
Repairing Queries in a Mediator Approach
Alain Bidault, Christine Froidevaux and Brigitte Safar�

Abstract. In this paper, we study unsatisfiable queries posed to a
mediator in an information integration system and expressed in the
logical formalism of the information integration system PICSEL2.
First, we characterise conflicts as the minimal causes of the unsat-
isfiability of a query. Then, we produce its set of repairs: a repair is
a query that does not generate any conflict and that has a common
generalisation with the initial query and is semantically close to it.

1 Introduction

In recent years, the problem of information integration has received a
lot of attention. In particular, several information integration systems
(e.g., Information Manifold [10], PICSEL [9], SIMS [1]) have been
based on a mediator architecture which provides a uniform query in-
terface to multiple and possibly heterogeneous data sources. Users
pose queries in terms of a set of relations designed to capture the
semantics of a given application domain (e.g., tourism3). Those rela-
tions are virtual in the sense that their instances are not directly avail-
able but stored in the sources. As a consequence, answering a query
means translating a user’s query into a query that refers directly to
the relevant sources, which needs a set of source descriptions. Our
sources are described by a set of views, for which logical constraints
and a logical mapping with domain relations are specified.

The most important advantage of a mediator is that it enables users
to focus on specifying their demand, by freeing them from having to
find the relevant sources and possibly combine data from multiple
sources to obtain answers. Users do not have to know which sources
are available. Instead, the mediator takes control of the construction
of the specialised query plans (expressed in terms of views) to be
executed in order to answer the original queries (expressed in terms
of the domain model).

In the setting of data integration systems, the need for a cooper-
ative query answering process is especially crucial because users do
not know the contents of the data sources that are available. In partic-
ular, it may happen that the user’s query, while being meaningful w.r.t
the domain model, has no answer because its translation leads to spe-
cialised query plans that violate the constraints specifying the actual
contents of the sources. In this case, it is important to explain to the
user why his query failed. For instance, he asked for hotels located
in England, and the only sources connected to the mediator provide
hotels located in Germany. In addition, it is very useful to offer him
a new query, called a repair, which is semantically close to the initial
one and for which the mediator can provide answers. For instance,
the user could be interested in a source providing Bed&Breakfasts in
England, instead of hotels.

� L.R.I., C.N.R.S & University of Paris-Sud Bâtiment 490, 91405, Orsay
Cedex, France fbidault, chris, safarg@lri.fr

� PICSEL is supported by the CNET (Centre National d’Études des Télécom-
munications) under contract number 97 1B 378.

� in collaboration with a travel agency, see http://www.degriftour.fr/

In this paper, we consider the problem of repairing queries which
do not obtain any answer, due to a violation of constraints. We take a
logical framework (see section 2) for representing the domain model
and the source description, associated with inference algorithms.
These algorithms are the basis for computing the specialised query
plans, and for checking their compatibility w.r.t the constraints.

Our contribution is twofold. First, as described in section 3, we
characterise the minimal causes of the absence of any answer in
terms of conflicts. Conflicts group together the rules and constraints
responsible of the query’s failure given the domain theory and the
source descriptions. Second, as described in section 4, we build a set
of repairs, such that each repair has a common generalisation with
the initial query. We show, with examples coming from the tourism
domain, several problems arising in the mediation context.

2 Representation of Domain, Sources and Queries

First, we specify the logical framework, called the domain theory.
We describe the formalism used to express knowledge, the contents
of the sources and queries. In the following, �X�� � � � � �Xn and �Y are
tuples of variables.

2.1 Domain Knowledge

The knowledge domain is expressed by means of a declarative rep-
resentation of object classes (Country, Flight, Stay, Travel...) and of
relations among these classes. The domain is described using atoms,
of the form p� �X� where p is a relation name and �X a tuple of vari-
ables or constants. We distinguish some unary relations, called con-
cepts. They represent object classes relevant to the application do-
main. C�x� is called an atom-concept if C is a concept.
The domain knowledge (D�C) contains two components:
� A set D, composed by rules of the form:

p�� �X�� � � � � � pn� �Xn� � q� �Y �� where q� �Y � and
p�� �X�� � � � pn� �Xn� are atoms, and each variable in �Y appears in
�X� � � � � � �Xn.

ex: A flight via Berlin is a flight having a stop in Berlin.
Flight(x) � Stop(x, y) � Berlin(y)� FlightViaBerlin(x).
We distinguish two kinds of rules:
Dh describes a hierarchy between the domain concepts, of the

form: C��x� � C��x�� where C� and C� are concepts.
ex: A direct flight is a flight. DirectFlight(X) � Flight(X)
Dt describes type-rules of the form p� �X� � C�xi� with xi �
�X . They specify which concept C will characterise the arguments

of p� �X�. ex: the binary relation CityDeparture takes as a first argument
travels and as a second argument geographical places.

CityDeparture(x,y)� Travel(x) CityDeparture(x,y)� GeoPlace(y)

Only rules of Dh and Dt can have a concept as a conclusion.
Concepts and relations not appearing in rules as conclusions, except

in type-rules, are called base relations.

� A set C, composed by Horn constraints of the form:
c � l�� �X�� � � � � � ln� �Xn�� ��

ex: There is no NiceSwimming if there is no beach:
NoBeachPlace(x)� FeasibleLeisure(x, y) � NiceSwimming(y)� �

The Semantics used are standard first order logic semantics. An
interpretation I contains a non-empty domain OI� It assigns an ob-
ject aI � OI to every constant a� and a relation of arity n over the
domain OI to each relation of arity n�

- I is a model of a rule r if whenever � is a mapping from the
variables of the rule r to elements of OI , such that �� �Xi� � pi

I for
every pi� we have �� �Y � � qI �

- I is a model of a constraint c if for every assignment � of the
variables of c with elements from the domain OI � we do not have
simultaneously for every li: �� �Xi� � li

I .
- I is a model of (D�C) if it is a model of each of its components.

2.2 Description of the Sources

The contents of a source Si are represented using a vocabulary V
constituted by as many local relations vij� called views, as we know
the source Si gives instances of domain base relations. The descrip-
tion of sources in terms of views contains two components:

� A logical set of implications Dv , linking each view to a do-
main relation, vi� �X�� p� �X��
ex: S� provides instances of the concept Hotel and of the binary re-
lation Located. V���x� � Hotel(x) V���x� y� � Located(x, y)

� A set of Horn constraints Cv characterising the view in-
stances: l�� �X�� � � � � � ln� �Xn� � �� where l� � � � ln are base rela-
tions and/or view names or their negation with at most one negation.
ex: instances from V�� are linked to V�� and hotels from S� are lo-
cated in the Caribbean : V���x� y� ��V���x�� �

V���x��Located�x� y� ��InCaribbean�y� � �

The semantics for Dv and Cv are the same as for (D�C).

2.3 Position of the Problem

We perform conjunctive queries of the form:
Q� �X� � p�� �X�� �Y�� �a�� � � � � � pn� �Xn� �Yn� �an�

where pi are domain relation names appearing in D � C. The vari-
ables �X �

Sn

i��
Xi are called distinguished variables of the query

and represent data, instances expected by the user when posing the
query. �Y �

Sn

i��
Yi are non-distinguished variables, and �a�� � � � � �an

are tuples of constants. The variables are existentially quantified.
Classically, answering a query Q� �X� is interpreted relatively to a
databaseDB, possibly associated to a domain theoryD, and consists
in determining whether:
DB�D j� � �X� � �Y �p�� �X�� �Y�� �a�� � � � � � pn� �Xn� �Yn� �an���

In the case of a positive answer, the answer to the query is the set of
tuples �b � �b� � � � � � �bn such that:

DB�D j� � �Y �p���b�� �Y�� �a�� � � � � � pn��bn� �Yn� �an��
In fact, in our mediator approach, we do not access the data source
contents. Answering a query consists in searching the different ex-
pansions of this query in terms of views. An expansion of a query
Q� �X� is a query that, using the domain theory T =D�DV�C�CV�
logically implies Q� �X�, and that is satisfiable with T �
We assume that T �j� �� T �j� 	 �X
p� �X�� p a relation name, and
that the dependency graph of the relations appearing in T is acyclic.
Moreover, we limit ourselves to queries having no constant.

In the PICSEL [9] mediator context, an algorithm that determines
expansions in terms of views has been developed and implemented
in Java. This algorithm proceeds, using D and DV� by successive
rewritings QR� �X� of the initial query Q� �X� in a backward chaining
way. We have QR� �X��D �DV j� Q� �X��

These rewritings are the nodes of a tree rooted by Q. While devel-
oping the tree, for each node QR� the satisfiability with T is tested.
A node is a leaf either if QR� �X��T j��� or if QR can no longer be
rewritten.

Our problem arises when all the leaves are unsatisfiable with T �
Our aim is to obtain repairs of Q� �X�, satisfiable with T � and, most
of the time, that are a least satisfiable generalisation of Q� �X��

It is worth noticing that QR� �X� can simply be the initial query,
detected as unsatisfiable before any expansion step.

Example 1: Assume that we have the following two sources: the
first one offers hotels in the Mediterranean, the second one provides
campsites in Reunion.

S1: rv�� V���x�� Hotel�x�
rv�� V���x� y� � Located�x� y�
cv�� V���x� y� ��V���x�� �
cv�� V���x�� Located�x� y� ��InMediterranean�y� � �

S2: rv�� V���x�� Campsite�x�
rv�� V���x� y� � Located�x� y�
cv�� V���x� y� ��V���x�� �
cv�� V���x�� Located�x� y� ��Reunion�y� � �

C c� : Campsite�x� �Hotel�x�� �
c� : Reunion�x� � InMediterranean�x� � �

D r� : Campsite�x� � ResidenceP lace�x�
Suppose that the user wishes to get an hotel in Reunion:

Q(x) = Hotel(x) � Located(x, y) � Reunion(y).
The mediator provides the following unsatisfiable rewritings:

QR�
Hotel�x�� V���x� y� �Reunion�y�

QR�
Hotel�x�� V���x� y� �Reunion�y��

Our task is to identify the origins of the unsatisfiablity of the given
queries and to propose satisfiable repairs of the initial query Q. In
order to do that, queriesQR given by PICSEL are saturated with T to
identify their inconsistency, which is expressed in terms of conflicts
(section 3). How to repair these conflicts is described in section 4.

3 Definition of a Conflict

We noteQ� a subset of a conjunctive queryQ,D� a subset ofD�Dv,
and C� a subset of C � Cv .

Definition 3.1: A conflict for a query Q is a triplet �Q��D��C��
such that Q��D��C� j� �� (D��C�) is the cause of the conflict.

We distinguish conflicts according to two criteria. The first one con-
cerns the query’s atoms appearing in the conflict.

Definition 3.2: A conflict �Q��D��C�� is Q minimal if there does
not exist Q� � Q� (strictly) such that Q��D��C� j� �

Example 2:
C c� : d(x) � e(x) � f(x) � � c� : a(x) � b(x)� �

D r� : a(x)� d(x) r� : b(x)� e(x) r� : c(x)� f(x)
Q�x�: a(x) � b(x) � c(x)
Cf� : (fa(x), b(x), c(x)g,fg,fc�g) Cf�: (fa(x), b(x)g,fg,fc�g)
Cf� : (fa(x), b(x), c(x) g,fr�� r� � r�g,fc�g
Because fa�x�� b�x�g � fa�x�� b�x�� c�x�g� Cf� is not Q minimal.

The second criterium concerns the knowledge appearing in the
conflict. Thus, we define an operator on the causes of conflicts.

Definition 3.3: The strict inclusion operator on causes is defined
as follows: �D��C�� � �D��C�� if and only if

�D� � D� and C� � C�� or �D� � D� and C� � C���
Definition 3.4 : A minimal cause of conflict for an atoms con-
junction Q� is a couple �D��C�� such that there exists no cause
�D��C�� � �D��C�� with Q��D��C� j��.

From definitions 3.2 and 3.4, we distinguish the relevant conflicts
from among all the detectable ones available.

Definition 3.5: A conflict �Q��D��C�� is relevant if it is Q minimal
and if �D��C�� is a minimal cause of conflict for Q�.

Example 3:
Dh : r� father(x)� male(x) r� mother(x)� female(x)

r� father(x)� adult(x) r� mother(x)� adult(x)
C: c� male(x) � female(x)� � c� adult(x) � child(x)� �
Q(x) = father(x)� mother(x)� child(x)
Relevant conflicts cf1. (ffather(x), mother(x)g,fr�� r�g,fc�g)

cf2. (ffather(x), child(x)g,fr�g,fc�g)
cf3. (fmother(x), child(x)g,fr�g,fc�g)

Complete and correct methods, as the positive hyperresolution
method defined in [2], let us detect all the relevant conflicts gener-
ated by a given query, focusing on the literals of the query. Conflicts
could be presented to the user as a first and rough explanation of his
query’s failure.

4 Repairs

Let us consider an unsatisfiable queryQ� �X��We have to determine a
set of repairs without conflicts. A repair is a satisfiable query Q�� �X�
such that Q� �X� and Q�� �X� have a close common generalisation.
Our repairs are based on the notion of concept subsumption.

4.1 Concept Generalisation

Definition 4.1: A direct subsumer of a concept C is a concept C �
such that the rule C�x�� C ��x� is in Dh�

A concept can have many direct subsumers.

Definition 4.2: C� is a subsumer of C if C � is a direct subsumer of C
or if there exists C �� such that C � is a direct subsumer of C �� and C �� is
a subsumer of C.

PlaceWithABeach NoBeachPlace
UnderTheSun

IslandWithNoBeach

InMediterranean Reunion Madeira UK

IslandWithBeach

Figure 1

GeoPlace

Island

r5 r6 r7

r8 r10 r11

r13r12 r15r14

r4r3r2r1

r9

 Geographical Places Hierarchy

Figure 1 presents a fragment of the concept hierarchyDh� The direct
subsumers of Madeira are UnderTheSun and IslandWithNoBeach
while other subsumers are Island, NoBeachPlace and GeoPlace.

Type-rules specify for each argument of the relation, the concept
Cg to which it could belong. A relevant query verifies type-rules if it
only uses atom-concepts more specific than or equal to C g .

Definition 4.3: Let Q� �X� �
Vn

i��
Ai� �X�� Vm

j��
Cj� �X�� with

Ai��i�n a n ary relation and Cj��j�m a concept. Q� �X� verifies
a type-rule rt � Ai� �X� � C��x�� if and only if the concept C � is one
of the concepts Cj or a subsumer of one of the Cj’s.

Example 4: In addition to rules expressed in figure 1, suppose that
Located has two type-rules and that Hotel is a place for residence:
r�� : Located(x, y)�ResidencePlace(x) r��: Located(x, y)�GeoPlace(y)
r�	 � Dh � Hotel(x)� ResidencePlace(x)

The query Q(x) = Hotel(x) � Located(x,y) � Madeira(y) verifies the
type-rules associated to the relation Located�

The following definition establishes the notion of generalisation of
an atom-concept C�x��

Definition 4.4: Let C be a concept and C� , C� ,...,Cn , its direct sub-
sumers, the direct generalisation Gc�x� of the atom-concept C�x�
is the conjunction C��x� � C��x� � ���� Cn�x��
Remarks (i) We use the conjunction of direct subsumers in order to
stay close to the concept, taking into account all its features.
(ii) We have the following property: C�x��Dh j� Gc�x��

Thanks to the previous definitions, a generalisation of an atom-
concepts conjunction will be defined.

Definition 4.5: A direct generalisation Gd�x� of an atom-concepts
conjunction C��x�� � � ��Ci���x��Ci�x��Ci
��x�� � � ��Cn�x�
is a conjunction of the form C��x� � � � ��Ci���x� � Gci�x� �
Ci
��x�� � � � � Cn�x�� � i n� where Gci�x� is the direct gener-
alisation of Ci�x��

Definition 4.6: G�x� is a generalisation of an atom-concepts con-
junction Cac�x� if G�x� is a direct generalisation of Cac�x� or if there
exists an atom-concepts conjunction G ��x� such that G�x� is a direct
generalisation of G ��x� and G ��x� is a generalisation of Cac�x�.

Example 4: A generalisation of InMediterranean�x� �
Island�x� is UnderTheSun(x)� PlaceWithABeach(x)� Island(x).

4.2 Query Repairs

In this section, we show how to use generalisations to repair a conflict
in a query. We first define the notion of unsolvable query.

Definition 4.7: A literals conjunction Q� �X� is unsolvable if it is
unsatisfiable, that is, Q � D � C j� �� or if all the leaves QR of its
rewriting tree are unsatisfiable with T , that is, QR � T j� ��

Definition 4.8: Let Q� �X� � Cac�x��q� �X� be an unsolvable query,
where Cac�x� is a conjunction of atom-concepts, and q� �X� a con-
junction of literals with x � �X . R� �X� � C�ac�x�� q� �X� is a repair
of Q� �X� if C�ac�x� is a generalisation of Cac�x� and if R� �X� is not
unsolvable.

Remark We have: Q� �X��Dh j� R� �X�� As repairs R� �X� do not
always verify the type-rules, the notion of relevant repair is needed.

Definition 4.9: A repairR� �X� of a queryQ� �X� is a relevant repair
if it verifies the type-rules associated to its own n-ary relations.

Then, as many repairs could pretend to satisfy the previous defini-
tions, only minimal relevant repairs have to be given to the user.

Definition 4.10: R� �X� is a minimal repair of the unsolvable query
Q� �X� if R� �X� is a relevant repair of Q� �X� and if there does not ex-
ist R� �X�� a relevant repair of Q� �X�� such that R� �X��Dh j� R� �X�.

Example 4 continued: we add the following knowledge:
r�� : NiceSwimming(x)� Leisure(x) r��: AssLeisure(x, y)�Leisure(y)
r�� : AssLeisure(x, y)� ResidencePlace(x)
c� : NoBeachPlace(x)� FeasibleLeisure(x,y)� NiceSwimming(y)� �

c� : ResidencePlace(x)� AssLeisure(x,z)� Located(x,y)�
GeoPlace(y)� � FeasibleLeisure(y, z) � �

and the query, Q(x) = Hotel(x) � Located(x,y) � Madeira(y) �
AssLeisure(x,z) � NiceSwimming(z).

We identify a relevant conflict: (fLocated(x,y), Madeira(y),
AssLeisure(x,z), NiceSwimming(z)g, fr�� r�� � r��� r��g�fc�� c�g).

Substituting in Q�x� the atom-concept Madeira(y) by its gener-
alisation, Island(y) � UnderTheSun(y), a minimal repair QR(x) is
found: Hotel(x) � Located(x,y) � Island(y) � UnderTheSun(y) �
AssLeisure(x,z) � NiceSwimming(z).

4.3 Algorithms for Calculating Repairs

In [14], Reiter proposes an algorithm to determinate a minimal set
of abnormal components of a system, by computing minimal hitting
sets for the collection of conflicts set. We need to adapt his method.
Instead of simply deleting the literals, we want to generalise them,
if it is possible, taking into account Dh. We construct the minimal
repairs from the set of all minimal conflicts. Repairing a query means
repairing each of its conflict, and for this, we calculate the set of
atom-rules pairs ar-pairs that need to be oversteped.

Definition 4.11: Let cf� � �Q��D�� C�� be a relevant conflict. We
define as many ar-pairs a � rh� with a � Q� and rh � D� � Dh�

as there exist maximal paths starting from a and associated to rh�

developed during the hyperresolution process.

Definition 4.12: The overstep generalisationGa�rh �x�� is the gen-
eralisation of a where all the concepts reached by applying rules of
rh have been successively replaced by their direct generalisations.

Remark Note that, for a given conflict, oversteping one of its
ar-pairs does not always solve the conflict.

Example 3 continued: the sets of ar-pairs for each relevant con-
flict are: ar1= f father-r� , mother-r�g, ar2= ffather-r� , childg, ar3=
fmother-r� , childg. Having the following rule, r� adult(x) �
� �	Y ears(x), the generalisation oversteping father- r� is adult�x�
and the one for father-r� is male�x�� � �	Y ears�x��

Definition 4.13: Let Q� �X� �
Vn

i��
ai�xi� �

Vm

j��
qj� �Y � be a

query where �X � Sn

i��
xi � �Y and the ai�xi�’s are atom-concepts.

Let ai � rhi be ar-pairs, for � i n. The query oversteping all
ai-rhi in Q� �X� is

Vn

i��
Gai�rhi �xi� �

Vm

j��
qj� �Y ��

Given an unsolvable queryQ� and given a set of relevant conflicts,
our aim is to obtain the minimal sets of ar-pairs that solve all the
conflicts for Q together. These sets of pairs are given as leaves of
an Order-Minimal-Repair-Tree. The following algorithm constructs
this OMR-tree ; its input is the set of relevant conflicts for Q and a
total order Op over ar-pairs for avoiding redundant results.

Definition of a Total OrderOp Over Ar-pairs
The order follows first the user’s preferences over atoms, by

default, the order of the literals in the query. For pairs having
the same literal, the order follows the decreasing number of rules
jrhj� Then, the lexicographical order over the rule names is followed.

Calculation of an OMR-Tree
Let CS be a set of relevant conflicts. An edge-labeled and node-
labeled tree T is an OMR-tree for CS iff it is a smallest tree with
the following properties:
� Its root is labeled by

p

 if CS is empty, otherwise by CS.

� If n is a node of T, define EL�n� to be the set of edge labels on
the path in T from the root node to n.
� The label for a node is the collection of conflicts that have not

been treated while oversteping the ar-pairs EL�n�, if such a collec-
tion exists. Otherwise, n is labeled by

p
.

� If n is closed or labeled by
p

, it is a leaf of T.
� Nodes are generated breadth-first and edges are listed from left

to right according to the increasing order Op on edges’ labels.
� Let n be a node labeled by � � CS� and np a node of T labeled

by
p

. If EL�np� is a subset of EL�n�, n is closed.
� If n is the root, for each ar-pair ar associated to �, n has a suc-

cessor node nar� Otherwise, n is issued from a previous edge labeled
arp� and it has, for each ar-pair ar greater than arp� a successor node
nar � Each node nar is linked to n by an edge labeled by ar�
� If ar � a-rhk is such that there exist ar-pairs fa-rh�� � � � � a-

rhkg in EL�nar�� where
Sk

i��
rhi �

Sk

i��
rhinrhj� for some

j � ����k�� then nar is closed.

Remark Such a tree lets us first find a repair close to the
query in terms of generalisations steps and quickly get a repair close
to the user’s preferences (Op).

Theorem 1 Let Q be an unsolvable query and let T be the OMR-
tree associated to it. By oversteping in Q all ar-pairsEL�l� given by
one leaf l labelled by

p

 in T , we get a minimal repair of the query.

Conversely, every minimal repair can be obtained in this way.

Example 3 continued: five ar-pairs are calculated:
child, mother-r�, mother-r�, father-r�, father-r�.

VV

VV

cf1

cf2

father-r3father-r3

cf3

cf2, cf3

cf2

cf2, cf3

cf1

cf1, cf2 cf1, cf3

cf1, cf2, cf3

child

mother-r2

Figure 2. OMR-tree for example 3

father-r3mother-r2 father-r1mother-r4

father-r3father-r1father-r3father-r1 mother-r4

Figure 2 presents the 4 minimal sets of ar-pairs to be oversteped:
1. child, mother-r� 3. mother-fr�� r�g, father-r�
2. child, father-r� 4. mother-r�, father-fr�� r�g.

Thus, the four following minimal repairs can be proposed:
1. father(x) 3. male(x)� � ��Y ears�x�� child(x)
2. mother(x) 4. female(x)� � ��Y ears�x�� child(x).

These repairs are obtained by oversteping the pairs computed us-
ing the OMR-tree. For example, (1.) is obtained removing child
which has no direct subsumer, and by replacing mother by adult,
which is not kept because it subsumes father.

4.4 Other Query Repairs

We give some indications of how to define new repairs since repair-
ing using concept generalisation is not always quite satisfactory.

� When repairs do not verify the type-rules, we also have to
modify their concerned binary atoms R�x� y�� For Q�x� � C��x�
�R�x� y� � C��y� which does not verify the type-rule r� � R�x� y�
� C��x�, because of the exclusion-constraint c� � C��x� � C��x�
� �, two kinds of repairs (called type-repairs) are possible,
depending on whether we favor the binary relation or the concepts:
- the first one keeps the atom R(x, y) and consists in correctly

typing the associated concept, replacing C��x� by C��x�.
- the second one keeps the concepts and consists in replacing the

relation R by an atoms chain which correctly links C��x� to C��y�.
The research of such a chain needs to study the binary relations
associated to the considered concepts or their subsumers. The
new repair must verify the type-rules associated to its new binary
relations. We are restricted to chains having at most two relations.

Example 4 continued : with the added following knowledge,
r�� : FeasibleLeisure(x, y)� GeoPlace(x)
c� : ResidencePlace(x)� GeoPlace(x)� �

Suppose the user’s query is:
Q(x) = Hotel�x��FeasibleLeisure�x� y��NiceSwimming�y�

This query is incompatible with the domain structure because
a hotel is a ResidencePlace whereas FeasibleLeisure needs a
GeoPlace. Moreover, the repair using concept generalisations that
modify the conceptHotel cannot verify r��.
The type-repairs are as follows : favoring FeasibleLeisure:
R��x� : GeoPlace(x) � FeasibleLeisure(x, y) � NiceSwimming(y),

favoring Hotel and NiceSwimming:
R��x� : Hotel(x) � AssLeisure(x, y) � NiceSwimming(y).

� We continue Example 1, described in section 2.3, to present
the problems encountered because of the sources. In addition, the
domain theory contains the rules expressed in figure 1.
Each rewriting contains a conflict, respectively :
QR�

� cf� (fV���x� y�� Reunion�y�g,frv��g,fcv��� cv��� c�g)
QR�

� cf� (fHotel�x�� V���x� y�g,frv��� rv��g,fc�g).

Two repairs should be found: Hotel�x��Located�x�y��UnderThe-
Sun�y� � IslandWithBeach�y�� for the first conflict; Residence-
P lace�x� � Located�x� y� �Reunion�y� for the second.

5 Conclusion and Perspectives

Our objective is to help a user to reformulate his query detected as
unsatisfiable. This paper has presented a formal framework that lets
us characterise the minimal causes of the query’s unsatisfiability in
terms of conflicts. It has introduced the notion of minimal repairs
of a query by means of concept generalisations. Moreover, an al-
gorithm to calculate these repairs has been proposed, and is being
implemented in Java.

Our study is related to work done in diagnosis [14] but differs as
we have identified different subsets in the domain theory (type rules,
source descriptions, etc.), so that we can give the user significant
explanations for why his query failed, and propose repairs that meet
his requirements, as closely as possible.

Due to a lack of place, we succinctly present related research de-
veloped in a deductive databases context.

Motro [11] introduces minimal failing sub-queries (MFS) that fail
because of the domain constraints or the real data. He modifies the
query by deleting literals or by relaxing, to a certain degree, some of
its conditions. He does not have to detect all the conflicts beforehand,
but, instead, he must often consult the effective data of the sources.

Godfrey [8] shows that looking for all the MFS and finding all
their repairs are NP-hard problems, which can become polynomial
when exhaustiveness is not necessary.

We were interested in an algorithm that gives some outputs, known
as minimal, without having to wait for all the solutions to be calcu-
lated first, that is, our OMR-Tree algorithm.

Gal [7] gives the user integrity constraints that have been violated
by a query, as we do, but she does not offer any repairs. Gaaster-
land [5][6] modifies the query either to get more information, which
is relevant for the user, or to repair the query if it fails. She describes
how to relaxe each predicate and its constant arguments. As there are
many possibilities, relaxations are generated in breadth first, and at
each level, they are submitted to the user, who has to decide, interac-
tively, which relaxation he prefers.

The work we have presented should be extended in order to take
into account the full expressiveness of the formalism CARIN [13],
language used in the PICSEL project and which combines Horn rules
with description logics. It could be interesting, first, to go further
in exploiting the analogies with diagnosis, trying to map other al-
gorithms [3], [4], and second, to investigate the links between our
notion of generalisation and the generality quasiorders used in the
Inductive Logic Programming field [12]. On the other hand, we have
to formalise other methods to obtain repairs when generalisations are
not quite satisfactory, that is, when the atoms of the query are badly
typed or when the available sources are not relevant for the user. At
last, some optimisations could be introduced, (i) to order and group
the repairs according to their meaning, (ii) to avoid calculating irrel-
evant conflicts, generated by the type-rules for example, during the
hyperresolution process.

REFERENCES
[1] Y. Arens, C. A. Knoblock and W.-M. Shen. Query reformulation for

dynamic information integration. J. Intelligent Information Syst., 6, 96.
[2] Chang and Lee. Symbolic Logic and Mechanical Theorem Proving,

100-121, Academic Press, 73.
[3] L. Console and O. Dressler. Model-based diagnosis in the real world:

lessons learned and challenges remaining. In IJCAI’99,1393-1400, 99.
[4] O. Dressler and P. Struss. Model-based Diagnosis with the Default-

based Diagnosis Engine: Effective Control Strategies that Work in Prac-
tice. In ECAI’94, 677-681, 94.

[5] T. Gaasterland. Cooperative Answering through Controlled Query Re-
laxation. IEEE Expert, 48-59, sept-oct 97.

[6] Gaasterland, Godfrey, Minker. An overviewof Cooperative Answering.
Journal of Intelligent Information Systems, (1) 123-157, 92.

[7] A. Gal. Cooperative Responses in Deductive Databases. PhD thesis,
Departement of Computer Science, University of Maryland, 88.

[8] P. Godfrey. Minimization in cooperative response to failing databases
queries. In Int. J. of Cooperative Information Syst. 6(2): 95-149, 97.

[9] F. Goasdoué, V. Lattes and M.-C. Rousset. The Use of CARIN
Language and Algorithms for Information Integration: The PICSEL
Project. In Int. J. of Cooperative Information Syst. 99.

[10] A. Levy, A. Rajamaran, and J. Ordille. Query-answeringalgorithms for
information agents. In Proc AAAI’96, 40-47, august 96.

[11] A. Motro. Intensional Answers to Database Queries. In IEEE, 6(3),
444-454, june 94.

[12] S-H. Nienhuys-Cheng and R. de Wolf, Foundations of Inductive Logic
Programming, LNAI, 1228, Springer Verlag 97.

[13] A. Levy and M.-C. Rousset. Combining Horn Rules and Description
Logics in CARIN. In Artificial Intelligence, 104, 165-209, 98.

[14] R. Reiter. A Theory of Diagnosis from First Principles. In Artificial
Intelligence, 32, 57-95, 87.

