
Repairing Ontology Mappings

C. Meilicke and H. Stuckenschmidt
KR and KM Research Group

University of Mannheim
A5, 6 68159 Mannheim, Germany

{christian, heiner}@informatik.uni-mannheim.de

Andrei Tamilin
ITC-irst

Via Sommarive, 18
38050 Povo (Trento) Italy

tamilin@itc.it

Abstract

Automatically discovering semantic relations between on-
tologies is an important task with respect to overcoming se-
mantic heterogeneity on the semantic web. Existing ontology
matching systems, however, often produce erroneous map-
pings. In this paper, we address the problem of errors in
mappings by proposing a completely automatic debugging
method for ontology mappings. The method uses logical rea-
soning to discover and repair logical inconsistencies caused
by erroneous mappings. We describe the debugging method
and report experiments on mappings submitted to the ontol-
ogy alignment evaluation challenge that show that the pro-
posed method actually improves mappings created by differ-
ent matching systems without any human intervention.

Motivation

Recently, a number of heuristic methods for matching con-
cepts from different ontologies have been proposed. These
methods rely on linguistic and structural criteria. Evalua-
tion studies have shown that existing methods often trade off
precision and recall. The resulting mapping either contains
a fair amount of errors or only covers a small part of the
ontologies involved (Euzenat et al. 2006; Euzenat, Stuck-
enschmidt, & Yatskevich 2005). This means that automat-
ically created mappings often contain errors in the form of
mappings that do not reflect the semantic relation between
concepts. Currently, the only way to deal with this problem
without manual intervention is to sacrifice recall by choos-
ing a matching approach that optimizes for precision. Our
goal is to solve the problem of errors in automatically cre-
ated mappings by automatically identifying and repairing er-
rors in mappings.

Problem Statement

The problem of ontology matching can be defined in the fol-
lowing way (Euzenat & Shvaiko 2007). Ontologies are the-
ories encoded in a certain language L. In this work, we as-
sume that ontologies are encoded in OWL-DL without nom-
inals. For each ontology T in language L there is a func-
tion Q(T) that defines matchable elements of the ontology.
Given two ontologies T and T ′ the task of matching is now

to determine correspondences between the matchable ele-
ments in the two ontologies. Correspondences are 5-tuples
〈id, e, e′, r, n〉 such that
• id is a unique identifier for referring to the correspondence
• e ∈ Q(T), e′ ∈ Q′(T ′) are matchable elements from the

two ontologies
• r ∈ R is a semantic relation. In this work, we only con-

sider cases where R = {≡,�,�}
• n is a confidence value describing the confidence in the

correctness of the correspondency.
The problem we address in this paper is now, given a set

of correspondences C between two ontologies T and T ′ and
a (possibly unknown) set of correspondences G which is a
reference mapping for the ontologies involved, to determine
C ∩ G. As G is often not accessible or not even known,
we reformulate the problem in terms of a partitioning of C
into correct and incorrect correspondences with respect to
the reference mapping:
• C+ =def C ∩ G

• C− =def C − G

Based on this formalization, the task of repairing a set
of correspondences is to determine for each correspondence
c ∈ C whether it belongs to C+ or C−. Repairing C then
corresponds to deleting all correspondences that are in C−
from C.

Approach and Contributions

The approach taken in this work is to interpret the problem
defined above as a diagnosis task. For this purpose, we for-
malize correspondences in distributed description logics and
analyze the impact of the mapping on the ontologies it con-
nects. The basic assumption is that a mapping that correctly
states the semantic relations between ontologies should not
cause inconsistencies in any of the ontologies. The encod-
ing in distributed description logics allows us to detect these
inconsistencies which are treated as symptoms caused by
an incorrect mapping. We then compute sets of correspon-
dences that jointly cause a symptom and repair each symp-
tom by removing correspondences from these sets. The set
of correspondences remaining after this process can be re-
garded as an approximation of C+. The concrete contribu-
tions of this work are:

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1408

• We propose a method for automatically repairing map-
pings based on terminological reasoning that goes beyond
structural heuristics used in existing matchers.

• We implemented this method using the DRAGO reason-
ing system for distributed description logics.

• We performed experiments evaluating the performance of
the method applied on the result of different matching sys-
tems.

The paper is organized as follows. First, we briefly sum-
marize distributed description logics as a basis for formal-
izing ontology mappings and explain how correspondences
can be encoded in this formalism. We then formally intro-
duce the mapping property of inconsistency. Based on this
property the formulation of mapping repair as a diagnosis
task takes place. Finally, we describe the experiments we
conducted and their results followed by a general discussion
of the approach and future work.

Formalizing Mappings

In the following it is assumed that the reader is familiar with
description logics. An introduction can be found in (Baader
et al. 2003). Distributed description logics, as described by
Serafini and Tamilin in (Serafini & Tamilin 2005), can be
understood as a framework for formalization of multiple on-
tologies pairwise linked by directed semantic mappings. In
this context a pair of ontologies T and associated mappings
M is called a distributed ontology T = 〈T, M〉.

Let I be set of indices. Then T = {Ti}i∈I denotes the
set of all ontologies in T and Ti with i ∈ I denotes the i-th
ontology of T. Each ontology Ti is a T-Box of a description
logic theory. Therefore, it contains definitions of concepts
and properties as well as axioms relating concepts and prop-
erties to each other. To refer without ambiguity to a concept
C from ontology Ti, the index of the ontology is used in
front of the concept, for example i :C.

M = {Mij}i�=j∈I refers to the mappings of T. A map-
ping Mij is a set of bridge rules that establishes semantic
relations from Ti to Tj . Every bridge rule in Mij has a cer-
tain type and connects a concept from Ti to a concept from
Tj . The following two types of bridge rules are known in
distributed description logics.

• i :C �−→ j :D (into)
• i :C �−→ j :D (onto)

Bridge rules from Ti to Tj allow a partial translation of Ti’s
language into the language of Tj . For example, the into

bridge rule i : C �−→ j : D states that concept i : C is, from
Tj’s point of view, less general than or as general as concept
j :D. The analogous onto bridge rule states that i :C is more
general than or as general as j : D. An equivalence bridge
rule is the conjunction of into and onto bridge rule.

The first element of the semantics of distributed descrip-
tion logics is a local interpretation Ii for each ontology
Ti. Each interpretation Ii consists of a local domain ΔIi

and a valuation function ·Ii . The valuation function maps
concepts on subsets of ΔIi and properties on subsets of

ΔIi ×ΔIi . The second element is a domain relation rij that
connects for each pair of ontologies 〈Ti, Tj〉i�=j elements of
the interpretation domains ΔIi and ΔIj . rij(x) is used to
denote {y ∈ ΔIj |(x, y) ∈ rij} and r(D) is used to denote⋃

x∈D rij(x) for any x ∈ ΔIi and any D ⊆ ΔIi . The
pair of both elements I = 〈{Ii}i∈I , {rij}i �=j∈I〉 is called
the distributed interpretation. A distributed interpretation I
satisfies a distributed ontology T iff for all i �= j ∈ I the
following clauses are true.

• Ii satisfies Ti

• rij(CIi) ⊆ DIj for all i :C �−→ j :D in Mij

• rij(CIi) ⊇ DIj for all i :C �−→ j :D in Mij

Due to the introduction of bridge rules it is possible to trans-
fer knowledge between different ontologies that changes
subsumption relations in the target ontology. In particular,
the following inference rule can be used to infer new sub-
sumption relations across ontologies:

i:A
�−→j:G,i:Bk

�−→j:Hk(1≤k≤n),i:A�
nF

k=1
B

j:G�
nF

k=1
Hk

(1)

It has been shown that this general propagation rule com-
pletely describes reasoning in DDLs that goes beyond well
known methods for reasoning in Description Logics. To be
more specific, adding the inference rule in equation 1 to
existing tableaux reasoning methods leads to a correct and
complete method for reasoning in DDLs. A corresponding
result using a fixpoint operator is given in (Serafini, Borgida,
& Tamilin. 2005).

We use the framework of distributed description logics to
formalize correspondences generated by automatic match-
ing tools. In particular, each correspondence (id, e, e′, r, n)
is translated into a set of bridge rules using a translation
function t in the following way:

t(〈id, e, e′,�, n〉) = {1:e �−→ 2:e′, 2:e′ �−→ 1:e}

t(〈id, e, e′,�, n〉) = {1:e �−→ 2:e′, 2:e′ �−→ 1:e}
Equivalence correspondences are interpreted as a pair of in-
clusion correspondences which are treated individually in
our experiments. If a bridge rules causes a problem, we can
consider this problem to be caused by the correspondence
the rule was translated from.
Example 1 Consider two ontologies in the domain of con-
ference management systems, the same domain we used in
our experiments. For each ontology consider a single ax-
iom, namely:

i : Author � Person

j : Person � ¬Authorization

For the sake of simplicity, we assume that a simple string
matching method that computes a similarity value that de-
notes the relative size of the common substring. Correspon-
dences are created based on a threshold for this value that

1409

we assume to be 1/3. Applying this method to the example
will result in the following correspondences:

〈42, i : Person, j : Person,≡, 1.00〉
〈43, i : Author, j : Authorization,�, 0.46〉

As mentioned above, we treat the correspondence 42 as
two subsumption correspondences (42i and 42o), i.e.

C = {〈42i, i : Person, j : Person,�, 1.00〉, (2)
〈42o, i : Person, j : Person,�, 1.00〉, (3)
〈43, i : Author, j : Authorization,�, 0.46〉} (4)

Applying the transformation function to the first corre-
spondence yields the following set of bridge rules:

{i : Person
�−→ j : Person, (5)

i : Person
�←− j : Person} (6)

In the same way we translate the other correspondences.
The union of the resulting sets corresponds to the mapping
set M which in our example consists of six bridge rules.
Together with the axioms of the ontologies involved these
bridge rules form the basis for deriving new knowledge that
helps in the debugging process.

Reasoning and Debugging

The encoding of correspondences in terms of bridge rules
in distributed description logics enables us to formally rea-
son about the impact mappings have on the connected on-
tologies. In the following, we present a number of formal
properties that are used in the process of debugging and that
can be tested using the DRAGO reasoning system (Serafini
& Tamilin 2005).

A mapping of a distributed ontology can be defined as in-
consistent with respect to a concept i : C if the additional
constraints induced by the mapping have the (unintended)
effect of making the locally satisfiable concept i : C dis-
tributedly unsatisfiable. If such an effect does not occur the
mappings are consistent with respect to i :C.
Definition 1 (Consistency) Given T, M is consistent with
respect to i : C iff Ti �|= C � ⊥ ⇒ T �|= i : C � ⊥. Other-
wise M is inconsistent with respect to i :C. M is consistent
with respect to Ti iff for all i :C M is consistent with respect
to i :C. Otherwise M is inconsistent with respect to Ti.
Example 2 In our example above, the set M of generated
bridge rules contains – amongst others – the following
rules:

i :Author
�−→ j :Authorization

i :Person
�−→ j :Person

We can see that M is inconsistent with respect to
Authorization. This is true because we can derive by dis-
tributed reasoning, that j : Authorization � Person has

to hold. At the same time, Authorization and Person are
defined as disjoint concepts in ontology Tj . In particular,
this makes Authorization unsatisfiable with respect to the
global interpretation.

Using the property of consistency one can make state-
ments about differences between the local and the dis-
tributed taxonomy of an ontology. In the context of mapping
debugging this approach will be extended by comparing the
distributed taxonomy to the distributed taxonomy that re-
sults from a modified set of bridge rules.

Diagnosis

In the following we rely on the classical definition of diagno-
sis introduced by Reiter (Reiter 1987). The basic assumption
of our approach is that mappings model semantic correspon-
dences between concepts in different ontologies without in-
troducing inconsistencies. A diagnosis task is normally de-
fined in terms of a set of components COMP in which a
fault might have occurred, a system description SD defining
the behavior of the system and a set of observations OBS
(or symptoms). A diagnosis is now defined as the minimal
set Δ ⊆ COMP such that the observations OBS are ex-
plained by a subset of the components having abnormal be-
havior. In the context of mapping debugging we regard the
correspondences in C to be the set of components to be diag-
nosed. The distributed ontology T consisting of the mapped
ontologies and the bridge rules generated by applying t to C
provides the system description. Observations are provided
in terms of implied subsumption relations between concepts
in the two ontologies. Bridge rules are assumed to be ab-
normal if they cause inconsistency of the mapping. In other
words, a diagnosis is the minimal set of correspondences Δ
such that the mapping M − t(Δ) it consistent.

Definition 2 (Diagnosis) Let T = 〈T = {T1, T2}, M =
t(C)〉 be a distributed ontology. A diagnosis for T is defined
as the minimal set Δ ⊆ C such that M − t(Δ) is consistent
with respect to T1 and T2.

Example 3 In our example, there are two diagnoses ex-
plaining the inconsistency of the mapping. In particular,
there are two minimal subsets of C that satisfy the require-
ments of definition 2, namely {i42} and {43} because both
M − t(i42) and M − t(43) are consistent mappings with
respect to Ti and Tj .

Computing diagnoses (minimal sets of abnormal compo-
nents) is known to be computational intractable in the gen-
eral case as the set of all possible diagnoses form a com-
binatorial search space which is exponential in the size of
COMP which in our case is the number of correspondences
generated by the matcher. In order to deal with this problem,
we adopt the notion of conflict sets (Reiter 1987) for guiding
the search for abnormal correspondences.

Conflict Sets

The notion of a conflict set is central to existing algorithms
for computing diagnosis. Reiter defines a conflict set as a
subset of the system components that together produce an
abnormal behavior. In our case a conflict set is just a subset

1410

of the mapping that is still strong enough to be inconsistent
in the sense of definition 1. This definition implies that any
inconsistent mapping automatically becomes a conflict set.
This trivial conflict set, however, does not provide us with
any hints about the set of bridge rules that constitute the di-
agnosis. In diagnosis we are normally interested in minimal
conflict sets (conflict sets with the additional property that
non of its subsets is a conflict set). These sets have the bene-
ficial property that the problem caused by a minimal conflict
set can be repaired by fixing one component in the set. This
means that the problem of identifying an incorrect bridge
rule boils down to computing minimal conflict sets and to
decide which of the rules involved is incorrect and should
thus be removed from the mapping. A minimal conflict set
in the context of mapping debugging can be defined as fol-
lows.

Definition 3 (Minimal Conflict Set) Let T = 〈T =
{T1, T2}, M〉 be a distributed ontology. A set of bridge rules
C ⊆ M is a conflict set for a concept i :C with i ∈ {1, 2} iff
for T′ = 〈T, C〉 we have T′ |= i :C � ⊥ and Ti �|= C � ⊥.
C is a minimal conflict set for i :C iff C is a conflict set for
i :C and iff there exists no C

′ ⊂ C that is also a conflict set
for i :C.

Note that there can be more than one minimal conflict set
for the same concept as we can see from the following ex-
ample.

Example 4 The bridge rules listed in example 2 are a
minimal conflict set for the concept Authorization. To-
gether they make Authorization inconsistent but any sub-
set is not a conflict set for this concept. If C would con-
tain the additional correspondence 〈44, i : Person, j :
Authorization,�, 0.46〉 the resulting mapping would also
contain another conflict set consisting of the following

bridge rules i : Person
�−→ j : Authorization and

i : Person
�−→ j : Person

After minimal conflict sets have been determined, they
can be used to resolve the conflict caused by the specific
combination of bridge rules in a conflict set. This can be
done by deleting a single bridge rule from the respective
conflict set. Since the same symptom can be caused by
different minimal conflict sets, every conflict set has to be
treated this way until the unwanted effect does not occur any
more.

As stated before, the assumption is that if properly de-
signed, the debugging method will delete exactly those
bridge rules that represent incorrect correspondences. This
implies that the step of selecting bridge rules to be deleted is
the crucial one in the debugging process. A naive approach
to this problem is the random selection of one of the ele-
ments of the conflict set. In classical diagnosis, all conflict
sets are computed and the diagnosis is computed from these
conflict sets using the hitting set algorithm. For the case of
diagnosing mappings this is neither computationally feasi-
ble nor does it provide the expected result. In the case of our
example, applying the hitting set method to the two existing
conflict sets does not lead to the wanted result as the hitting

set consists of the bridge rule i : Person
�−→ j : Person

which is not the real problem in this case.
An obvious way to improve the approach is to make use of

the degree of confidence that is assigned to each correspon-
dence. A low confidence value indicates that the matcher has
some doubts that the semantic relation encoded in the cor-
respondence is actually correct. Therefore, rules with a low
confidence value can be assumed to be more likely incorrect
than rules with a high value.

But since not every matcher evaluates generated corre-
spondences with an expressive confidence value, we needed
an alternative measure for deciding which mapping to re-
move from a conflict set. Therefore, we implemented a sim-
ple heuristic that computes the Wordnet distance between
the concepts connected by a mapping. In particular, we used
the similarity measure proposed by (Seco, Veale, & Hayes
2004). Applying this heuristic makes the approach indepen-
dent of the ability of the matching systems to compute the
confidence for a correspondence. It also turned out that for
those matchers that provided a measure of confidence the
use of the semantic similarity as a basis for selecting cor-
respondences to be removed outperformed the confidence-
based method. The corresponding experiments are omitted
here due to lack of space.

The algorithm for mapping repairing has already been de-
scribed. A formal representation is given in algorithm 1.
Note, that the procedure GETLOWESTBRIDGERULE(C) re-
turns the bridge rule in C with the lowest confidence esti-
mation of the correspondence this bridge rule was translated
from. The confidence values are computed as described in
the last section. For each symptom discovered by algorithm

Algorithm 1

REPAIRMAPPING(T, i, j)
1: for all C ∈ GETALLCONCEPTS(T, j) do
2: if Tj �|= C � ⊥ then
3: while T |= j :C � ⊥ do
4: C = GETMINIMALCONFLICSET(T, i, j :C)
5: b = GETLOWESTBRIDGERULE(C)
6: M = M − {b}
7: end while
8: end if
9: end for

10: return M

1 the procedure GETMINIMALCONFLICSET(T, i, j : C) is
called (see algoritm 2). This procedure minimizes the map-
ping from Ti to Tj until a minimal conflict set remains.

Experimental Evaluation

The goal of the experiments was to show that our debugging
method actually improves the results of automatic match-
ing. In particular, we wanted to show that the benefit gained
from identifying wrong mappings is larger than the damage
caused by deleting correct mappings. In the following, we
first present the data set and the matching systems used in
the experiments. We then briefly define the setting of the
experiments and discuss the results.

1411

Algorithm 2

GETMINIMALCONFLICSET(T, i, j :C)
1: for all b ∈ M do
2: M = M − {b}
3: if T �|= j :C � ⊥ then
4: M = M ∪ {b}
5: end if
6: end for
7: return M

Experimental Setting

We evaluated our method using automatically created map-
pings between ontologies of the ontoFarm Dataset. It con-
sists of a set of ontologies in the domain of conference orga-
nization that has been created by researchers of the Knowl-
edge Engineering Group at the University of Economics
Prague (Svab et al. 2005)1. Further, we used mappings
that have been created by the participants of the 2006 Ontol-
ogy Alignment Evaluation Campaign (Euzenat et al. 2006).
Six of the participants submitted results on the OntoFarm
dataset. We used the results of those four participants that
submitted pairwise alignments for all of the ontologies used
in the experiments, in particular falcon, coma++, hmatch
and OWL-CTXmatch.

In our experiments we considered pairwise mappings pro-
duced between the six ontologies presented above for each
of the mapping systems. Overall this makes 60 mappings,
15 for each matching method. We manually evaluated all
correspondences to determine the set C− of incorrect corre-
spondences. In order to guarantee the fairness of evaluation,
we had three people individually checking the mappings. In
cases of a disagreement the correctness of a correspondence
was decided by a majority vote. It turned out that there was
very little disagreement with respect to the correctness of
correspondences. For only about 3% of the correspondences
the result had to be determined by vote.

We translated all sets of correspondences into distributed
description logic by splitting up equivalences into inclusion
correspondences and creating two bridge rules for each cor-
respondence as described above. For each pair of ontologies
Ti and Tj , we ran algorithm 1 in both directions. If one of
the bridge rules has been removed during the repair process
we judged the associated correspondence as incorrect.

For each mapping, we determined the precision of the
mapping as well as the precision and recall of the differ-
ent debugging methods. The corresponding measures are
defined as follows:

precision of mapping =
|C+|
|C|

repair precision =
removed correspondences in C−

removed correspondences

1The ontologies are available at http://nb.vse.cz/
svabo/oaei2006/

repair recall =
removed correspondences in C−

|C−|
We computed an overall score by taking the average of the

values over all mappings in the experiment for each match-
ing system.

Results

Figure 1 summarizes the results with respect to precision
of the matching system and precision and recall of the de-
bugging algorithm. The perfection of the debugging algo-
rithm ranges between 78% and 100%. These results can be
compared to the precision of the matcher and the strategy to
remove correspondences randomly. If we would randomly
chose four of the corresondence from one of the mapping,
e.g created by OWL-CTXmatch, we would remove in aver-
age one incorrect and three correct correspondences, while
our debugging method would remove three incorrect and
only one correct correspondence.

Applying our repairing strategy to the matching systems
falcon and coma we were able to increase the precision by
2% and 6%, respectively. In the case of falcon recall of the
matching results was not affected at all, while in the case
of coma we only removed one correct correspondence. For
OWL-CTXmatch and hmatch we could increase precision
by 8% and 19%. Since we could not compute recall of the
matching system due to the missing of a reference mapping,
we can make no exact statements about the negative effects
on recall for these two matchers.

mapping repair

Matching System number precision precision recall

falcon 246 89% 100% 22 %
OWL-CTXmatch 270 75% 80% 54 %

coma 280 68% 96% 26 %
hmatch 406 57% 78% 56%

Table 1: Experimental Results on the OntoFarm Benchmark

On the other hand the values for recall of the repairing
range between 22% and 56%. This means that our debug-
ging method only captures parts of the incorrect correspon-
dences. We have already expected a similar result, since the
under-specification of mappings and ontologies results in a
lack of inconsistency symptoms that are the basis for the re-
pairing algorithm, as argued above.

A potential problem of our approach is the computational
complexity of the logical reasoning involved in determin-
ing inconsistencies and minimal conflict sets. In our exper-
iments debugging a single mapping between two ontologies
took between 4.3 and 19.4 seconds on average with respect
to the mappings created by a certain matcher. It turns out
that the run-time of the method grows nearly linear with the
number of inconsistent concepts as well as linear with the
size of the mapping. This also follows from the definition
of algorithms 1 and 2. The runtime is also strongly affected
by the complexity of distributed reasoning while performing

1412

the basic operation of checking T |= j : C � ⊥ for a cer-
tain concept C. Overall, we can say that the runtime for our
debugging method is acceptable.

Summary and Conclusions

One problem with using conflict sets is that inconsistency,
even in the presence of incorrect correspondences, does
not always occur. This might be caused by an under-
specification of the ontologies involved or by an under-
specification of the correct parts of a mapping. A similar
problem has been addressed by Schlobach in the context of
debugging Description Logic ontologies (Schlobach 2005).
In particular, the author introduces the strong disjointness
assumption stating that in a well modeled ontology all direct
children of the same parent concept should be regarded as
being disjoint. Alternatively, a mapping can be defined as
instable with respect to concept i :C if there exists a concept
i : D such that Ti �|= C � D and T |= i : C � i : D (Meil-
icke 2006). Instead of introducing disjointness of sibling
concepts it is also possible to regard instability in contrast to
inconsistency as symptom for defect mappings. Notice that
the set of inconsistency symptoms is a subset of the set of in-
stability symptoms. Further research has to show in how far
these approaches can be applied in order to increase recall
of our debugging strategy. An interesting theoretical ques-
tion is about the relation of our work to the theory of belief
revision, in particular Investigating the formal properties of
our approach to removing mappings based on the theory of
contraction functions. As described in (Wassermann 2000)
diagnostic reasoning can be used to implement kernel con-
traction functions for belief revision.

On a broader perspective our experiment showed that
there actually is a need for debugging mappings as many ex-
isting matchers fail to produce consistent mappings. Some
examples of obviously incorrect mappings produced by
matching systems in the experiments are the following:

Document = Topic

Decision = Location

Reception = Rejection

The real benefit of our method is its ability to also find non-
obvious errors in mappings that can only be detected taking
the position of the mapped concepts in the concept hierarchy
into account. Some examples we found in our experiment:

Regular Paper = Regular

Reviewing event = review

Main office � Location

In the case of the first correspondence, Regular actually de-
notes the regular participation fee as opposed to the early
registration. The error in the second correspondence is
caused by the fact that Reviewing event represents the
process of reviewing whereas review denotes the review
document as such. The last correspondence is not correct,
because the concept Main office actually represents the
main office as an organizational unit rather than a location.

In summary, we have shown that the methods for debug-
ging ontology mappings is a promising approach for im-
proving the quality of automatically created ontology map-
pings. As the approach works on a standardized represen-
tation of mappings, it is independent of the actual method
used to create the mappings. This also means that in prin-
ciple the method can also be applied to manually created
mappings. In summary we can say that our method provides
suitable functionality for improving matching systems and
editors for networked ontologies.

References

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P., eds. 2003. The Description
Logic Handbook - Theory, Implementation and Applica-
tions. Cambridge University Press.
Euzenat, J., and Shvaiko, P. 2007. Ontology Matching.
Springer Verlag. To appear.
Euzenat, J.; Mochol, M.; Shvaiko, P.; Stuckenschmidt, H.;
Svab, O.; Svatek, V.; van Hage, W. R.; and Yatskevich,
M. 2006. First results of the ontology alignment evalua-
tion initiative 2006. In Benjamins, R.; Euzenat, J.; Noy,
N.; Shvaiko, P.; Stuckenschmidt, H.; and Uschold, M.,
eds., Proceedings of the ISWC 2006 Workshop on Ontol-
ogy Matching.
Euzenat, J.; Stuckenschmidt, H.; and Yatskevich, M. 2005.
Introduction to the ontology alignment evaluation 2005. In
Proceedings of the K-CAP 2005 Workshop on Integrating
Ontologies.
Meilicke, C. 2006. Reasoning about ontology mappings in
distributed description logics. Bachelor Thesis, University
of Mannheim.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32:57–95.
Schlobach, S. 2005. Debugging and semantic clarification
by pinpointing. In Proceedings of ESWC 2005.
Seco, N.; Veale, T.; and Hayes, J. 2004. An intrinsic infor-
mation content metric for semantic similarity in wordnet.
In Proceedings of ECAI’2004, the 16th European Confer-
ence on Artificial Intelligence.
Serafini, L., and Tamilin, A. 2005. DRAGO: Distributed
reasoning architecture for the semantic web. In Proceed-
ings of the Second European Semantic Web Conference
(ESWC’05). Springer-Verlag.
Serafini, L.; Borgida, A.; and Tamilin., A. 2005. Aspects
of distributed and modular ontology reasoning. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence - IJCAI-05.
Svab, O.; Vojtech, S.; Berka, P.; Rak, D.; and Tomasek,
P. 2005. Ontofarm: Towards an experimental collection of
parallel ontologies. In Poster Proceedings of the Interna-
tional Semantic Web Conference 2005.
Wassermann, R. 2000. An algorithm for belief revision.
In Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Reasoning
(KR2000). Morgan Kaufmann.

1413

