding of b1 contains also the element a0,0.
In the figure, this is symbolized by the dark color of a0,1,
that signifies that the element to its right is also added to the
corresponding butterfly element.

Now consider the case that column 1 is erased. In this case
the column can be decoded using the available elements of
row 0 only, by setting a0,1 = h0 + a0,0, and a1,1 = b0 + a0,0.
Since the decoder accesses only half of the elements in each
available column, and only half of the available information
in total, we say that the access ratio is 1/2.

Since we claim that the code is MDS, consider the case
that both information nodes are erased. Notice that if a0,0 was
not included in b1, the code could not recover from the loss
of the two information nodes. However, the addition of a0,0
to b1, which corresponds to the dark element a0,1, allows to
break the cycle, and create a decoding chain. From h0 + b1
we obtain a1,0. In the decoding chain that remains in Figure 1
if we eliminate the diagonal a0,1, a1,0, we now have all the
segments and the end element, and therefore all the other three
elements can be decoded. Notice that the addition of a0,0 also
increases the update measure. If the user wants to change the
value of a0,0, the encoder needs to update the element b1, in
addition to h0 and b0. The code in Figure 1 is also the simplest
version of the EVENODD code [1].

Now consider the case of 3 information nodes. In this case,
the construction requires that the nodes contain 4 elements,
where in general, for k information nodes, the number of ele-
ments is 2k−1. Although the size of the column is exponential
in the number of columns, this is still practical because the
usual number of storage nodes is typically between 10 and 20,
and the element of a column is a single bit.

The horizontal elements are encoded in the same way as
before, as the parity of the rows. The butterfly node is now
encoded with correspondence to its name, where each bi is
encoded according to the line in the butterfly diagram of
Figure 2 that starts at element ai,0. Note that we draw the

a0,0

a2,0

a1,0

a3,0

a0,1

a3,1

a1,1

a2,1

a0,2

a1,2

a2,2

a3,2

Figure 2. The encoding of the butterfly node.

butterfly with column 0 on the right side. The element bi
is encoded as the parity of the elements in this line, and in
addition, if there are dark elements in the line, according to
Figure 2, extra elements are added to bi. For each dark element
in the line, the element to its right (cyclicly) is also added to bi.
In the general case of k information nodes, the bk/2c elements
to the right of a dark elements are added (for odd k, see details
in section III). The careful addition of extra elements in the
butterfly parity, corresponding to the dark elements, is what
allows the computation to be done in GF(2). In this example,
b0 = a0,0 + a1,1 + a3,2 + a0,2. The elements a0,0, a1,1, a3,2
come form the butterfly line; additionally, since a0,0 is dark,
the element to its right (cyclicly), a0,2, is also added. Similarly,
b2 = a2,0 + a3,1 + a1,2 + a2,2 + a3,0 + a1,1.

The dark elements in Figure 2 are those ai,j for which the
j-th bit in the binary representation of i over k − 1 bits, is
equal to the (j− 1)-th bit, where the −1-th bit is considered
as 0. For example, a0,1 is dark since the bit 1 of 0 is equal
to bit 0 of 0. Now consider the case that node 1 is failing
and needs to be reconstructed. The decoding method for a
single node failure is simple: recover the dark elements by
the horizontal parities, and the white elements by the butterfly
parity. In the example, we set a0,1 = h0 + a0,0 + a0,2 and
a3,1 = h3 + a3,0 + a3,2, and the dark elements are recovered.
For the white elements, we set a1,1 = b0 + a0,0 + a3,2 + a0,2
and a2,1 = b3 + a3,0 + a0,2 + a0,1 (where a0,1 was recovered
by the horizontal parity). Notice that according to this method,
the decoder only access rows 0 and 3, and the access ratio is
1/2.

Now consider the case that nodes 0 and 1 fail. We can see
in Figure 2 that there are two decoding cycles, the cycle of
rows 0 and 1, and that of rows 2 and 3. For this decoding,
we can ignore the fact the a0,0 and a2,0 are dark, since the
added elements are in column 2, which is available. Therefore,
the top cycle becomes identical to the previous example, and
can be decoded in the same way. Note that the bottom cycle
could not be decoded before the top one. That is since the
dark elements of column 2 imply that a0,1 and a1,1 are added
to the butterfly lines of the bottom cycle, and since they are
unknown, the cycle cannot be decoded. However, after the
decoding of the top cycle, the bottom cycle can be decoded
in the same way. In the case of more information columns,
the order needed for the decoding of the cycles is related to a
binary reflected Gray code, and is described in the next section.

III. CODE CONSTRUCTION

For the presentation of the construction we use extra no-
tation. Let [n] = {0, 1, . . . , n − 1}. For integers i and j,

2013 IEEE International Symposium on Information Theory

888

i⊕ j denotes the bitwise XOR operation between the binary
representations of i and j, where the result is converted back
to be an integer. The expression i(j) denotes the j-th bit in the
binary representation of i, where i(0) is the least significant
bit. If j is negative, i(j) is defined to be 0. The construction
is now described formally.

Construction 1. For each pair (i, j)∈ [2k−1]× [k], define a set
Bi,j as following. If i(j) 6= i(j− 1), let Bi,j = {(i, j)}. Else, let

Bi,j = {(i, j′) : j′ ∈ [k], j− j′ 6 bk/2c(mod 2
⌈

k− 1
2

⌉
+ 1)}.

(the expression 2
⌈

k−1
2

⌉
+ 1 is k for odd k and k + 1 for even

k). Next, let `i,j = i⊕ (2j − 1), and for each i∈ [2k−1], define
a set

Bi = ∪j∈ [k]B`i,j ,j.

Encoding: For each i∈ [2k−1], set

hi = ∑
j∈ [k]

ai,j, bi = ∑
(i′ ,j′)∈ Bi

ai′ ,j′ .

Single failure decoding: If the failed node is a parity node,
use the encoding method. If information node j failed, for each
i∈ [2k−1] recover ai,j as following: If i(j− 1) = i(j), set ai,j =
hi + ∑j′ 6=j ai,j′ . Else, set

ai,j = b`i,j
+ ∑

(i′ ,j′)∈ B`i,j
\{(i,j)}

ai′ ,j′ .

Double failure decoding: If both failed nodes are parity
nodes, use the encoding method. If one of them is the butterfly
node and the other is the information node j, then for each
i∈ [2k−1], set ai,j = hi + ∑j′ 6=j ai,j′ , and then encode the
butterfly node.

If the horizontal node fails together with the information
node j, decode as following: For i = 0, 1, . . . , 2k−1 − 1, find
i′ according to Algorithm 1, and set

ai′ ,j = b`i′ ,j
+ ∑

(i′′ ,j′′)∈ B`i′ ,j
\{(i′ ,j)}

ai′′ ,j′′ .

After node j is decoded, encode the horizontal node.
Finally, if two information nodes failed, denote their indices

as j0, j1, such that j1 − j0 6 bk/2c (mod 2
⌈

k−1
2

⌉
+ 1). Next,

for i = 0, 1, . . . , 2k−2 − 1, find i0, i1 according to Algorithm 2,
and set, sequentially,

ai1,j0 =hi0 + ∑
j′ ∈ [k]\{j0,j1}

ai0,j′

+ b`i1,j0
+ ∑

(i′ ,j′)∈ B`i1,j0
\{(i1,j0),(i0,j0),(i0,j1)}

ai′ ,j′ (1)

ai1,j1 =hi1 + ∑
j′ ∈ [k]\{j1}

ai1,j′ (2)

ai0,j0 =b`i0,j0
+ ∑

(i′ ,j′)∈ B`i0,j0
\{(i0,j0)}

ai′ ,j′ (3)

ai0,j1 =hi0 + ∑
j′ ∈ [k]\{j1}

ai0,j′ (4)

Algorithm 1 Find i′.

1: Inputs: i∈ [2k−1]
2: Output: i′ ∈ [2k−1]
3: i′(k− 1)← 0
4: for j′ = k− 2 to j′ = j do
5: i′(j′)← i′(j′ + 1) + i(j′)
6: end for
7: for j′ = 0 to j′ = j− 1 do
8: i′(j′)← i′(j′ − 1) + i(j′)
9: end for

Algorithm 2 Find im.

1: Inputs: m∈ {0, 1}, i∈ [2k−2]
2: Output: im ∈ [2k−1]
3: im(k− 1)← 0
4: s← arg maxi′ ∈ {0,1}{ji′}
5: for j = k− 2 to j = js do
6: im(j)← im(j + 1) + i(j)
7: end for
8: for j = 0 to j = j1−s − 1 do
9: im(j)← im(j− 1) + i(j)

10: end for
11: im(j1 − s)← im(j1 + s− 1) + m
12: if js − j1−s > 1 then
13: for j = j1 + 1− 3s to j0 + s− 1 do
14: im(j)← im(j + 2s− 1) + i(j + s− 1)
15: end for
16: end if

Algorithms 1 and 2 seem a bit complex, but are in fact
only a slight modification to the standard method of decoding
a binary reflected Gray code into a binary number. We see this
in the following example.

Example 1. Let k = 4, and assume that the information
node j = 2 fails together with the horizontal parity node.
By Construction 1, we first decode node j in 2k−1 iterations,
and then decode the horizontal node. In each iteration i, we
first find the index i′ of the element ai′ ,j to be decoded in that
iteration. In iteration i = 0 of the decoding, it is easy to see
that Algorithm 1 sets i′ = 0, so a0,2 is the first element to
be decoded. To decode a0,2 we need to find the set B`0,2 , so
we first calculate `0,2 = 0 ⊕ (22 − 1) = 3. By definition,
B3 = ∪j′ ∈ [4]B`3,j′ ,j

′ . For j′ = 0, `3,0 = 3⊕ (20 − 1) = 3.
To find B3,0, we notice that bit 0 in the binary representation of
3 is 1 while bit −1 is 0 (for any integer by our convention). So
B3,0 = {(3, 0)}. The fact that B3,0 has only 1 element can also
be seen in Figure 3, since a3,0 is white (not dark). Similarly,
the elements a2,1 and a4,3 are also in the same butterfly line
with a0,2 (`3,1 = 2 and `3,3 = 4), and are also white. So
B2,1 = {(2, 1)}, and B4,3 = {(4, 3)}. For j′ = 2, we need to

2013 IEEE International Symposium on Information Theory

889

find B0,2. Unlike all the other columns, here bit 2 of 0 is equal to
bit 1 of 0 (a0,2 is dark), so B0,2 contains multiple elements. Fol-
lowing the definition we see that B0,2 = {(0, 0), (0, 1), (0, 2)},
since 2 − 0 6 2 (mod 5), 2 − 1 6 2 (mod 5) and 2 − 2 6
2 (mod 5), but 2− 3 = 4 > 2 (mod 5). So in summary, B3 =
{(3, 0), (2, 1), (0, 2), (0, 1), (0, 0), (4, 3)}. To decode a0,2, we
need all of the rest of the elements in B3 to be available for us,
since b3 was encoded to be the sum of the elements with indices
in B3. Remember that column 2 is the only information node
that failed (together with the horizontal node), and notice that
none of the elements in B3 (except (0, 2)) is from column 2. So
all of them are available, and we can decode a0,2 successfully,
by calculating

a0,2 = b3 + a3,0 + a2,1 + a0,1 + a0,0 + a4,3.

We continue the example for one more iteration. Here i = 1,
and we turn to Algorithm 1 in order to find i′. In line 3 we
set i′(k − 1) = i′(4) = 0. In line 4 to 6, we set i′(3) =
0 + i(3) = 0, and then i′(2) = 0. In lines 7-9, we first set
i′(0) = i′(−1) + i(0) = 0 + 1 = 1, since i′(−1) is defined
to be 0. Next we set i′(1) = 1 + 0 = 1, and in conclusion we
get that i′ = 112 = 3, so in iteration 1 we decode the element
a3,2. We note that Algorithm 1 can be interpreted visually by
observing Figure 3. In each row, consider the dark elements as
′0′s, and the white elements as ′1′s, and ignore column j. i′ is set
to be the index of the row for which the binary number resulting
from this observation is equal to i. In the current example, row 3
has a white element in column 0, and dark elements in columns
1 and 3, corresponding to i = 0012 = 1. So in iteration i = 1,
i′ is set to be 3, and we see again that element a3,2 is decoded
in this iteration. In fact, in order to find i′ we need to perform
an operation very similar to the decoding of a binary reflected
Gray code into a binary number. Next, we can see that elements
a0,0, a1,1 and a7,3 are in the same butterfly line with a3,2, so
they are needed for the decoding of a3,2. However, since they
are all in columns other than 2, they are all available for the
decoder. In addition, we see that a1,1 and a7,3 are both white, so
they do not contribute additional elements to the parity element
used in this iteration. However, since a0,0 is dark, it contributes
an additional element from row 0. But since all the elements in
row 0 are dark, we know that row 0 was decoded in iteration
0, and therefore all of its elements are already known, and
the decoding can take place successfully. Finally, we note that
Algorithm 2 is based on the same idea, and can be interpreted
visually in the same way.

IV. CODE PROPERTIES

In this section we show that the codes have optimal access,
that they are MDS, and present their update measure. The
first Theorem proves that the single failure decoding function
of Construction 1 accesses only half of the elements in each
surviving node, and thus Construction 1 is said to be ”repair-
optimal”.

Theorem 1. Optimal Repair: The single failure decoding
function of Construction 1 decodes any failed information node

a0,0

a2,0

a4,0

a6,0

a1,0

a3,0

a5,0

a7,0

a0,1

a3,1

a4,1

a7,1

a1,1

a2,1

a5,1

a6,1

a0,2

a1,2

a6,2

a7,2

a2,2

a3,2

a4,2

a5,2

a0,3

a1,3

a2,3

a3,3

a4,3

a5,3

a6,3

a7,3

Figure 3. The butterfly construction with 4 information nodes

correctly, and it accesses only 1/2 of the elements in each of the
surviving nodes.

Proof: Let j be the failed node. First, note that the fraction
of elements i∈ [2k−1] s.t. i(j− 1) = i(j) is 1/2, and therefore
the decoder accesses half of the elements in the horizontal
node. Next, note that when j is fixed, the function f (i) = i⊕
(2j− 1) is a permutation, and therefore the decoder also access
only half of the elements in the butterfly node. Finally, we will
show that for each accessed element ai′ ,j′ in the information
nodes, i′(j− 1) = i′(j), and thus the decoder only access half
of the elements in each node, and the repair ratio is 1/2.

Let ai,j be a decoded element, and ai′ ,j′ be an element that is
accessed in the decoding process. If i(j− 1) = i(j), then i′ = i
by the decoding function, and thus i′(j− 1) = i′(j). Else, note
that (i′, j′) is in B`i,j

= Bi⊕(2j−1), and since Bi = ∪j∈ [k]B`i,j ,j,

it follows that i′ = i⊕ (2j − 1)⊕ (2j′′ − 1) for some j′′ 6= j.
If j′′ > j, then i′(j− 1) = i(j− 1), and i′(j) = i(j) + 1. And
if j′′ < j, then i′(j− 1) = i(j− 1) + 1, and i′(j) = i(j). In
both cases,

i′(j− 1) + i′(j) = i(j− 1) + i(j) + 1 = 1 + 1 = 0,

and therefore i′(j) = i′(j− 1), and the proof is completed.
The next theorem verifies the MDS property of the Con-

struction.

Theorem 2. MDS: The double failure decoding function of
Construction 1 decodes the failure of any two nodes correctly.

Proof: In the case that one of the failed nodes is the
butterfly node, the proof is trivial by the the encoding method.
If the horizontal node failed together with the information
node j, we need to show that in each iteration i, all of the
elements ai′′ ,j, where (i′′, j)∈ B`i′ ,j

\ {(i′, j)}, were decoded in
a previous iteration. To prove that, note that by the definition of
the set, if (i′′, j) is in B`i′ ,j

\ {(i′, j)}, then there exists j′ such

that i′′ = i′ ⊕ (2j − 1) ⊕ (2j′ − 1) and i′′(j′) = i′′(j′ − 1).
So it is enough to show that for each j′ 6= j, such that
i′′(j′) = i′′(j′ − 1), ai′′ ,j was decoded in a previous iteration.

We prove this by induction on the iteration i. In the base
case, i = 0. and according to Algorithm 1, i′ = 0 as well.
Now by the definition of i′′, i′′(j′) 6= i′′(j′ − 1), and the base
case is proven.

2013 IEEE International Symposium on Information Theory

890

For the induction step, assume that i′′(j′) = i′′(j′ − 1). By
the definition of i′′, i′(j′) + i′(j′ − 1) = i′′(j′) + i′′(j′ − 1) +
1 = 1. In addition, for any j′′ 6= j′, i′(j′′) + i′(j′′ − 1) =
i′′(j′′) + i′′(j′′ − 1). Therefore, according to Algorithm 1, the
iteration in which ai′′ ,j needs to be decoded differ from i in
exactly one bit. And since i′(j′) 6= i′(j′ − 1), the value of
that bit in i is 1, and therefore i is a later iteration, and ai′′ ,j
was decoded before. So by the induction hypothesis, ai′′ ,j is
known, and the induction is proven. So, by the encoding of
the butterfly elements, column j is decoded successfully, and
the horizontal node can be encoded afterwards.

In the case that both failed nodes are information nodes,
the proof is very similar. First we need to show that all of
the terms in Equation (1) are known when ai1,j0 is being
decoded. For each j′ ∈ [k] \ {j0, j1}, ai0,j′ is known since it’s an
element of a surviving node. For ai′′ ,j′′ where (i′′, j′′)∈ B`i1,j0

\
{(i1, j0), (i0, j0), (i0, j1)}, we use induction on i again.

First, notice that (i0, j1) is actually in B`i1,j0
. That is since

according to Algorithm 2, i0 = i1 ⊕ (2j0 − 1) ⊕ (2j1 − 1),
where the difference between i0 and i1 comes form lines
11− 16 in the Algorithm. Therefore, `i1,j0 = i1⊕ (2j0 − 1) =
i0 ⊕ (2j1 − 1) = `i0,j1 . In addition, by line 11 of Algorithm
2, i0(j1) = i0(j1 − 1), and therefore, Bi0,j1 = {(i0, j′ :

j1 − j′ 6 bk/2c (mod 2
⌈

k−1
2

⌉
+ 1)}, which implies that

(i0, j0)∈ B`i1,j0
as well. The inductive argument follows the

same lines as in the previous case, and is therefore omitted.
At this point, we know that all of the terms in Equation 1 are

known. Now notice that hi0 + ∑j′ ∈ [k]\{j0,j1} ai0,j′ = ai0,j0 +
ai0,j1 , and b`i1,j0

+ ∑(i′ ,j′)∈ B`i1,j0
\{(i1,j0),(i0,j0),(i0,j1)} ai′ ,j′ =

ai1,j0 + ai0,j0 + ai0,j1 , and therefore, ai1,j0 is decoded correctly.
After ai1,j0 is decoded, it can be seen directly by Equation (2)
that ai1,j1 can be decoded correctly as well. As for ai0,j0 , it can
be shown by the same argument that we used for ai1,j0 , that
it could be decoded successfully. And finally, the decoding of
ai0,j1 also follows immediately.

Lastly, we present the update measure of the Construction.

Theorem 3. Update: The expected update measure of Con-
struction 1 is 1/2 · bk/2c+ 2, and the worst-case is bk/2c+ 2.

Proof: For a uniformly-distributed randomly-picked pair
(i, j)∈ [2k−1] × [k], the probability that i(j) = i(j − 1) is
1/2. Therefore, in addition to B`i,j ,j, the expected number of
sets Bi′ ,j′ that contain (i, j) is 1/2 · bk/2c + 1. In the case
that the value of ai,j is changed, each of these sets require the
update of an element in the butterfly node, in addition to a
single element in the horizontal node. Therefore, the expected
number of updated elements is bk/2c · 1/2 + 2.

In the worst case, consider the update of an element
a0,j, for j∈ [k]. For each j′ ∈ [k] \ {j} such that j′ − j 6

bk/2c (mod 2
⌈

k−1
2

⌉
+ 1), i(j′) = i(j′ − 1), and therefore,

(0, j)∈ B`0,j′
. For that reason, bk/2c + 1 elements of the

butterfly node need to be updated, in addition to a single
element in the horizontal node, and the total is bk/2c + 2.

V. CONCLUSIONS

In this paper, we described a construction of repair-optimal
MDS array codes, whose array elements are bits, and the
operations are performed over GF(2). Several problems are
still open in this topic. First, it could be interesting to find
out whether there exist repair optimal MDS codes with lower
update measure. Second, a generalization of the construction to
more parity nodes could be very useful. And finally, it would
be important to know whether such codes exist whose number
of rows is polynomial in the number of columns.

VI. ACKNOWLEDGMENTS

This work was done while Eyal En Gad was at HGST
Research. We would like to thank Yuval Cassuto for his help
in reducing the worst-case update measure of the codes.

REFERENCES

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: an efficient
scheme for tolerating double disk failures in raid architectures,” Comput-
ers, IEEE Transactions on, vol. 44, no. 2, pp. 192 –202, feb 1995.

[2] V. R. Cadambe, S. A. Jafar, and H. Maleki, “Minimum repair bandwidth
for exact regeneration in distributed storage,” in Wireless Network Coding
Conference (WiNC), 2010 IEEE, june 2010, pp. 1 –6.

[3] V. Cadambe, C. Huang, and J. Li, “Permutation code: Optimal exact-
repair of a single failed node in mds code based distributed storage
systems,” in Information Theory Proceedings (ISIT), 2011 IEEE Inter-
national Symposium on, 31 2011-aug. 5 2011, pp. 1225 –1229.

[4] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” Information Theory,
IEEE Transactions on, vol. 56, no. 9, pp. 4539 –4551, sept. 2010.

[5] O. Khan, R. Burns, J. Plank, and C. Huang, “In search of i/o-optimal
recovery from disk failure,” in Hot Storage 2011, 3rd Workshop on Hot
Topics in Storage and File Systems, Portland, OR, Jun. 2011.

[6] D. Papailiopoulos, A. Dimakis, and V. Cadambe, “Repair optimal era-
sure codes through hadamard designs,” in Communication, Control, and
Computing, 49th Annual Allerton Conference on, sept. 2011, pp. 1382
–1389.

[7] K. Rashmi, N. Shah, and P. Kumar, “Optimal exact-regenerating codes
for distributed storage at the msr and mbr points via a product-matrix
construction,” Information Theory, IEEE Transactions on, vol. 57, no. 8,
pp. 5227 –5239, aug. 2011.

[8] N. Shah, K. Rashmi, P. Kumar, and K. Ramchandran, “Interference
alignment in regenerating codes for distributed storage: Necessity and
code constructions,” Information Theory, IEEE Transactions on, vol. 58,
no. 4, pp. 2134 –2158, april 2012.

[9] I. Tamo, Z. Wang, and J. Bruck, “Mds array codes with optimal rebuild-
ing,” in Proceedings of the IEEE International Symposiom on Information
Theory (ISIT), Saint Petersburg, Russia, Jun. 2011, pp. 1493–1495.

2013 IEEE International Symposium on Information Theory

891

