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Proper use of exploratory factor analysis (EFA) requires the researcher to make a se-
ries of careful decisions. Despite attempts by Floyd and Widaman (1995), Fabrigar,
Wegener, MacCallum, and Strahan (1999), and others to elucidate critical issues in-
volved in these decisions, examples of questionable use of EFA are still common in
the applied factor analysis literature. Poor decisions regarding the model to be used,
the criteria used to decide how many factors to retain, and the rotation method can
have drastic consequences for the quality and meaningfulness of factor analytic re-
sults. One commonly used approach—principal components analysis, retention of
components with eigenvalues greater than 1.0, and varimax rotation of these compo-
nents—is shown to have potentially serious negative consequences. In addition,
choosing arbitrary thresholds for factor loadings to be considered large, using single
indicators for factors, and violating the linearity assumptions underlying EFA can
have negative consequences for interpretation of results. It is demonstrated that, when
decisions are carefully made, EFA can yield unambiguous and meaningful results.

exploratory factor analysis, principal components, EFA, PCA

Exploratory factor analysis (EFA) is a method of discovering the number and na-
ture of latent variables that explain the variation and covariation in a set of mea-
sured variables. Because of their many useful applications, EFA methods have en-
joyed widespread use in psychological research literature over the last several
decades. In the process of conducting EFA, several important decisions need to be
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made. Three of the most important decisions concern which model to use (common
factor analysis vs. principal components analysis1), the number of factors to retain,
and the rotation method to be employed. The options available for each decision are
not interchangeable or equally defensible or effective. Benefits of good decisions,
based on sound statistical technique, solid theory, and good judgment, include sub-
stantively meaningful and easily interpretable results that have valid implications
for theory or application. Consequences of poor choices, on the other hand, include
obtaining invalid or distorted results that may confuse the researcher or mislead
readers.

Although the applied factor analysis literature contains many superb examples
of careful analysis, there are also many studies that are undoubtedly subject to the
negative consequences just described due to questionable decisions made in the
process of conducting analyses. Of particular concern is the fairly routine use of a
variation of EFA wherein the researcher uses principal components analysis
(PCA), retains components with eigenvalues greater than 1.0, and uses varimax ro-
tation, a bundle of procedures affectionately termed “Little Jiffy” by some of its
proponents and practitioners (Kaiser, 1970).

Cautions about potential negative consequences of this approach have been
raised frequently in the literature (notably, Fabrigar, Wegener, MacCallum, &
Strahan, 1999; Floyd & Widaman, 1995; Ford, MacCallum, & Tait, 1986; Lee &
Comrey, 1979; Widaman, 1993). However, these cautions seem to have had rather
little impact on methodological choices made in many applications of EFA. Articles
published in recent years in respected journals (e.g., Beidel, Turner, & Morris, 1995;
Bell-Dolan & Allan, 1998; Brown, Schulberg, & Madonia, 1995; Collinsworth,
Strom, & Strom, 1996; Copeland, Brandon, & Quinn, 1995; Dunn, Ryan, & Paolo,
1994; Dyce, 1996; Enns & Reddon, 1998; Flowers & Algozzine, 2000; Gass,
Demsky, & Martin, 1998; Kier & Buras, 1999; Kwan, 2000; Lawrence et al., 1998;
Osman, Barrios, Aukes, & Osman, 1995; Shiarella, McCarthy, & Tucker, 2000;
Yanico & Lu, 2000) continue to follow the Little Jiffy approach in whole or in part,
undoubtedly yielding some potentially misleading factor analytic results. Repeated
use of less than optimal methods reinforces such use in the future.

In an effort to curtail this trend, we will illustrate by example how poor choices
regarding factor analysis techniques can lead to erroneous and uninterpretable re-
sults. In addition, we will present an analysis that will demonstrate the benefits of
making appropriate decisions. Our objective is to convince researchers to avoid
the Little Jiffy approach to factor analysis in favor of more appropriate methods.
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1Use of the word model usually implies a falsifiable group of hypotheses describing relationships
among variables. We use the term here in a broader sense, namely an explanatory framework leading to
understanding, without necessarily the implication of falsifiability. By using the word model we simply
mean to put principal components analysis and exploratory factor analysis on the same footing so that
they may be meaningfully compared.



THE ELECTRIC FACTOR ANALYSIS MACHINE

In 1967 an article entitled “Derivation of Theory by Means of Factor Analysis or
Tom Swift and His Electric Factor Analysis Machine” (Armstrong, 1967)2 was pub-
lished. The intended point of this article was to warn social scientists against placing
anyfaith inEFAwhenthe intent is todevelop theoryfromdata.Armstrongpresented
an example using artificial data with known underlying factors and then performed
an analysis to recover those factors. He reasoned that because he knew what the re-
covered factor structure should have been, he could assess the utility of EFA by eval-
uating the degree to which the method recovered that known factor structure. We
make use of the Armstrong example here because his factor analysis methods corre-
spond closely to choices still commonly made in applied factor analysis in psycho-
logical literature. Thus, we use the Armstrong article as a surrogate for a great many
published applications of EFA, and the issues we address in this context are relevant
to many existing articles as well as to the ongoing use of EFA in psychological re-
search. Although the substantive nature of Armstrong’s example may be of little in-
terest to most readers, we urge readers to view the example as a proxy characterized
by many of the same elements and issues inherent in empirical studies in which EFA
is used. Generally, data are obtained from a sample of observations on a number of
correlated variables, and the objective is to identify and interpret a small number of
underlyingconstructs.Such is thecase inArmstrong’sexample,and theconclusions
drawn here apply more generally to a wide range of empirical studies.

Armstrong presented the reader with a hypothetical scenario. In his example, a
metals company received a mysterious shipment of 63 box-shaped, metallic ob-
jects of varying sizes. Tom Swift was the company’s operations researcher. It was
Swift’s responsibility to develop a short, but complete, classification scheme for
these mysterious objects, so he measured each of the boxes on 11 dimensions:

(a) thickness
(b) width
(c) length
(d) volume
(e) density
(f) weight
(g) total surface area
(h) cross-sectional area
(i) total edge length
(j) length of internal diagonal
(k) cost per pound
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2The Armstrong (1967) article was available, at the time of this writing, at http://www-marketing.
wharton.upenn.edu/forecast/papers.html.



The measurements were all made independently. In other words, Swift obtained
volume by some means other than by multiplying thickness, width, and length to-
gether, and weight was obtained by some means other than calculating the product
of density and volume.

Swift suspected (correctly) that there was overlap between some of these di-
mensions. He decided to investigate the structure of the relationships among these
dimensions using factor analysis, so he conducted a PCA, retained as many com-
ponents as there were eigenvalues greater than 1.0, and rotated his solution using
varimax rotation. As noted earlier, this set of techniques is still widely used in ap-
plied factor analysis research. Armstrong noted at this point that all of the available
information relied on 5 of the original 11 variables, because all of the 11 measured
variables were functions of thickness, width, length, density, and cost per pound
(functional definitions of Swift’s 11 variables are shown in Table 1). This implies
that an EFA, properly conducted, should yield five factors corresponding to the 5
basic variables. Swift’s analysis, however, produced only three underlying com-
ponents that he called compactness,3 intensity, and shortness, the first of which he
had some difficulty identifying because the variables that loaded highly on it did
not seem to have much in common conceptually. These components accounted for
90.7% of the observed variance in the original 11 variables. Armstrong’s reported
rotated loadings for these three components are presented in Table 2 (note that
only loadings greater than or equal to 0.7 were reported). Armstrong pointed out
that we should not get very excited about a model that explains 90.7% of the vari-
ability using only three factors, given that we know that the 11 variables are func-
tions of only five dimensions.

Because Swift had trouble interpreting his three components, Armstrong sug-
gested that if Swift had relaxed the restriction that only components with
eigenvalues greater than 1.0 be retained, he could retain and rotate four or even
five components. This step might have seemed reasonable to Armstrong’s readers
because they happened to know that five factors underlay Swift’s data even though
Swift did not know that. However, because Swift had no prior theory concerning
underlying factors, he may not have considered this alternative.

Nevertheless, Swift repeated his analysis, this time retaining four components.
On examination of the loadings (presented in Table 3), he termed these compo-
nents thickness, intensity, length, and width. The problem with this solution, ac-
cording to Armstrong, was that the model still did not distinguish between density
and cost per pound, both of which had high loadings on a single component even
though they seemed conceptually independent. Dissatisfied with his results, Swift
sought to more fully identify the underlying dimensions by introducing nine addi-
tional measured variables:
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3Because some variables and components share labels, component and factor labels will be
italicized.



(l) average tensile strength
(m) hardness
(n) melting point
(o) resistivity
(p) reflectivity
(q) boiling point
(r) specific heat at 20°C
(s) Young’s modulus
(t) molecular weight
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TABLE 1
Functional Definitions of Tom Swift’s Original 11 Variables

Dimension Derivation

Thickness x
Width y
Length z
Volume xyz
Density d
Weight xyzd
Total surface area 2(xy + xz + yz)
Cross-sectional area yz
Total edge length 4(x + y + z)
Internal diagonal length (x2 + y2 + z2)2

Cost per pound c

TABLE 2
Armstrong’s (1967) Three-Factor Solution for Original 11 Variables

Dimension

Compactness Intensity Shortness

Thickness 0.94 — —
Width 0.74 — —
Length — — 0.95
Volume 0.93 — —
Density — 0.96 —
Weight 0.72 — —
Total surface area 0.86 — —
Cross-sectional area — — 0.74
Total edge length 0.70 — —
Internal diagonal length — — 0.88
Cost per pound — 0.92 —

Note. An em dash (—) = a loading not reported by Armstrong.



Swift conducted a components analysis on the full set of 20 variables using the
same methods he used earlier. This time, however, he retained five components
that explained 90% of the variance. (Even though it was not explicitly stated, it
can be assumed that Swift retained as many components as there were
eigenvalues greater than 1.0.) He interpreted the varimax-rotated components as
representing impressiveness, cohesiveness, intensity, transference, and length.
The reported loadings on these components for 20 variables are presented in Ta-
ble 4. Swift then noticed that, in some cases, items loading highly on the same
components seemed to have little to do with each other conceptually. For exam-
ple, density and cost per pound still loaded onto the same component when they
were clearly (to him) independent concepts.

An overall evaluation of Tom Swift’s results would lead most readers to the
conclusion that his analysis failed to uncover the known factors underlying the
observed variables. Armstrong concluded that because EFA was employed with
no a priori theory, Swift had no criteria by which to judge his results. According
to Armstrong, factor analysis would be better suited to evaluate a prior theory
rather than to generate a new one (i.e., it would have been better to use factor
analysis in a confirmatory way rather than in a purely exploratory way). In other
words, Swift may have explained 90% of the variability in his data at the cost of
retaining a bogus and nonsensical collection of factors. Armstrong ended the ar-
ticle by saying that conclusions based on factor analytic techniques may be un-
supported or misleading.
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TABLE 3
Armstrong’s (1967) Loadings on Four-Rotated Components for Original 11 Variables

Dimension

Thickness Intensity Length Width

Thickness 0.96 — — —
Width — — — 0.90
Length — — 0.99 —
Volume 0.85 — — —
Density — 0.96 — —
Weight 0.71 — — —
Total surface area 0.73 — — —
Cross-sectional area — — — 0.72
Total edge lengtha — — — —
Internal diagonal length — — 0.84 —
Cost per pound — 0.93 — —

Note. An em dash (—) = a loading not reported by Armstrong.
aTotal edge length was excluded from Swift’s findings presumably because it had no loadings greater

than 0.7.



ASSESSING THE DAMAGE

Whereas Armstrong wanted to argue that even a properly conducted factor analysis
can lead to the wrong conclusions, he instead inadvertently demonstrated how poor
choices regarding factor analytic techniques can lead to wrong conclusions.

There are at least six major methodological shortcomings in Armstrong’s ex-
ample that call into question his conclusions. Unfortunately, many modern appli-
cations of EFA exhibit several, and sometimes all, of these same shortcomings
(Fabrigar et al., 1999; Floyd & Widaman, 1995). These shortcomings are the facts
that Swift (a) confused EFA with PCA, (b) retained components with eigenvalues
greater than 1.0, (c) used orthogonal varimax rotation, (d) used an arbitrary cutoff
for high factor loadings, (e) used only one indicator for one of his components, and
(f) used several variables that violated the assumption that measured variables
(MVs) are linearly related to latent variables (LVs). Each of these deficiencies will
be addressed in turn.
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TABLE 4
Armstrong’s (1967) Loadings on Five-Rotated Components for 20 Variables

Dimension

Impressiveness Cohesiveness Intensity Transference Length

Thickness 0.92 — — — —
Width 0.80 — — — —
Length — — — — 0.92
Volume 0.98 — — — —
Density — — 0.96 — —
Weight 0.76 — — — —
Total surface area 0.95 — — — —
Cross-sectional area 0.74 — — — —
Total edge length 0.82 — — — —
Internal diagonal length — — — — 0.76
Cost per pond — — 0.71 — —
Tensile strength — 0.97 — — —
Hardness — 0.93 — — —
Melting point — 0.91 — — —
Resistivity — — — –0.93 —
Reflectivity — — — 0.91 —
Boiling point — 0.70 — — —
Specific heat — — –0.88 — —
Young’s modulus — 0.93 — — —
Molecular weight — — 0.87 — —

Note. An em dash (—) = a loading not reported by Armstrong.



EFA Versus PCA

EFA is a method of identifying unobservable LVs that account for the (co)vari-
ances among MVs. In the common factor model, variance can be partitioned
into common variance (variance accounted for by common factors) and unique
variance (variance not accounted for by common factors). Unique variance can
be further subdivided into specific and error components, representing sources
of systematic variance specific to individual MVs and random error of measure-
ment, respectively. Common and unique sources of variance are estimated sepa-
rately in factor analysis, explicitly recognizing the presence of error. Common
factors are LVs that account for common variance only as well as for
covariances among MVs.

The utility of PCA, on the other hand, lies in data reduction. PCA yields observ-
able composite variables (components), which account for a mixture of common
and unique sources of variance (including random error). The distinction between
common and unique variance is not recognized in PCA, and no attempt is made to
separate unique variance from the factors being extracted. Thus, components in
PCA are conceptually and mathematically quite different from factors in EFA.

A problem in the Armstrong (1967) article, as well as in much modern applied
factor analysis literature, is the interchangeable use of the terms factor analysis
and principal components analysis. Because of the difference between factors and
components just explained, these techniques are not the same. PCA and EFA may
seem superficially similar, but they are very different. Problems can arise when
one attempts to use components analysis as a substitute or approximation for factor
analysis. The fact that Swift wanted to describe his boxes on as few underlying di-
mensions as possible sounds at first like simple data reduction, but he wanted to
account for correlations among MVs and to lend the resultant dimensions a sub-
stantive interpretation. PCA does not explicitly model error variance, which ren-
ders substantive interpretation of components problematic. This is a problem that
was recognized over 60 years ago (Cureton, 1939; Thurstone, 1935; Wilson &
Worcester, 1939; Wolfle, 1940), but misunderstandings of the significance of this
basic difference between PCA and EFA still persist in the literature.4

Like many modern researchers using PCA, Armstrong confused the terminol-
ogy of EFA and PCA. In one respect, the reader is led to believe that Swift used
PCA because he refers to “principal components” and to “percent variance ac-
counted for” as a measure of fit. On the other hand, Armstrong also refers to “fac-
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4Other important differences between the two methods do not derive directly from the differences
in their intended purposes, but may nevertheless have a bearing on a given analysis. In factor analysis,
for example, models are testable, whereas in principal components analysis (PCA) they are not. PCA
typically overestimates loadings and underestimates correlations between factors (Fabrigar, Wegener,
MacCallum, & Strahan, 1999; Floyd & Widaman, 1995; Widaman, 1993).



tors,” which exist in the domain of factor analysis, and attempts to lend substantive
meaning to them. Researchers should clarify the goals of their studies, which in
turn will dictate which approach, PCA or EFA, will be more appropriate. An in-
vestigator wishing to determine linear composites of MVs that retain as much of
the variance in the MVs as possible, or to find components that explain as much
variance as possible, should use PCA. An investigator wishing to identify inter-
pretable constructs that explain correlations among MVs as well as possible
should use factor analysis. In EFA, a factor’s success is not determined by how
much variance it explains because the model is not intended to explain optimal
amounts of variance. A factor’s success is gauged by how well it helps the re-
searcher understand the sources of common variation underlying observed data.

The Number of Factors to Retain

One of the most important decisions in factor analysis is that of how many factors to
retain. The criteria used to make this decision depend on the EFA technique em-
ployed. If the researcher uses the noniterative principal factors technique,
communalities5 are estimated in a single step, most often using the squared multiple
correlation coefficients (SMCs).6 The iterative principal factors technique requires
the number of factors to be specified a priori and uses some approach to estimate
communalities initially (e.g., by first computing SMCs), but then enters an iterative
procedure. In each iteration, new estimates of the communalities are obtained from
the factor loading matrix derived from the sample correlation matrix. Those new
communality estimates are inserted into the diagonal of the correlation matrix and a
new factor loading matrix is computed. The process continues until convergence,
defined as the point when the difference between two consecutive sets of
communalities is below some specified criterion. A third common technique is
maximum likelihood factor analysis (MLFA), wherein optimal estimates of factor
loadings and unique variances are obtained so as to maximize the multivariate nor-
mal likelihood function, to maximize a function summarizing the similarity be-
tween observed and model-implied covariances. It should be emphasized that these
three methods represent different ways of fitting the same model—the common
factor model—to data.

Criteria used to determine the number of factors to retain fall into two broad cat-
egories depending on the EFA technique employed. If iterative or noniterative
principal factors techniques are employed, the researcher will typically make the
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5Communality represents the proportion of a variable’s total variance that is “common,” that is, ex-
plained by common factors.

6Squared multiple correlation coefficients are obtained by using the formula

where represents the diagonal elements of the inverse of the matrix.
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determination based on the eigenvalues of the reduced sample correlation matrix
(the correlation matrix with communalities rather than 1.0s in the diagonal). Un-
fortunately, there is no single, fail-safe criterion to use for this decision, so re-
searchers usually rely on various psychometric criteria and rules of thumb. Two
such criteria still hold sway in social sciences literature.

The first criterion—that used by Swift—is to retain as many factors (or compo-
nents) as there are eigenvalues of the unreduced sample correlation matrix greater
than 1.0. This criterion is known variously as the Kaiser criterion, the Kai-
ser–Guttman rule, the eigenvalue-one criterion, truncated principal components,
or the K1 rule. The theory behind the criterion is founded on Guttman’s (1954) de-
velopment of the “weakest lower bound” for the number of factors. If the common
factor model holds exactly in the population, then the number of eigenvalues of the
unreduced population correlation matrix that are greater than 1.0 will be a lower
bound for the number of factors. Another way to understand this criterion is to rec-
ognize that MVs are typically standardized to have unit variance. Thus, compo-
nents with eigenvalues greater than 1.0 are said to account for at least as much
variability as can be explained by a single MV. Those components with
eigenvalues below 1.0 account for less variability than does a single MV (Floyd &
Widaman, 1995) and thus usually will be of little interest to the researcher.

Our objection is not to the validity of the weakest lower bound, but to its appli-
cation in empirical studies. Although the justifications for the Kaiser–Guttman
rule are theoretically interesting, use of the rule in practice is problematic for sev-
eral reasons. First, Guttman’s proof regarding the weakest lower bound applies to
the population correlation matrix and assumes that the model holds exactly in the
population with m factors. In practice, of course, the population correlation matrix
is not available and the model will not hold exactly. Application of the rule to a
sample correlation matrix under conditions of imperfect model fit represents cir-
cumstances under which the theoretical foundation of the rule is no longer applica-
ble. Second, the Kaiser criterion is appropriately applied to eigenvalues of the
unreduced correlation matrix rather than to those of the reduced correlation matrix.
In practice, the criterion is often misapplied to eigenvalues of a reduced correlation
matrix. Third, Gorsuch (1983) noted that many researchers interpret the Kaiser cri-
terion as the actual number of factors to retain rather than as a lower bound for the
number of factors. In addition, other researchers have found that the criterion un-
derestimates (Cattell & Vogelmann, 1977; Cliff, 1988; Humphreys, 1964) or over-
estimates (Browne, 1968; Cattell & Vogelmann, 1977; Horn, 1965; Lee &
Comrey, 1979; Linn, 1968; Revelle & Rocklin, 1979; Yeomans & Golder, 1982;
Zwick & Velicer, 1982) the number of factors that should be retained. It has also
been demonstrated that the number of factors suggested by the Kaiser criterion is
dependent on the number of variables (Gorsuch, 1983; Yeomans & Golder, 1982;
Zwick & Velicer, 1982), the reliability of the factors (Cliff, 1988, 1992), or on the
MV-to-factor ratio and the range of communalities (Tucker, Koopman, & Linn,
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1969). Thus, the general conclusion is that there is little justification for using the
Kaiser criterion to decide how many factors to retain. Swift chose to use the Kaiser
criterion even though it is probably a poor approach to take. There is little theoreti-
cal evidence to support it, ample evidence to the contrary, and better alternatives
that were ignored.

Another popular criterion (actually a rule of thumb) is to retain as many factors
as there are eigenvalues that fall before the last large drop on a scree plot, which is
a scatter plot of eigenvalues plotted against their ranks in terms of magnitude. This
procedure is known as the subjective scree test (Gorsuch, 1983); a more objective
version comparing simple regression slopes for clusters of eigenvalues is known
as the Cattell–Nelson–Gorsuch (CNG) scree test (Cattell, 1966; Gorsuch, 1983).
The scree test may be applied to either a reduced or unreduced correlation matrix
(Gorsuch, 1983). An illustration of a scree plot is provided in Figure 1, in which
the eigenvalues that fall before the last large drop are separated by a line from those
that fall after the drop. Several studies have found the scree test to result in an accu-
rate determination of the number of factors most of the time (Cattell &
Vogelmann, 1977; Tzeng, 1992).

A method that was developed at approximately the same time as the Tom Swift
article was written is called parallel analysis (Horn, 1965; Humphreys & Ilgen,
1969). This procedure involves comparing a scree plot based on the reduced corre-
lation matrix (with SMCs on the diagonal rather than communalities) to one de-
rived from random data, marking the point at which the two plots cross, and
counting the number of eigenvalues on the original scree plot that lie above the in-
tersection point. The logic is that useful components or factors should account not
for more variance than one MV (as with the Kaiser criterion), but for more vari-
ance than could be expected by chance. The use of this method is facilitated by an
equation provided by Montanelli and Humphreys (1976) that accurately estimates
the expected values of the leading eigenvalues of a reduced correlation matrix

FACTOR ANALYSIS MACHINE 23

FIGURE 1 A scree plot for a
correlation matrix of 19 measured
variables. The data were obtained
from a version of the Tucker ma-
trix (discussed later) with addi-
tional variables. There are four
eigenvalues before the last big
drop, indicating that four factors
should be retained.



(with SMCs on the diagonal) of random data given sample size and number of
MVs. An illustration of parallel analysis is provided in Figure 2, in which the num-
ber of factors retained would be equal to the number of eigenvalues that lie above
the point marked with an X. This method has been found to exhibit fairly good ac-
curacy as well (Humphreys & Montanelli, 1975; Richman, as cited in Zwick &
Velicer, 1986), but it should nevertheless be used with caution (Turner, 1998).

The second broad class of methods used to determine the number of factors to re-
tain requires the use of maximum likelihood (ML) parameter estimation. Several
measures of fit are associatedwith MLFA, including the likelihood-ratio statistic as-
sociated with the test of exact fit (a test of the null hypothesis that the common factor
model with a specified number of factors holds exactly in the population) and the
Tucker–Lewis index (Tucker & Lewis, 1973). Because factor analysis is a special
case of structural equation modeling (SEM), the wide array of fit measures that have
been developed under maximum likelihood estimation in SEM can be adapted for
use in addressing the number-of-factors problem in MLFA. Users can obtain a se-
quence of MLFA solutions for a range of numbers of factors and then assess the fit of
these models using SEM-type fit measures, choosing the number of factors that pro-
vides optimal fit to the data without overfitting. Browne and Cudeck (1993) illus-
trated this approach using fit measures such as the root mean square error of
approximation (RMSEA; Steiger & Lind, 1980), expected cross-validation index
(ECVI; Cudeck & Browne, 1983), and test of exact fit. If Swift had known about
maximum likelihood estimation and the accompanying benefits, he could have per-
formed a series of analyses in which he retained a range of number of factors. Exami-
nation of the associated information about model fit could help him determine the
best solution, and thus an appropriate number of factors.

Swift did not use ML estimation, which means that he had to choose from
among the Kaiser criterion, the scree test, and parallel analysis. An appropriate ap-
proach would have been to examine the scree plot for the number of eigenvalues
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FIGURE 2 Superimposed scree
plots for correlation matrices of ran-
dom and real (expanded Tucker ma-
trix) data sets including 19
measured variables, N = 63. Four
eigenvalues fall before the point at
which the two plots cross, which in-
dicates that four factors should be
retained. Note that the eigenvalues
produced by Montanelli and
Humphreys’s (1976) procedure are
real numbers only up to the ninth
eigenvalue.



that fall before the last large drop and to conduct a parallel analysis. Both methods
have shown fairly good performance in the past. The determination of the appro-
priate number of factors to retain always has a subjective element, but when the
scree test and parallel analysis are combined with judgment based on familiarity
with the relevant literature and the variables being measured, an informed decision
can be made. When results provided by different methods are inconsistent or un-
clear as to the number of factors to retain, it is recommended that the researcher
proceed with rotation involving different numbers of factors. A judgment about
the number of factors to retain can be based on the interpretability of the resulting
solutions. Swift’s approach of using a single rule of thumb has a strong likelihood
of producing a poor decision.

Oblique Versus Orthogonal Rotation

A third important decision in factor analysis involves rotation. One of Thurstone’s
(1935, 1947) major contributions to factor analysis methodology was the recogni-
tion that factor solutions should be rotated to reflect what he called simple structure
to be interpreted meaningfully.7 Simply put, given one factor loading matrix, there
are an infinite number of factor loading matrices that could account for the variances
and covariances among the MVs equally as well. Rotation methods are designed to
find an easily interpretable solution from among this infinitely large set of alterna-
tives by finding a solution that exhibits the best simple structure. Simple structure,
according to Thurstone, is a way to describe a factor solution characterized by high
loadingsfordistinct (non-overlapping)subsetsofMVsandlowloadingsotherwise.

Many rotation methods have been developed over the years, some proving
more successful than others. Orthogonal rotation methods restrict the factors to be
uncorrelated. Oblique methods make no such restriction, allowing correlated fac-
tors. One of the most often used orthogonal rotation methods is varimax (Kaiser,
1958), which Swift presumably used in his analysis (Armstrong stated that Swift
used orthogonal rotation; it is assumed that varimax was the specific method em-
ployed because it was by far the most popular method at the time).

For reasons not made clear by Armstrong (1967), Swift suspected that the fac-
tors underlying the 11 MVs would be statistically independent of each other. Con-
sequently, Swift used orthogonal rotation. Whereas this may sound like a
reasonable approach, it is a strategy that is very difficult to justify in most cases.
We will show that it is a clearly inappropriate strategy in the present case.

The thickness, width, and length of the boxes in Armstrong’s artificial study
were determined in the following manner (see footnote 2 in Armstrong, 1967):
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7Factor loadings can be thought of as vector coordinates in multidimensional space. Hence, the ter-
minology used to describe rotation methods relies heavily on vector geometry.



(a) “Random integers from 1 to 4 were selected to represent width and thick-
ness with the additional provision that the width ≥ thickness.”

(b) “A random integer from 1 to 6 was selected to represent length with the pro-
vision that length ≥ width.”

(c) “A number of the additional variables are merely obvious combinations of
length, width, and thickness.”

There is no fundamental problem with generating dimensions in this fashion. How-
ever, doing so introduces substantial correlations among the dimensions, and in
turn among the underlying factors. Using Armstrong’s method with a sample size
of 10,000, similar length, width, and thickness data were generated and Pearson
correlation coefficients were computed. The three dimensions were moderately to
highly intercorrelated (rxy = .60, rxz = .22, ryz = .37). Of course, Tom had no way of
knowing that these dimensions were not independent of each other, but his igno-
rance is simply an additional argument in favor of using oblique rotation rather than
orthogonal rotation. Using orthogonal rotation introduced a fundamental contra-
diction between his method and the underlying structure of the data.

In general, if the researcher does not know how the factors are related to each
other, there is no reason to assume that they are completely independent. It is al-
most always safer to assume that there is not perfect independence, and to use
oblique rotation instead of orthogonal rotation.8 Moreover, if optimal simple struc-
ture is exhibited by orthogonal factors, an obliquely rotated factor solution will re-
semble an orthogonal one anyway (Floyd & Widaman, 1995), so nothing is lost by
using oblique rotation. Oblique rotation offers the further advantage of allowing
estimation of factor correlations, which is surely a more informative approach than
assuming that the factors are completely independent. It is true that there was no
completely satisfactory analytic method of oblique rotation at the time the Tom
Swift article was written, but Armstrong could have (and probably should have)
performed oblique graphical rotation manually. If Swift were plying his trade to-
day, he would have ready access to several analytic methods of oblique rotation,
including direct quartimin (Jennrich & Sampson, 1966) and other members of the
Crawford–Ferguson family of oblique rotation procedures (Crawford & Ferguson,
1970). For a thorough review of available factor rotation methods, see Browne
(2001).

26 PREACHER AND MACCALLUM

8It is interesting to note that Armstrong’s (1967) example strongly resembles Thurstone’s (1935,
1947) box problem, which also involved dimensions of boxes and an attempt to recover an interpretable
factor solution. Interestingly, Thurstone performed his factor analysis correctly, over 30 years before
Armstrong wrote the Tom Swift article. As justification for using oblique rotation, Thurstone pointed
out that a tall box is more likely than a short box to be thick and wide; thus, the basic dimensions may be
correlated to some extent. Use of orthogonal rotation in the box problem and similar designs such as
that constructed by Armstrong is simply unjustified.



Retaining Factor Loadings Greater Than
an Arbitrary Threshold

It is generally advisable to report factor loadings for all variables on all factors
(Floyd & Widaman, 1995). For Swift’s first analysis, he chose to interpret factor
loadings greater than 0.7 as “large.” He reported only loadings that exceeded this
arbitrary threshold. Following such rules of thumb is not often the best idea, espe-
cially when better alternatives exist and when there is no logical basis for the rule of
thumb. As a researcher trying to establish the relationships of the latent factors to
the observed variables, Swift should have been interested in the complete pattern of
loadings, including low loadings and mid-range loadings, not simply the ones arbi-
trarily defined as large because they were above 0.7. Moreover, depending on the
field of study, large may mean around 0.3 or 0.4. It would have been more informa-
tive for the reader to have seen the other loadings, but Swift did not report them. It is
not clear why he chose the threshold he did, but it is clear that no absolute cutoff
point should have been defined.

In addition, because factor loadings will vary due to sampling error, it is unrea-
sonable to assume that loadings that are high in a single sample are correspond-
ingly high in other samples or in the population. Therefore, there is no reasonable
basis for reporting only those sample loadings that lie beyond a certain threshold.
Recent developments in factor analysis have led to methods for estimating stan-
dard errors of factor loadings (Browne, Cudeck, Tateneni, & Mels, 1998;
Tateneni, 1998), which allow researchers to establish confidence intervals and
conduct significance tests for factor loadings.

In general, it is advisable to report all obtained factor loadings so that readers can
make judgments for themselves regarding which loadings are high and which are
low. Additionally, because the necessary technology is now widely available
(Browne et al., 1998), it is also advisable to report the standard errors of rotated load-
ings so that readers may gain a sense of the precision of the estimated loadings.

Using a Single Indicator for a Latent Variable

In factor analysis, a latent variable that influences only one indicator is not a com-
mon factor; it is a specific factor. Because common factors are defined as influenc-
ing at least two manifest variables, there must be at least two (and preferably more)
indicators per factor. Otherwise, the latent variable merely accounts for a portion of
unique variance, that variability which is not accounted for by common factors.
One of Swift’s components—cost per pound—is found to have only one indicator
(the MV cost per pound), even after increasing the set of MVs to 20.

Not only should Swift have included more indicators for cost per pound, but
also for density, as it had only two indicators. In fact, as we shall see in the results
of a later analysis, the cost per pound MV correlates highly with the density and
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weight MVs and loads highly on the same factor as density and weight. Swift
would have been safer had he considered all three MVs to be indicators of the same
common factor (call it a density/cost per pound factor). Because Armstrong did
not supply his method for determining cost per pound, we do not know for certain
how it is related to density, but the evidence suggests that the two MVs are related
to the same common factor. Fabrigar et al. (1999) recommended that at least four
indicators be included per factor. In empirical studies using exploratory factor
analysis, the researcher may not always have enough information to ensure that
each factor has an adequate number of indicators. However, there should be some
rough idea of what the MVs are intended to represent, which should allow the re-
searcher to make an educated decision about which (and how many) MVs should
be included in the analysis.

Violation of the Linearity Assumption

One of the assumptions underlying the common factor model is that the MVs are
linearly dependent on the LVs (not that MVs ought to be linearly related to other
MVs). Of course, in the real world few variables are exactly linearly related to other
variables, but it is hoped that a linear model captures the most important aspects of
the relationship between LVs and MVs.

A potentially major problem with Armstrong’s analysis involves the issue of
linearity. The Tom Swift data include three MVs that reflect the three basic dimen-
sional factors of thickness, width, and length. However, the data also include many
variables that are nonlinear functions of these three basic dimensional variables. It
can be assumed that these MVs are related to the basic dimensional factors in a
nonlinear way. For example, the thickness and width MVs are linearly related to
the thickness and width LVs. Given that assumption, it is also safe to conclude that
the volume MV (xyz; see Table 1) is not linearly related to any of the three factors
for which it is assumed to serve as an indicator. Similar violations of the linearity
assumption exist for most of the other MVs included in Swift’s analysis. Thus, it
was not reasonable of Armstrong to criticize the methodology for Swift’s failure to
exactly recover five dimensions when there were inherent incompatibilities be-
tween the model (linearity assumed) and the data (nonlinear). Violation of the lin-
earity assumption does not completely compromise the chances of recovering an
interpretable factor solution (e.g., Thurstone, 1940), but it may have contributed to
the recovery of poor or uninterpretable factor solutions in the past, including that
reported by Tom Swift.

Summary of Tom Swift’s Assessment

Armstrong’s article suffers from several misconceptions. First, even though
Armstrong wanted us to believe that the underlying factor structure was clear, it
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clearly was not. Of the five latent factors proposed by Armstrong, three were highly
intercorrelated. Of the remaining two, one had only one indicator and the other had
only two. In addition, there were strong nonlinear relationships between factors and
mostof theMVs,constitutingaviolationofabasicassumptionof thecommonfactor
model. Second, Swift’s analysis followed the common pattern of choosing PCA, re-
tainingfactorswitheigenvaluesgreater than1.0,andusingorthogonalvarimaxrota-
tion. In addition, he chose an arbitrary cutoff for high loadings. These misconcep-
tions and uses of dubious techniques describe a recipe for ambiguous results.

It should be pointed out that the Little Jiffy method does not necessarily always
produce distorted or ambiguous results, nor does it always fail to recover strong
underlying factors. In fact, there are certain circumstances under which Little Jiffy
might work quite well. For example, when the communalities of the MVs are all
high (and therefore unique variances are all low), PCA and EFA yield similar re-
sults. The Kaiser criterion will at least occasionally yield a correct estimate of the
number of factors to retain. In addition, when the underlying LVs are nearly or
completely uncorrelated, orthogonal rotation can yield undistorted, interpretable
results. However, this combination of circumstances is probably rather rare in
practice and, in any case, the researcher cannot know a priori if they hold.

In the end, Armstrong defeated the purpose of his own article. Rather than dem-
onstrate the general failure of factor analysis, he illustrated the necessity of using
the correct methods. A series of poor choices in technique led to confusing results
and erroneous conclusions that were unfairly generalized to all studies employing
factor analysis.

REPAIRING THE MACHINE

We repeated Tom Swift’s “factor analysis” using an analogous data set. Swift’s
data set was unavailable. Following methods analogous to those used by
Armstrong (1967), Ledyard Tucker (personal communication, 1970) generated a
population correlation matrix for Swift’s original 11 variables. That correlation
matrix, hereafter referred to as the Tucker matrix, was used to investigate the rele-
vance of the choice of factor analysis techniques to the results obtained by Swift.

Swift’s findings were first verified by conducting a PCA on the Tucker matrix,
retaining components for eigenvalues greater than 1.0, and using varimax rotation.
All factor loadings from the present analysis, as well as the reported loadings from
Swift’s analysis, are presented in Table 5.

Using the Tucker matrix, three principal components were retained, just as in
Swift’s analysis. Factor loadings from the Tucker data were only slightly different
from those reported by Swift. If 0.65 were used as the criterion for “high loading”
instead of 0.7 (Swift’s criterion), almost exactly the same pattern of high loadings
is obtained. Inspection of the full set of loadings obtained from the Little Jiffy anal-
ysis of the Tucker matrix reveals that Swift’s choice of 0.7 as the cutoff point was a
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questionable decision because it resulted in ignoring some substantial loadings. As
seen in Table 5, some of the other loadings were very close to, or above, Swift’s
cutoff (e.g., those for cross-sectional area on the first component and surface area
and edge length on the second).

Swift’s four-component solution was also replicated using the Tucker data.
Loadings are presented in Table 6. Using Swift’s criterion of 0.7 as a high loading,
exactly the same loading pattern was obtained. Again, several loadings ap-
proached the arbitrary threshold, such as those for edge length on the first, second,
and third components and weight on the fourth, calling into question the use of an
arbitrary cutoff for loadings.

Performing the Analysis Correctly

The Tucker matrix was analyzed again using more justifiable methods. These tech-
niques included the use of factor analysis rather than PCA, using multiple methods
to determine the proper number of factors to retain, and using oblique rather than
orthogonal rotation. Ordinary least squares (OLS; equivalent to iterative principal
factors) parameter estimation was used rather than maximum likelihood (ML) esti-
mation, which may be preferable. ML estimation will not work in this situation be-
cause the population matrix supplied by Tucker is singular. The minimization func-
tion associated with ML estimation involves computing the logarithm of the
determinant of the correlation matrix, a value that is undefined in the case of a sin-
gular matrix.
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TABLE 5
Loadings on Three Principal Components Versus Tom Swift’s Loadings

Rotated Factor Pattern

Component 1 Component 2 Component 3

Tucker Swift Tucker Swift Tucker Swift

Thickness 0.95 0.94 0.09 — –0.02 —
Width 0.65 0.74 0.54 — –0.02 —
Length 0.06 — 0.95 0.95 0.03 —
Volume 0.88 0.93 0.42 — 0.00 —
Density 0.03 — –0.02 — 0.94 0.96
Weight 0.71 0.72 0.29 — 0.51 —
Total surface area 0.80 0.86 0.59 — 0.00 —
Cross-sectional area 0.51 — 0.81 0.74 0.00 —
Total edge length 0.65 0.70 0.76 — 0.00 —
Internal diagonal length 0.46 — 0.88 0.88 0.01 —
Cost per pound –0.01 — –0.01 — 0.91 0.92

Note. An em dash (—) = a loading not reported by Armstrong.



Results using eigenvalues from both unreduced and reduced9 versions of the
Tucker matrix are presented in Table 7. Eigenvalues from the unreduced matrix
are the appropriate values to examine when the Kaiser criterion is used. Inspection
of Table 7 reveals that use of Kaiser’s criterion would erroneously suggest that
three factors be retained. The results of a scree test and parallel analysis using the
eigenvalues from the reduced correlation matrix may be inferred from the plot in
Figure 3. Random eigenvalues for use in parallel analysis were generated using an
equation provided by Montanelli and Humphreys (1976). Both the scree test and
parallel analysis indicate that four factors should be retained.

In summary, the various criteria for number of factors are not completely con-
sistent in this case, but they do agree closely. The Kaiser criterion suggests that at
least three factors should be retained, whereas the scree test and parallel analysis
both suggest four. Although there is some convergence of these criteria on four
factors as an appropriate number, a final resolution would depend on the
interpretability of rotated solutions.
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TABLE 6
Loadings on Four-Principal Components Versus Tom Swift’s Loadings

Rotated Factor Pattern

Component 1 Component 2 Component 3 Component 4

Tucker Swift Tucker Swift Tucker Swift Tucker Swift

Thickness 0.96 0.96 0.09 — 0.17 — –0.03 —
Width 0.38 — 0.24 — 0.89 0.90 0.01 —
Length 0.11 — 0.99 0.99 0.13 — 0.01 —
Volume 0.84 0.85 0.35 — 0.38 — –0.01 —
Density 0.04 — –0.01 — –0.03 — 0.94 0.96
Weight 0.71 0.71 0.25 — 0.25 — 0.50 —
Total surface area 0.72 0.73 0.48 — 0.50 — –0.01 —
Cross-sectional area 0.34 — 0.61 — 0.70 0.72 0.01 —
Total edge length 0.57 — 0.65 — 0.49 — 0.00 —
Internal diagonal length 0.41 — 0.81 0.84 0.41 — 0.00 —
Cost per pound –0.01 — –0.01 — 0.01 — 0.91 0.93

Note. An em dash (—) = a loading not reported by Armstrong.

9Because a singular matrix has no inverse, a small constant (.001) was added to each diagonal ele-
ment before inversion (Tucker, personal communication). In addition to using the method described
earlier, squared multiple correlation coefficients (SMCs) were also estimated by using a procedure de-
veloped by Tucker, Cooper, and Meredith (1972). The SMCs found by both methods were identical to
two decimal places. Given that the SMCs are so similar, it makes little difference which are used as
starting values in iterative least squares factor analysis (Widaman & Herringer, 1985), so those from
the first method were used.



As explained earlier, we consider Swift’s choice of orthogonal varimax rotation
to be inadvisable because it assumes the factors to be uncorrelated. The alternative
is oblique rotation to simple structure, for which there are many widely accepted
methods available. We used direct quartimin rotation. Factor loadings for the ro-
tated four-factor solution are presented in Table 8. Judging by the highest factor
loadings for the basic five variables (thickness, width, length, density, and cost per
pound), the factors can be interpreted as thickness, width, length, and density/cost
per pound, respectively. Notice that the thickness, width, and length MVs have
high loadings only on factors of the same name. Volume, surface area, edge length,
and diagonal length have non-zero loadings on the three dimensional factors, and
cross-sectional area has non-zero loadings on factors corresponding to the two di-
mensions that contributed to it (width and length). The cost per pound, density, and
weight MVs all have non-zero loadings on the last factor (density/cost per pound).

32 PREACHER AND MACCALLUM

TABLE 7
Eigenvalues of Unreduced and Reduced Versions of the Tucker Matrix

Unreduced Reduced

1 6.8664 6.8457
2 1.9765 1.6541
3 1.1035 1.0778
4 0.5283 0.5168
5 0.3054 0.0860
6 0.1436 0.0082
7 0.0685 –0.0013
8 0.0144 –0.0023
9 0.0024 –0.0031

10 0.0012 –0.0037
11 0.0008 –0.1333

FIGURE 3 Superimposed scree
plots for eigenvalues of random
and real data sets including 11
measured variables, N = 63. There
are four eigenvalues before the
last big drop, indicating that four
factors should be retained. It is ev-
ident by using parallel analysis
that four factors should be re-
tained.



The only unexpected finding is that weight does not load particularly highly on
width and length.10 Nevertheless, it must be acknowledged that the direct
quartimin rotated solution is much more interpretable than the varimax rotated so-
lution reported by Armstrong. Furthermore, this solution corresponds well to the
known structure underlying these data.

A five-factor solution was also subjected to rotation. The five-factor solution
introduced a weak factor with modest (.2 to .4) loadings for the volume, weight,
surface area, and cross-sectional area measured variables, each of which repre-
sents some multiplicative function of length, width, and thickness. Retention of
this factor did not enhance interpretability. Furthermore, the presence of a factor
with only weak loadings can be considered a sign of overfactoring. Based on the
interpretability of these rotated solutions, it was decided that it would be most ap-
propriate to retain four factors.

One of the advantages associated with using oblique rotation is that factor cor-
relations are estimated. They are presented in Table 9. As might be guessed from
the dependency among the three primary dimensional variables demonstrated ear-
lier, the thickness, width, and length factors are moderately to highly
intercorrelated. The density/cost per pound factor, however, is not highly corre-
lated with the other three. These correlations among factors reinforce the validity
of the choice of an oblique rotation method, and also reveal why solutions obtained
using orthogonal rotation were somewhat distorted.
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TABLE 8
Direct Quartimin Rotated Loadings for the Four-Factor Solution

Factor 1 Factor 2 Factor 3 Factor 4

Thickness (x) 1.06 –0.10 –0.10 –0.04
Width (y) 0.03 1.02 –0.12 0.00
Length (z) –0.05 –0.08 1.06 0.00
Volume 0.81 0.17 0.13 –0.03
Density (d) –0.04 –0.02 –0.01 1.00
Weight 0.60 0.11 0.09 0.47
Total surface area 0.60 0.33 0.24 –0.02
Cross-sectional area 0.00 0.74 0.36 0.00
Total edge length 0.39 0.35 0.46 –0.02
Internal diagonal length 0.21 0.26 0.69 –0.01
Cost per pound (c) –0.03 –0.01 –0.01 0.75

Note. In obliquely rotated solutions, factor loadings greater than 1.0 are not only admissible, but
also routinely encountered.

10However, because of the way in which the measured variables were generated, weight is essen-
tially a third-order function of thickness multiplied by density. Thus, it is the variable most in violation
of the linearity assumption.



AN EMPIRICAL EXAMPLE

We consider it important to demonstrate that the consequences of poor choices out-
lined in the Tom Swift example also apply in practice, when the object is to under-
stand the number and nature of factors underlying real psychological data. For this
purpose, we selected the “24 abilities” data set supplied by Holzinger and
Swineford (1939). This data set is widely available, and has been used frequently as
an example (e.g., Browne, 2001; Gorsuch, 1983; Harman, 1967). The data set con-
sists of 24 mental ability tests administered to N = 145 students in an Illinois ele-
mentary school circa 1937. For convenience we used the corrected Holzinger and
Swineford (1939) correlation matrix supplied by Gorsuch (1983, p. 100). We com-
pared the success of the Little Jiffy approach and the recommended approach in de-
termining the factor structure underlying these 24 tests.

Determining the Number of Factors

First, eigenvalues of the unreduced correlation matrix were obtained (see Table
10). Using the Kaiser criterion, five factors should be retained because there are
five eigenvalues greater than 1.0. The recommended approach entails using several
criteria to converge on an appropriate number of factors. The scree plot of
eigenvalues of the reduced correlation matrix (see Figure 4) shows a marked drop
from the fourth eigenvalue to the fifth eigenvalue, with no appreciable difference
between the fifth and sixth eigenvalues, indicating that four factors ought to be re-
tained. Parallel analysis, the results of which may also be inferred from Figure 4, in-
dicates that four factors should be retained.

Choosing a Model

The use of Little Jiffy entails using PCA rather than common factor analysis and or-
thogonal rather than oblique rotation. It has been argued earlier that use of PCA is
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TABLE 9
Factor Correlations for the Direct Quartimin Rotated Four-Factor Solution

Thickness Width Length Density

Thickness 1.00
Width 0.65 1.00
Length 0.42 0.57 1.00
Density 0.10 0.05 0.04 1.00



TABLE 10
Eigenvalues of Unreduced and Reduced Versions of Gorsuch’s (1983) Version

of the Holzinger and Swineford (1939) Matrix

Unreduced Reduced

1 8.163 7.691
2 2.065 1.641
3 1.701 1.215
4 1.522 0.942
5 1.014 0.421
6 0.918 0.400
7 0.891 0.339
8 0.837 0.296
9 0.771 0.232

10 0.727 0.190
11 0.643 0.107
12 0.538 0.039
13 0.535 0.021
14 0.498 –0.022
15 0.464 –0.044
16 0.405 –0.069
17 0.397 –0.100
18 0.343 –0.122
19 0.328 –0.133
20 0.317 –0.150
21 0.290 –0.218
22 0.263 –0.233
23 0.200 –0.252
24 0.171 –0.261

FIGURE 4 Superimposed scree
plots for eigenvalues of random and
real data sets for the 24 ability vari-
ables (N = 145) taken from
Holzinger and Swineford (1939),
corrected by Gorsuch (1983). There
are four eigenvalues before the last
big drop, indicating that four factors
should be retained. It is evident by
using parallel analysis that four fac-
tors should be retained.
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inappropriate in situations such as the current one, so it would usually not be worth-
while to lend meaning to components. Nevertheless, for the sake of comparison the
Holzinger and Swineford matrix was submitted to both PCA and EFA. A
five-component PCA solution and a four-factor EFA solution were obtained.

Choosing a Rotation Method

The choice of rotation method is crucial to a clear understanding of the factor struc-
ture underlying the Holzinger and Swineford data set. The five-component PCA
solution was submitted to orthogonal varimax rotation to remain consistent with
the Little Jiffy method, whereas the four-factor EFA solution was submitted to
oblique direct quartimin rotation. Rotated loadings for the two solutions are pre-
sented in Tables 11 and 12. Factor correlations for the four-factor oblique solution
are presented in Table 13. The factor correlations in the oblique solution are consis-
tently greater than zero, demonstrating not only why orthogonal rotation methods
are unnecessarily restrictive, but also calling into question the legitimacy of inter-
preting loadings from an orthogonal rotation.

Interpreting the Results

It has already been demonstrated that the attempt to lend substantive interpretations
to components obtained from PCA is inappropriate. Components do not represent
latent variables that account for covariances among observed variables. Rather,
they represent composite variables that account for observed variances, making no
distinction between common and unique variance. However, again for the sake of
comparison, let us consider the interpretation of the rotated component loadings in
Table 11 as if this solution reflected influences of underlying latent variables.

A comparison of the factor solution in Table 12 and the components solution
in Table 11 reveals resemblance between the four factors and the first four com-
ponents. The fifth component appears to borrow items from components resem-
bling the memory/recognition and spatial/visual factors reported by Holzinger
and Swineford (1939) and Gorsuch (1983). However, there are important differ-
ences between the EFA and PCA solutions. Most significantly, the simple struc-
ture in the factor solution is clearly superior to that in the components solution,
as indicated by the magnitude of the small loadings in each solution. The small
loadings in the factor solution are quite consistently, and often substantially,
smaller than the corresponding small loadings in the components solution. This
distinction suggests better simple structure and thus more precise definition of
the constructs in the factor solution than in the components solution. Further-
more, the orthogonal rotation prescribed by the Little Jiffy approach forces these
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components to be uncorrelated. Together, the overfactoring and orthogonality
characterizing the PCA solution render the results difficult to interpret meaning-
fully. Interpretation of an obliquely rotated EFA solution is, however, appropri-
ate. Table 12 shows a loading pattern quite similar to that reported by Holzinger
and Swineford (1939) and Gorsuch (1983), with factors clearly corresponding to
verbal ability, speed/numerical ability, spatial/visual, and memory/recognition
factors, respectively.

Overall, the factor solution is clearly superior. The components solution is dis-
torted by the retention of the fifth component, causing difficulty in interpretation.
This solution also displays poorer simple structure than the factor solution and
gives the user the misleading impression that the underlying constructs are inde-
pendent. These failings are attributable to the use of poor technique. As illustrated
both with Tom Swift’s data and with the empirical data from Holzinger and
Swineford (1939), such failings might well be avoided through better decisions
about methods.
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TABLE 11
Loadings on Five-Orthogonal Components for the Holzinger and Swineford (1939) Data

Component 1 Component 2 Component 3 Component 4 Component 5

1 0.17 0.20 0.70 0.08 0.18
2 0.08 0.10 0.65 0.09 –0.15
3 0.79 0.22 0.16 0.10 –0.01
4 0.81 0.08 0.17 0.18 0.08
5 0.85 0.16 0.14 0.04 0.08
6 0.65 0.24 0.27 0.03 0.19
7 0.85 0.06 0.14 0.16 0.09
8 0.18 0.84 –0.11 0.09 0.00
9 0.20 0.63 0.06 0.29 0.14

10 0.03 0.80 0.21 0.03 –0.02
11 0.20 0.62 0.41 –0.05 0.14
12 0.22 0.08 0.00 0.70 0.12
13 0.09 0.10 0.13 0.74 –0.06
14 0.06 0.09 0.49 0.55 0.14
15 0.17 0.26 –0.05 0.56 0.45
16 –0.00 0.40 0.29 0.37 0.37
17 0.16 0.16 0.09 0.15 0.80
18 0.44 0.09 0.47 0.35 –0.04
19 0.19 0.50 0.43 0.16 0.06
20 0.43 0.12 0.38 0.25 0.24
21 0.43 0.23 0.51 0.18 0.14
22 0.40 0.54 0.11 0.16 0.27
23 0.16 –0.09 0.56 –0.06 0.50
24 0.26 0.07 0.61 0.00 0.11



TABLE 12
Loadings on Four-Oblique Factors for the Holzinger and Swineford (1939) Data

Factor 1 Factor 2 Factor 3 Factor 4

1 0.07 0.01 0.69 0.06
2 0.05 –0.01 0.44 0.03
3 0.78 0.11 0.01 –0.04
4 0.81 –0.06 0.00 0.07
5 0.85 0.05 0.02 –0.09
6 0.57 0.14 0.20 –0.02
7 0.87 –0.09 –0.03 0.07
8 0.07 0.87 –0.17 0.06
9 0.08 0.44 0.05 0.27

10 –0.10 0.69 0.25 –0.01
11 0.09 0.46 0.46 –0.08
12 0.11 –0.02 –0.09 0.57
13 0.01 –0.02 0.00 0.54
14 –0.06 –0.07 0.33 0.51
15 0.04 0.13 –0.10 0.63
16 –0.11 0.23 0.23 0.45
17 0.07 0.06 0.13 0.36
18 0.33 –0.04 0.29 0.24
19 0.07 0.34 0.34 0.14
20 0.32 –0.03 0.28 0.25
21 0.30 0.09 0.40 0.15
22 0.29 0.42 0.03 0.22
23 0.08 –0.16 0.55 0.07
24 0.18 –0.04 0.50 0.01

TABLE 13
Factor Correlations for the Oblique Four-Factor Solution for the Holzinger

and Swineford (1939) Data

Factor 1 Factor 2 Factor 3 Factor 4

Factor 1 1.00
Factor 2 0.30 1.00
Factor 3 0.40 0.25 1.00
Factor 4 0.43 0.32 0.37 1.00

Note. All correlations in this matrix are significantly greater than zero.
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CONCLUSIONS

These demonstrations have shown that the choices involved in factor analysis make
a difference. A major benefit of making appropriate decisions in factor analysis is a
much improved chance to obtain a clear, interpretable set of results. On the other
hand, the consequences of making poor decisions often include erroneous, uninter-
pretable, or ambiguous results. Unfortunately, the methods used by Swift are still
commonly used in applied EFA studies today.

As stated earlier, we chose to use the Armstrong article as a surrogate for many
EFA studies in the social sciences using similar methods of analysis. Many of
these studies undoubtedly suffer the same consequences as those that occurred in
Swift’s results. A reviewer pointed out that Armstrong’s goals were different than
those of many applications of EFA in modern literature. The context of
Armstrong’s article is that of theory development. Many modern applications of
EFA, such as those focusing on scale development, assume theory already exists
and use it as a basis for interpreting factor solutions. We used Armstrong’s article
as a case in point, but our criticisms apply just as much to modern applications of
EFA as to Armstrong’s analysis. Regardless of the researcher’s reasons for using
EFA, the methodological issues are same, and therefore the consequences of the
researcher’s choices will be the same.

Three recommendations are made regarding the use of exploratory techniques
like EFA and PCA. First, it is strongly recommended that PCA be avoided unless
the researcher is specifically interested in data reduction.11 If the researcher wishes
to identify factors that account for correlations among MVs, it is generally more
appropriate to use EFA than PCA. Detractors of common factor analysis often
raise the specter of factor indeterminacy—the fact that infinitely many sets of
unobservable factor scores can be specified to satisfy the common factor model
(for an overview of the indeterminacy issue, see Mulaik, 1996; Steiger, 1979).
However, factor indeterminacy does not pose a problem for the interpretation of
factor analytic results in most circumstances because factor scores need not be
computed in the first place, as in the Tom Swift example. If the purpose is to com-
pute factor scores to represent individual differences in a latent variable, and then
to use those factor scores in subsequent analyses, SEM can usually be employed
instead, thus eliminating the need to obtain factor scores.

Second, it is recommended that a combination of criteria be used to determine
the appropriate number of factors to retain, depending on the EFA method used
(e.g., OLS vs. ML). Use of the Kaiser criterion as the sole decision rule should be
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avoided altogether, although this criterion may be used as one piece of information
in conjunction with other means of determining the number of factors to retain.

Third, it is recommended that the mechanical use of orthogonal varimax rota-
tion be avoided.12 The use of orthogonal rotation methods, in general, is rarely de-
fensible because factors are rarely if ever uncorrelated in empirical studies. Rather,
researchers should use oblique rotation methods. When used appropriately, EFA is
a perfectly acceptable method for identifying the number and nature of the under-
lying latent variables that influence relationships among measured variables.
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