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1 Introduction

An effective action used to describe stress tensor exchanges in conformal field theories
(CFT) has been recently constructed by Haehl, Reeves and Rozali [1, 2]. In two dimensions,
it reads

W = − c

192π

∫
d2x εi (δij�− 2∂i∂j)�εj +O(ε3), (1.1)

where εi(x) is known as the reparametrization mode, and δij is the flat euclidean background
metric. The reparametrization mode is interpreted as the generator of the infinitesimal
transformation

δgij = ∂iεj + ∂jεi − δij ∂kεk, (1.2)

resulting from a change of coordinate followed by a Weyl rescaling of the background
metric. When εi(x) is a conformal Killing vector field, it is the symmetry parameter of
a conformal transformation and the effective action (1.1) correspondingly vanishes. By
contrast, generic configurations εi(x) do not generate spacetime symmetries and acquire
a nonzero action due to the Weyl anomaly. Hence one can think of εi(x) as a pseudo-
Goldstone mode resulting from broken Weyl invariance. The effective action (1.1) admits
a nonlinear extension known as the Alekseev-Shatashvili action [3]. Quite remarkably,
Cotler and Jensen showed that this nonlinear extension describes pure gravity in three
dimensions with anti-de Sitter (AdS) asymptotics [4], whose symmetries are well-known
to be that of a two-dimensional CFT [5]. Through this specific example, they therefore
provided a completion of (1.1). The first goal of the present work will be to explain the
origin and role of Alekseev-Shatashvili action from a CFT perspective.

The primary interest of the reparametrization mode formalism is that it provides an
efficient way to compute Virasoro identity blocks, i.e., to evaluate the contributions to cor-
relation functions coming from stress tensor exchanges between pairs of external primary
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fields. To achieve this, one first introduces a set of bilocal vertex operators that are closely
related to reparametrized primary two-point functions. Within the reparametrization for-
malism, these bilocal operators are used as effective couplings between a pair of identical
primary operators and the reparametrization mode itself. One can use them together with
the dynamics dictated by the effective action (1.1) to compute Virasoro identity blocks.
Agreement with previously known results at large central charge [6–9] was found in [4],
thereby demonstrating the utility of the reparametrization mode formalism. Finally, a
partial justification of the above procedure was provided through the identification of the
reparametrization mode with the shadow operator of the stress tensor [2].

The reparametrization mode formalism builds on a series of works aiming at a uni-
versal description of out-of-time-order correlators (OTOCs) in maximally chaotic quantum
systems [1, 4, 10–13]. The exponential Lyapunov behavior displayed by OTOCs in such sys-
tems being universally controlled by their temperature [14], it was therefore natural to look
for a universal effective description in terms of reparametrization modes. Agreement was
indeed found between this effective description and more conventional CFT methods [1].
Although this is not the primary focus of the present paper, the strong connection between
maximal chaos and the AdS/CFT correspondence is worth mentioning as it appears that
holographic CFTs are maximally chaotic [15–22].

The aim of the present work is to clarify the origin of the reparametrization mode
formalism. In particular, we provide a derivation of the nonlinear version of (1.1) from
first principles, starting from the Polyakov action as the universal generating functional for
stress tensor correlations in any 2d CFT [23]. We review basic properties of the Polyakov
action in section 2, and describe in section 3 how it reduces to the Alekseev-Shatashvili
action when the background metric, considered as a source for the stress tensor, is generated
from the flat metric by a finite version of (1.2). We show that this nonlinear extension of
the effective action (1.1) should still be viewed as a generating functional for (holomorphic)
stress tensor correlations on manifolds related to the plane by conformal transformations,
with the derivative of the reparametrization mode acting as the corresponding source.1 In
section 4, we revisit the computation of Virasoro identity blocks in the reparametrization
formalism. In particular, we show that the prescriptions given in [2, 4, 25] naturally emerge
when evaluating Feynman diagrams involving stress tensor exchanges between external
pairs of identical primary operators. This provides a new justification for these otherwise
mysterious prescriptions, independent from the earlier one based on the shadow operator
formalism and originally presented in [2]. We end with a discussion of the results, and
point towards possible further developments and applications of the formalism described
here. We also comment on connections to theories of gravity and holography.

Conventions. We work in euclidean signature. We use the shorthand notations T ≡
−2πTzz for the holomorphic component of the stress tensor, δ(z) ≡ δ(2)(z, z̄) for the delta
distribution normalized as

∫
d2z δ(z) = 1, and zij ≡ zi− zj for relative distances. To avoid

1A similar use of the reparametrization mode as a source for the stress tensor has been made in the
context of T T̄ deformations, however without reference to a nonlinear action for the reparametrization
mode [24].
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clutter, we sometimes suppress the functional dependence on coordinate labels, and write
expressions such as ∂̄ε1 ≡ ∂z̄1ε(z1, z̄1). We make repetitive use of the magic distributional
identity

∂z̄

(1
z

)
= 2πδ(z) , (1.3)

which will be our main computational weapon.

2 The Polyakov action

The starting point for the construction of the effective action (1.1) in [2] was the generating
functional for the connected stress tensor two-point function on the complex plane,

W [δg] = 1
8

∫
d2x d2y δgij(x)δgmn(y)〈Tij(x)Tmn(y)〉plane +O(δg3) , (2.1)

where the metric perturbation δgij is a source for the stress tensor Tij . Upon insertion
of (1.2), it was shown to reduce to the effective action (1.1) in terms of the reparametriza-
tion mode εi [2]. It is reasonable to expect that its nonlinear extension can be obtained
by considering the generating functional of all connected stress tensor correlators. This
generating functional appears to be universal in two dimensions and has been derived in
closed form long ago by Polyakov [23], which we briefly review in this section.

Stress tensor correlation functions on the plane are fully constrained by conformal
symmetry, the only dependence on a given theory occurring through the central charge c.
Up to its value, the generating functional W [gij ] of all connected stress tensor correlators
is therefore universal. Polyakov’s starting point for its construction is the anomalous trace
of the stress tensor expectation value on a space with arbitrary background metric gij and
curvature R,

c

24πR = gij〈Tij〉 = − 2
√
g
gij

δW

δgij
, (2.2)

where the last equality follows from the very definition of the generating functional W [gij ].
Integrating this equation, Polyakov obtained [23]

W [gij ] = − c

96π

∫
d2x d2y

√
g(x)

√
g(y)R(x)G(x, y)R(y) (2.3a)

= − c

96π

∫
d2x

√
g(x)R(x) 1

�
R(x), (2.3b)

where G(x, y) is the Green function solution to

�G(x, y) = δ(2)(x− y)√
g(x)

. (2.4)

The Polyakov action (2.3) is manifestly nonlocal in the background metric gij that acts as
a source for the stress tensor. It can be put in an alternative form through the introduction
of an auxiliary variable φ solving

�φ = R, (2.5)
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such that the generating functional coincides with the action of a Liouville theory,

W [gij ] = − c

48π

∫
d2x

√
g(x)

(1
2(∂φ)2 + φR

)
. (2.6)

We stress that the Liouville field φ is not an independent variable, but rather a nonlocal
functional of the metric through (2.5). The stress tensor expectation value may be com-
puted from (2.6) by functional differentiation, and is found to coincide with the classical
Liouville stress tensor

〈Tij〉 = − 2
√
g

δW

δgij
= c

24π

[1
2∂iφ∂jφ−∇i∇jφ+ gij

(
�φ− 1

4(∂φ)2
)]

= T φij . (2.7)

Consistently, one recovers the trace anomaly which we started from,

gij〈Tij〉 = c

24π R . (2.8)

It is worth mentioning that covariance of (2.5) under a Weyl rescaling

gij 7→ eωgij , (2.9)

implies that φ must transform by a shift φ 7→ φ − ω. It is therefore natural to interpret
φ as the pseudo-Goldstone mode associated to broken Weyl symmetry. The expectation
value (2.8), or equivalently the configuration φ determined through (2.5), labels one of the
broken vacua. Due to explicit breaking of Weyl symmetry by the central charge c, this
pseudo-Goldstone mode acquires a nonzero action (2.6).

Functional differentiation of the generating functional W [gij ] yields connected stress
tensor correlators on a background with fixed metric g0,

〈Tij(x1) . . . Tmn(xn)〉g0 = (−2)n√
g(x1) . . .

√
g(xn)

δnW

δgij(x1) . . . δgmn(xn)
∣∣∣
g=g0

+ . . . , (2.10)

where the dots refer to contact terms resulting from functional differentiation of the metric
determinant of the type

δ

δgij(xk)

(
1√
g(xl)

)
. (2.11)

For instance, we can compute the stress tensor two-point function on the plane equipped
with flat metric euclidean metric. A straightforward computation yields

〈Tij(x)Tmn(y)〉plane = − c

48π2

(
δij�

x −∇xi∇xj
)

(δmn�y −∇ym∇yn) lnµ2|x− y|2, (2.12)

where µ is an arbitrary energy scale introduced such that the argument of the logarithm
is dimensionless. With complex coordinates

ds2 = dz dz̄, (2.13)

one recovers in particular the standard expression

〈T (z, z̄)T (w, w̄)〉 = c

2(z − w)4 . (2.14)
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Weyl non-invariance. The Polyakov action (2.3) arises from the breaking of Weyl in-
variance by quantum effects. It should therefore be expected that it transforms nontrivially
under Weyl rescalings. Using

R [eωgij ] = e−ω (Rg −�gω) , det eωg = e2ω det g, (2.15)

one indeed finds that (2.3) transforms in a nontrivial way,

W [eωgij ] = W [gij ] + c

48π

∫
d2x

√
g(x)

(1
2(∂ω)2 + ωRg

)
. (2.16)

As one could have anticipated from the previous discussion, the term spoiling Weyl invari-
ance is precisely of the form of a Liouville action for the conformal factor ω.

Conformal invariance. A conformal field theory is invariant under conformal trans-
formations. These are generated by conformal Killing vector fields whose infinitesimal
action was briefly discussed around (1.2). On the complex plane equipped with the flat
metric (2.13), a holomorphic conformal transformation is generated by a coordinate trans-
formation

z 7→ Π(z) , (2.17)
followed by a Weyl rescaling (2.9) with conformal factor

ω = − ln ∂zΠ(z) . (2.18)

In this way, the background metric is indeed left invariant,

dz dz̄ 7→ dΠ dz̄ = ∂zΠ(z) dz dz̄ 7→ eωdΠ dz̄ = dz dz̄ . (2.19)

The same holds for anti-holomorphic conformal transformations generated by z̄ 7→ Π̄(z̄).
Due to the Weyl anomaly, one could have feared that conformal transformations are not
symmetries of the Polyakov action, and therefore not true symmetries of the quantum the-
ory. This is however not the case, and it can be explicitly checked that the second term
in (2.16) vanishes provided that Π(z) reduces to a PSL(2,C) global conformal transforma-
tion at infinity,

lim
z→∞

Π(z) = az + b

cz + d
, ad− bc = 1 . (2.20)

It is instructive to compute the energy in the family of vacua related by the above
conformal transformations. By convention, the vacuum energy on the complex plane is
normalized to zero and the corresponding value of the Liouville field therefore vanishes. Per-
forming a conformal transformation induces a Weyl rescaling with conformal factor (2.18).
As mentioned below (2.9), the Liouville field shifts to the new value

φ = −ω = ln ∂zΠ(z) , (2.21)

such that, on the manifold obtained by conformal transformation from the complex plane,
the vacuum energy (2.7) reduces to

〈T (z, z̄)〉Π−1(plane) = c

12

∂3
zΠ
∂zΠ

− 3
2

(
∂2
zΠ
∂zΠ

)2
 . (2.22)

We have recovered the well-known expression in terms of the Schwarzian derivative of Π.
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3 The nonlinear action governing reparametrization modes

Having reviewed the Polyakov action and its basic properties, we are now ready to de-
rive the nonlinear version of the effective action (1.1) governing reparametrization modes.
Much in the same way that the infinitesimal reparametrization mode εi(x) is defined as
parametrizing the infinitesimal metric variation (1.2), the finite reparametrization mode
Π(z, z̄) is defined as parametrizing a change of coordinate

z 7→ Π(z, z̄) , (3.1)

followed by a Weyl rescaling (2.9) with parameter

ω = − ln ∂zΠ(z, z̄) . (3.2)

This yields the deformed background metric

ds2 = dz dz̄ + ∂z̄Π
∂zΠ

dz̄2 . (3.3)

Of course, when Π is a holomorphic function, it is a symmetry parameter with vanishing
action. For generic configurations however, it induces a nontrivial transformation of the
background metric and generates a nonzero curvature. With the help of (2.16), we can
evaluate the Polyakov action associated with this curved metric, resulting in

W [Π(z, z̄)] = c

48π

∫
d2z

∂2
zΠ ∂z̄∂zΠ
(∂zΠ)2 . (3.4)

As anticipated in [4] from the study of three-dimensional gravity with AdS asymptotics,
this nonlinear extension of (1.1) is a complex version of the Alekseev-Shatashvili action,
which was originally understood as the action of a particle on the vacuum coadjoint orbit
of the Virasoro group [3]. Here, we derived it from first principles without appealing to
gravity or the AdS/CFT correspondence, simply starting from the Polyakov action. Of
importance for the reparametrization mode formalism to be discussed in section 4, up to
boundary terms the action (3.4) is invariant under PSL(2,C) transformations [3],

Π 7→ a(z̄)Π + b(z̄)
c(z̄)Π + d(z̄) , ad− bc = 1 . (3.5)

In the remainder of this section, we illustrate how the action (3.4), still viewed as a
generating functional, can be used to compute stress tensor correlations on the plane or on
the cylinder.

Correlations on the plane. We recall that the reparametrization mode Π generates
a coordinate transformation followed by a Weyl rescaling. If we consider an infinitesimal
version of such a transformation around the identity,

Π(z, z̄) = z + ε(z, z̄) , (3.6)
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it induces the metric variation

δgzz = −4∂̄ε , δgz̄z̄ = δgzz̄ = 0 . (3.7)

We should therefore expect that the action (3.4), when expanded in powers of ε, allows
to compute correlations of Tzz on the plane. Of course, Tz̄z̄ correlations can be computed
from W

[
Π̄
]

= (W [Π])∗ obtained by complex conjugation. For instance, to cubic order in
ε the action reduces to

W = − c

48π

∫
d2z

(
∂3ε ∂̄ε− 2 ∂2ε ∂2ε ∂̄ε

)
+O(ε4) . (3.8)

The quadratic piece coincides with the action (1.1) when evaluated in flat complex coor-
dinates. Treating (3.8) as the generating functional with sources (3.7), one recovers the
correct expressions for two- and three-point functions on the plane,2

〈T (z1, z̄1)T (z2, z̄2)〉 = (−2π)2 δ2W

δ∂̄ε1 δ∂̄ε2

∣∣∣∣
ε=0

= c

2z4
12
, (3.9)

〈T (z1, z̄1)T (z2, z̄2)T (z3, z̄3)〉 = (−2π)3 δ3W

δ∂̄ε1 δ∂̄ε2 δ∂̄ε3

∣∣∣∣
ε=0

= c

z2
12z

2
13z

2
23
. (3.10)

Thus, the Alekseev-Shatashvili action (3.4) is the generating functional for correlation
functions of the holomorphic stress tensor component.

Correlations on the cylinder. The Alekseev-Shatashvili action can be used to com-
pute stress tensor correlation functions on manifolds related to the plane by a conformal
transformation. We illustrate this for the cylinder, covered by the real coordinates

τ ∈ R, σ ∈ [0, β) , (3.11)

As is well-known, one can map the plane to the cylinder by a conformal transformation
associated with the change of coordinate

Π(z) = e
−i 2π

β
z
, z = σ + iτ . (3.12)

Said differently, Π(z) is now the coordinate covering the plane while z is the coordinate
covering the cylinder. In order to compute stress tensor correlations on the cylinder from
the Alekseev-Shatashvili action (3.4), we need to consider infinitesimal reparametrization
modes on top of the finite conformal mapping (3.12). This is conveniently achieved by
writing

Π(z, z̄) = e
−i 2π

β
f(z,z̄)

, f(z, z̄) = z + ε(z, z̄) , (3.13)
2One simple way to proceed is to use the magic formula (1.3) in order to express (3.8) as a nonlocal

functional of the field ∂̄ε alone. For the quadratic part of the generating functional for instance, we have∫
d2z1 ∂

3ε1 ∂̄ε1 = 1
2π

∫
d2z1d

2z2 ∂̄1

( 1
z12

)
∂3ε1 ∂̄ε2 = 1

2π

∫
d2z1d

2z2 ∂
3
1

( 1
z12

)
∂̄ε1 ∂̄ε2 .

– 7 –
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where ε is periodic and asymptotes to a constant at infinity,

ε(σ + β, τ) = ε(σ, τ) , lim
τ→±∞

ε(σ, τ) = cst . (3.14)

Plugging (3.13) into the nonlinear action (3.4) and making use of the conditions (3.14) to
discard total derivative terms, we obtain

W [f(z, z̄)] = c

48π

∫
d2z

(
−
(2π
β

)2
∂zf ∂z̄f + ∂2

zf ∂z̄∂zf

(∂zf)2

)
. (3.15)

Interestingly, this alternative form of the Alekseev-Shatashvili action coincides with the
action of a particle on the first exceptional coadjoint orbit of the Virasoro group [3].3 Note
that it naturally inherits the PSL(2,C) invariance described in (3.5) through the identifi-
cation Π = e

−i 2π
β
f . As for the plane, we expand this action in powers of the infinitesimal

reparametrization mode ε (3.13) that is appropriate to the cylinder. To quadratic order,
we get

W = − c

48π

(2π
β

)2 ∫
d2z

(
∂̄ε+ ∂ε ∂̄ε+

(
β

2π

)2
∂3ε ∂̄ε

)
+O(ε3) . (3.16)

In particular, we recover the quadratic action for reparametrizations of the thermal cylinder
constructed in [2]. In addition, we also find a linear term which turns out to account for
the Casimir energy of the cylinder,

〈T (z, z̄)〉 = −2π δW

δ∂̄ε(z, z̄)

∣∣∣∣
ε=0

= c

24

(2π
β

)2
. (3.17)

We can similarly recover the stress tensor two-point function,

〈T (z1, z̄1)T (z2, z̄2)〉 = (2π)2 δ2W

δ∂̄ε1 δ∂̄ε2

∣∣∣∣
ε=0

= − c

12

[(2π
β

)2
∂1 + ∂3

1

]( 1
z12

)
(3.18a)

= c

2

[
1
z4

12
+
(2π
β

)2 1
6z2

12

]
=
(
π

β

)4 c

2 sin4 π
β z12

, (3.18b)

where the last equality holds up to non-singular terms that are irrelevant.
In summary, in this section we have derived the nonlinear extension of the generating

functional (1.1), starting from the Polyakov action. We have illustrated how it can be used
to compute correlations of the holomorphic stress tensor component on manifolds related
to the complex plane by a conformal transformation.

4 The effective theory of stress tensor exchanges

We now come to the description of stress tensor exchanges in the reparametrization mode
formalism, arguably its main interest from a computational perspective. As usual, the
holomorphic and anti-holomorphic dependencies of correlation functions factorize. For

3I thank Jordan Cotler and Jakob Salzer for discussions on this point.
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simplicity, we will only discuss their holomorphic part, but an analogous reasoning obvi-
ously applies to their anti-holomorphic counterpart as well.

We start by reviewing the prescriptions for computing Virasoro identity blocks within
the reparametrization formalism, following [2, 4, 25]. Ultimately, our goal will be to derive
these rules from Feynman diagrams describing stress tensor exchanges between external
primary operators. As a preliminary step to the reparametrization formalism, one considers
primary two-point functions on a manifold related to the complex plane by a conformal
transformation (2.17) with symmetry parameter Π(z),

〈Oh(1)Oh(2)〉Π−1(plane) =
(
∂z1Π(z1) ∂z2Π(z2)
(Π(z1)−Π(z2))2

)h
. (4.1)

A bilocal vertex operator Bh,4 is then introduced by promoting the symmetry parameter
Π(z) to an arbitrary reparametrization mode Π(z, z̄),

Bh(1, 2) ≡
(
∂z1Π(z1, z̄1) ∂z2Π(z2, z̄2)
(Π(z1, z̄1)−Π(z2, z̄2))2

)h
. (4.2)

For the purpose of computing stress tensor exchanges on the plane, we again expand Π(z, z̄)
around the identity. As was pointed out in [25], an infinitesimal reparametrization mode
ε exponentiates into a finite mode through Π = eε∂z = z + ε + 1

2ε∂ε + . . . such that the
expansion of the bilocal vertex (4.2) takes the form

Bh(1, 2) = 1
(z12)2h

∑
n≥0
B(n)
h (1, 2) , (4.3)

where the first few terms are given by

B(0)
h (1, 2) = 1 , (4.4a)

B(1)
h (1, 2) = b

(1)
h (1, 2) , (4.4b)

B(2)
h (1, 2) = 1

2!
(
b
(1)
h (1, 2)

)2
+ b

(2)
h (1, 2) , (4.4c)

...

B(n)
h (1, 2) = 1

n!
(
b
(1)
h (1, 2)

)n
+ lower orders in h , (4.4d)

with

b
(1)
h (1, 2) = h

(
∂ε1 + ∂ε2 − 2ε1 − ε2

z12

)
, (4.5a)

b
(2)
h (1, 2) = h

(
ε1∂

2ε1 + ε2∂
2ε2

2 − ε1∂ε1 − ε2∂ε2
z12

+ (ε1 − ε2)2

z2
12

)
. (4.5b)

More details and higher order terms of this expansion are found in [25].
4It has been recently argued that the bilocal operator (4.2) can be formally identified with the Virasoro

identity OPE block [26]. It is formal in the sense that it still requires proper renormalization.
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Remarkably, the bilocal vertex operator Bh can be used to straightforwardly compute
the contribution of the Virasoro identity block V0 to four-point functions involving pairs
of identical operators,

〈V (1)V (2)W (3)W (4)〉 = 1
(z12)2hV (z34)2hW

∑
O
CV VO CWWO VhO(u) , (4.6)

where u = z12z34
z13z24

and we again only displayed the holomorphic part of the correlator.
In (4.6), the four-point function is expressed as a sum over Virasoro conformal blocks
VhO(u), where the sum runs over all primary operators O and where CV VO and CWWO
are fusion coefficients that characterize any particular CFT. Note that conformal blocks
are purely kinematical objects that only depend on the conformal dimensions hV , hW , hO
of the various operators involved. A prescription to compute the contribution from the
Virasoro identity block V0 based on the reparametrization mode formalism has been put
forward in [1, 2, 4] and further developed in [25]. It involves the following ingredients:

• A re-interpreation of the reparametrization mode ε(z, z̄) as a dynamical field instead
of as a source for the stress tensor, together with a re-interpretation of the action (3.8)
as that governing its dynamics. Accordingly, the reparametrization mode propagator
is found to be

〈ε(z1, z̄1)ε(z2, z̄2)〉 = 6
c
z2

12 lnµ|z12| , (4.7)

with µ an arbitrary energy scale that cannot be determined from the theory but
eventually drops out from the four-point functions of interest.

• A gauging of the PSL(2,C) symmetry (3.5), resulting in the physical gauge-invariant
and purely holomorphic propagator

Gε(z1, z2) ≡ 〈ε(z1, z̄1)ε(z2, z̄2)〉phys = 6
c
z2

12 lnµz12 . (4.8)

This physical propagator can be alternatively obtained by a monodromy projection
of (4.7) as described in [2].

• The identification of the Virasoro identity block as a connected correlation function
of bilocal vertex operators,

CV V T CWWT

(z12)2hV (z34)2hW
V0(u) ≡ 〈BhV (1, 2)BhW (3, 4)〉c , (4.9)

where the vertices are viewed as functionals of the dynamical reparametrization field
ε with physical propagator (4.8). The fact that this universal formula describes the
fusion coefficients CV V T , CWWT together with the Virasoro identity block V0 should
not come as a surprise, since the coupling between primary operators and the stress
tensor is universally dictated by conformal symmetry.

Following the above set of prescribed rules, the Virasoro identity block contribution to
the normalized four-point function

F4 ≡
〈V (1)V (2)W (3)W (4)〉
〈V (1)V (2)〉〈W (3)W (4)〉

∣∣∣∣
V0

, (4.10)
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can be computed order by order in a 1/c expansion. Indeed, each propagator Gε comes
with a factor of 1/c such that the reparametrization formalism naturally organizes as a
perturbative expansion at large central charge. In addition, terms in the expansion of the
bilocal vertex operator (4.3) that contribute to a given order in 1/c are easy to identify.
At zeroth order, we simply have

F4
∣∣
O(1) = 〈B(0)

hV
(1, 2)B(0)

hW
(3, 4)〉 = 1 . (4.11)

At subleading order, we have [4]

F4
∣∣
O(1/c) = 〈B(1)

hV
(1, 2)B(1)

hW
(3, 4)〉 = 〈b(1)

hV
(1, 2)b(1)

hW
(3, 4)〉 (4.12a)

= 2hV hW
c

u2
2F1 (2, 2, 4;u) , (4.12b)

which is recognized as the global identity block contribution [27, 28]. We will also discuss
the terms appearing at order O(1/c2) without explicitly evaluating them,

F4
∣∣
O(1/c2) = 〈B(2)

hV
(1, 2)B(2)

hW
(3, 4) + B(3)

hV
(1, 2)B(1)

hW
(3, 4) + B(1)

hV
(1, 2)B(3)

hW
(3, 4)〉c (4.13)

+ 〈B(2)
hV

(1, 2)B(1)
hW

(3, 4) + B(1)
hV

(1, 2)B(2)
hW

(3, 4)〉c .

Upon replacement of the bilocal vertices by their expressions in terms of reparametrization
modes, the first line contains terms involving two propagators 〈εε〉 while the second line
contains terms involving a single three-point function 〈εεε〉.5 Except from the first one,
all terms suffer from ultraviolet (UV) divergences since they contain ε correlators eval-
uated at coincident points. To make sense of these, one would need to supplement the
reparametrization formalism with a regularization procedure. We will not try to remedy
this here, and we will restrict our attention to the first regular term instead. We make a
few comments regarding divergences and their regularization in the discussion section.

As shown in [4], the above prescription successfully reproduces known results at large
central charge c in the ‘light-light’ limit hV , hW = O(

√
c) [6] and in the ‘heavy-light’

limit hV = O(1), hW = O(c) [7–9]. Furthermore, an appropriate modification of the
reparametrization mode formalism to Lorentzian signature similarly led to a successful
description of the maximal Lyapunov growth displayed by out-of-time-order (OTOC) cor-
relators at large central charge [1, 2, 4].

In spite of these successes, the origin of the above set of rules seems rather mysterious at
first sight. A convincing justification was nonetheless provided by Haehl, Reeves and Rozali
by showing that these rules are those of the shadow operator formalism upon identification
of ε(z, z̄) with the shadow of the stress tensor T (z, z̄) [2]. However, their argument only
applied to the first nontrivial term in the bilocal vertex expansion (4.3), i.e., to B(1)

h (1, 2).
Hence, this argument guarantees that the global identity block (4.12) is correctly accounted
for, but a justification of the validity of the reparametrization mode formalism at all orders
in perturbation is still missing.

5The three-point function 〈εεε〉, whose explicit expression may be found in [25], scales like 1/c2.
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V (1)

V (2)

W (3)

W (4)

T

(a)

V (1)

V (2)

W (3)

W (4)

T

T

(b)

V (1)

V (2)

W (3)

W (4)

T

T

T

T

(c)

Figure 1. Feynman diagrams corresponding to stress tensor exchanges between two pairs of iden-
tical operators. The large grey circles refer to the vertices 〈V (1)V (2)T̂ (w1) . . . T̂ (wn)〉, which are
nonlocal and exact (as opposed to free vertices). (a) Single exchange diagram A1. (b) Double
exchange diagram A2. (c) Multiple exchange diagram An.

We wish to provide a derivation of the above set of rules which can be extended to
higher perturbative orders, and which does not refer to the shadow operator formalism
at any step. In particular, we shall not need to re-interpret ε(z, z̄) as a dynamical field,
which we find somewhat awkward given its meaning of source for the stress tensor when
first introduced. The alternative derivation which we propose is straightforward and sim-
ply consists in computing contributions to the normalized four-point function (4.10) from
(position-space) Feynman diagrams involving stress tensor exchanges between the two pairs
of identical operators. These diagrams are shown in figure 1. As will be shown below, we
find perfect agreement with the reparametrization formalism. We believe that the alter-
native method developed below conceptually clarifies the results of the reparametrization
mode formalism, and provides compelling evidence of its validity.

The atomic ingredients that we need are the stress tensor propagator (3.9) together
with the partially amputated (2 + n)-point correlation functions

〈V (1)V (2)T̂ (w1) . . . T̂ (wn)〉 =
(
− 6
πc

)n n∏
i=1

∂w̄i(∂wi)−3 〈V (1)V (2)T (w1) . . . T (wn)〉 ,

(4.14)

where the two matter insertions on the left-hand side are unamputated while the n stress
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tensor insertions are amputated. We denote amputated stress tensor insertions with a hat.
The above equality can be derived by first writing a correlator with unamputated i-th leg
as the convolution of its amputated counterpart with the stress tensor propagator,

〈. . . T (wi) . . . 〉 =
∫
d2y 〈. . . T̂ (y) . . . 〉〈T (y)T (wi)〉 . (4.15)

Equation (4.14) is obtained after invoking the magic identity (1.3) in order to rewrite the
stress tensor propagator as

〈T (z)T (w)〉 = c

2(z − w)4 = − c

12 ∂
3
w

( 1
z − w

)
= −πc6 ∂3

w (∂w̄)−1δ(z − w) . (4.16)

The partially amputated correlation functions (4.14) will be used as vertices in evaluating
the Feynman diagrams of interest. Because they are exact rather than free vertices, we
indicate them with large grey circles in figure 1.

Before turning to their evaluation, let us comment on the overall power of 1/c as-
sociated with a Feynman diagram involving n stress tensor exchanges. Such a diagram
contains two vertices (4.14) and n stress tensor propagators (4.16), so that it has an overall
factor of (1/c)n. In the reparametrization mode formalism, this factor would be associated
to n reparametrization propagators (4.8). Of course, we will discover that this is not a
coincidence.

Single exchange. We first evaluate the Feynman diagram of figure 1a containing a
single stress tensor exchange. Patching together the vertices (4.14) and the stress tensor
propagator, we have

A1 =
∫
d2w1 d

2w2 〈V (1)V (2)T̂ (w1)〉〈T (w1)T (w2)〉〈T̂ (w2)W (3)W (4)〉 (4.17)

=
( 6
πc

)2 ∫
d2w1 d

2w2 〈V (1)V (2)∂̄T (w1)〉∂−3
w1 ∂

−3
w2 〈T (w1)T (w2)〉〈∂̄T (w2)W (3)W (4)〉 .

Remarkably, we observe that the kernel of the second line coincides with the ‘physical
reparametrization propagator’ (4.8),

∂−3
w1 ∂

−3
w2 〈T (w1)T (w2)〉 = c

24w
2
12 lnµw12 =

(
c

12

)2
Gε(w1, w2) . (4.18)

We stress that we never had to consider any kind of coupling to a dynamical reparametriza-
tion mode in order to witness the appearance of this propagator. In this approach, Gε is an
‘emergent’ quantity derived from the stress tensor propagator. To simplify (4.17) further,
we use the conformal Ward identity

〈∂̄T (w)V (1)V (2)〉 = −2π
∑
i=1,2

[
hV ∂wδ

(2)(w − zi)− δ(2)(w − zi)∂zi
]
〈V (1)V (2)〉 (4.19a)

= −2πhV 〈V (1)V (2)〉
[(
∂w + 2

z12

)
δ(w − z1) + (z1 ↔ z2)

]
. (4.19b)
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Plugging (4.19) into (4.17) and integrating by parts, we find

F4
∣∣
O(1/c) = A1

〈V V 〉〈WW 〉
=
∫
d2w1 d

2w2D
hV
w1 (1, 2)DhW

w2 (3, 4)Gε(w1, w2) , (4.20)

where we defined the differential operator

Dh
w(1, 2) ≡ h

[
δ(w − z1)

(
∂w −

2
z12

)
+ (z1 ↔ z2)

]
. (4.21)

Of course, the delta distribution in (4.21) allows to trivially perform the integrals in (4.20).
Doing so and comparing with the bilocal vertex operators in (4.5), the formula (4.12)
obtained from the reparametrization formalism emerges before our eyes,

F4
∣∣
O(1/c) = 〈b(1)

hV
(1, 2)b(1)

hW
(3, 4)〉 . (4.22)

A successful derivation of the reparametrization mode prescription is thus provided by
evaluating the Feynman diagram containing a single stress tensor exchange.

Double exchange. To further test the correspondence with the reparametrization for-
malism uncovered at order O(1/c), we evaluate the contribution coming from two stress
tensor exchanges. The corresponding Feynman diagram is shown in figure 1b. Dividing by
the appropriate symmetry factor of 2 associated with the interchange of internal lines, and
applying the same line of reasoning as above, we find

A2 = 1
2(2π)4

∫ 4∏
i=1

d2wi 〈V (1)V (2)∂̄T (w1)∂̄T (w2)〉Gε(w1, w3) (4.23)

× Gε(w2, w4)〈∂̄T (w3)∂̄T (w4)W (3)W (4)〉 .

The four-point function 〈∂̄T ∂̄TV V 〉 is derived in appendix A from the conformal Ward
identity. Plugging its expression in (4.23), a tedious but straightforward computation
yields

F4
∣∣
O(1/c2) ⊃

A2
〈V V 〉〈WW 〉

= 1
2

∫ 4∏
i=1

d2wiD
hV
w1 (1, 2)DhW

w3 (3, 4)Gε(w1, w3)DhV
w2 (1, 2)DhW

w4 (3, 4)Gε(w2, w4)

(4.24a)

+
∫ 4∏

i=1
d2wiD

hV
{w1,w2}(1, 2)DhW

w3 (3, 4)Gε(w1, w3)DhW
w4 (3, 4)Gε(w2, w4)

(4.24b)

+
∫ 4∏

i=1
d2wiD

hW
{w3,w4}(3, 4)DhV

w1 (1, 2)Gε(w1, w3)DhV
w2 (1, 2)Gε(w2, w4) (4.24c)

+ 2
∫ 4∏

i=1
d2wiD

hV
{w1,w2}(1, 2)DhW

{w3,w4}(3, 4)Gε(w1, w3)Gε(w2, w4) , (4.24d)
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where Dh
w was given in (4.21) and we have introduced a second differential operator,

Dh
w1,w2(1, 2) ≡ h

[
δ(w2 − z1)δ(w1 − z1)

(
∂2
w1

2 − ∂w1

z12
+ 1
z2

12

)
(4.25)

− δ(w2 − z2)δ(w1 − z1)
z2

12
+ (z1 ↔ z2)

]
.

As before, the integrals in (4.24) localize due to the delta distributions. Like at order
O(1/c), we want to make the comparison with the reparametrization formalism. More
precisely, because (4.24) involves two propagators Gε whose legs are connected to both
pairs of operators, it should be compared to

〈B(2)
hV

(1, 2)B(2)
hW

(3, 4)〉c = 1
2
(
〈b(1)
hV

(1, 2)b(1)
hW

(3, 4)〉
)2

+ 1
2〈
(
b
(1)
hW

(3, 4)
)2
b
(2)
hV

(1, 2)〉c (4.26)

+ 1
2〈
(
b
(1)
hV

(1, 2)
)2
b
(2)
hW

(3, 4)〉c + 〈b(2)
hV

(1, 2)b(2)
hW

(3, 4)〉c .

Looking again at the definitions of the bilocal vertices in (4.5), a careful comparison shows
that the four different terms in (4.26) exactly coincide with the four terms in (4.24). The
agreement occurs term by term such that (4.24) and (4.26) are just two ways of writing
the same quantities. Once again, the reparametrization formalism has effectively emerged
when evaluating Feynman diagrams describing stress tensor exchanges.

Exponentiation in the light-light limit. One of the successes of the reparametrization
formalism was to correctly reproduce the leading term of the Virasoro identity block in the
light-light limit h = O(

√
c) [4],

F4 = exp
(2hV hW

c
u2

2F1 (2, 2, 4;u)
)

+O(1/
√
c) . (4.27)

Hence, the Virasoro identity block contains a contribution which is the exponentiated global
identity block (4.12). This result was first derived in [6].

Since it is an important result, it is worth deriving it within the alternative formalism
proposed here. For this, we consider the contributions resulting from an arbitrary number
n of stress tensor exchanges. The corresponding Feynman diagram is shown in figure 1c.
We use the expression for the vertex 〈∂̄T (w1) . . . ∂̄T (wn)V (1)V (2)〉 given in (A.5) which
holds in the light-light limit h = O(

√
c), and integrate it against n stress tensor propagators.

Taking into account the symmetry factor of n! associated with interchanges of internal lines,
and after a straightforward computation similar to that for single and double exchanges,
we find

F4 =
∑
n

1
n!
(
〈b(1)
hV

(1, 2)b(1)
hW

(3, 4)〉
)n

+O(1/
√
c) . (4.28)

Upon insertion of (4.12), we indeed recover the expected exponential (4.27).

5 Discussion

We have discussed several aspects of the reparametrization mode formalism. After re-
viewing some of the basic properties of the Polyakov action in section 2, we provided a
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first principle derivation of the Alekseev-Shatashvili action as a nonlinear extension of the
effective action (1.1) governing the reparametrization modes. We have further argued in
section 3 that the correct interpretation of the reparametrization mode is that of a source
for the holomorphic component of the stress tensor, and that the Alekseev-Shatashvili ac-
tion is the generating functional for its connected correlation functions on manifolds related
to the complex plane by conformal transformations. We then turned to the computation of
Virasoro identity blocks within the reparametrization mode formalism in section 4 where
we showed that the otherwise mysterious prescriptions of that formalism naturally emerge
when evaluating Feynman diagrams associated with stress tensor exchanges between pairs
of identical primary operators. Several interesting open problems deserve further investi-
gation, which will help bring the program initiated here to further completion.

Comparison with other formalisms. Although the approach proposed here and based
on the evaluation of Feynman diagrams will look familiar to anyone having studied pertur-
bative quantum field theory, it is quite unconventional from the common perspective on
2d CFTs. In fact, we are not aware of any other similar use of Feynman diagrams made
in this context. It would therefore be very interesting to connect it to more conventional
techniques used to compute Virasoro blocks in 2d CFTs [6, 8, 29, 30]. In particular, the
formalism developed in [26, 30] based on gravitational Wilson lines and the AdS/CFT
correspondence seems very close in spirit to our approach. Indeed, it was shown that
the expectation value of the gravitational Wilson line coincides with the reparametrized
two-point function (4.1), while a natural interpretation in terms of Feynman diagrams and
stress tensor exchanges also emerged in that picture.

UV divergences and their regularization. As mentioned in section 4, some terms
arising from the central formula (4.9) for computing Virasoro identity blocks within the
reparametrization formalism suffer from ultraviolet divergences. A general regularization
procedure of some sort is needed, which has not been provided so far.6 A similar issue
potentially arises when evaluating Feynman diagrams. At order O(1/c2) for instance, one
can consider the diagrams of figure 2a–2b in addition to that of figure 1b. The appearance of
the stress tensor running in loops implies that these also suffer from ultraviolet divergences.
One should in fact identify the diagrams displayed in figure 2a and figure 2b with the
terms 〈B(3)

hV
(1, 2)B(1)

hW
(3, 4)〉c and 〈B(2)

hV
(1, 2)B(1)

hW
(3, 4)〉c in (4.12), respectively. Since both

approaches require regularization, a natural strategy would consist in applying one of the
textbook regularization procedures to the evaluation of Feynman diagrams and deduce
the corresponding rules within the reparametrization formalism. But one could also argue
that these diagrams should be discarded altogether on the basis that they seem to correct
the vertices appearing in the diagram at order O(1/c) displayed in figure 1a. Since these
vertices are already exact as previously emphasized, they may not need to be renormalized.
We illustrate this in figure 2c. This reasoning seems in agreement with the regularization
procedure of the gravitational Wilson line formalism [30], where one only keeps terms

6In the heavy-light limit, background subtraction has been successfully applied [4]. Away from this limit,
there is however no obvious reference background to subtract from.
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W (3)

W (4)
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T

(a)

V (1)

V (2)

W (3)

W (4)

T

T

T

(b)

V

V

T

T

+

V

V

T

T

T ⊂

V

V

T

(c)

Figure 2. (a)–(b) Additional Feynman diagrams that potentially contribute to Virasoro identity
blocks at order O(1/c2). (c) The effect of these diagrams is to renormalize the left vertex of the
diagram displayed in figure 1a and occurring at order O(1/c). Since the latter is already exact, one
might want to simply discard them.

corresponding to stress tensors propagating between both pairs of primary operators. We
hope to come back this issue in the future.

Heavy-light limit. The reparametrization formalism has also been used to efficiently
compute Virasoro identity blocks in the heavy-light limit hV = O(1) , hW = O(c) [4]. It
would be interesting to revisit this computation in terms of Feynman diagrams along the
lines suggested by the present work. This would in principle require the resummation of a
very large number of diagrams. Note that a similar resummation was explicitly performed
in [31] using a different approach. However, it is known that the heavy operator insertions
can be simulated by an appropriate thermal background [7, 32, 33]. At leading order in
the heavy-light limit, a Virasoro identity block reduces to the two-point function of a light
operator in a thermal background. Cotler and Jensen showed that an analogous state-
ment holds within the reparametrization formalism, namely that the heavy-light Virasoro
identity block is obtained from the bilocal expectation value 〈BhV (1, 2)〉thermal. In fact,
the latter quantity naturally contains subleading corrections associated with ε’s running in
loops [4]. One could easily set up this computation in terms of Feynman diagrams involving
stress tensor exchanges between a single pair of light operators in the appropriate thermal
background.

Gravitational theories and holography. We end this discussion by mentioning the
relevance of reparametrization modes to gravitational theories and holography, which has
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been our initial motivation to perform the present study. Especially clear is their role within
the AdS3/CFT2 correspondence, where it was shown that the gravitational on-shell action
coincides with the Liouville version (2.6) of the Polyakov generating functional [34, 35].
This makes perfect sense since the AdS/CFT dictionary precisely identifies the bulk on-
shell action with the generating functional of a dual CFT [36, 37]. Hamiltonian reductions
of three-dimensional gravity with AdS asymptotics were also shown to yield either Liou-
ville theory [38] or the Alekseev-Shatashvili action [4].7 Here, we gave a unified view of
the different forms taken by the generating functional of stress tensor correlations from the
perspective of 2d CFTs. The Alekseev-Shatashvili action also appeared from Hamiltonian
reductions of three-dimensional gravity with de Sitter asymptotics [39] and of the superro-
tation sector of four-dimensional gravity with flat asymptotics [40]. We believe that these
constitute important hints to the holographic nature of these gravitational theories away
from the well-understood and heavily studied AdS/CFT correspondence.
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A Conformal Ward identities

We recall the conformal Ward identity for n stress tensor insertions [41]

〈T (w1) . . . T (wn)Oh(1)Oh(2)〉 (A.1)

=

 n∑
i=2

(
2
w2

1i
+ ∂wi
w1i

)
+
∑
j=1,2

(
h

(w1 − zj)2 +
∂zj

w1 − zj

) 〈T (w2) . . . T (wn)Oh(1)Oh(2)〉

+
n∑
i=2

c/2
w4

1i
〈T (w2) . . . T (wi−1)T (wi+1) . . . T (wn)Oh(1)Oh(2)〉 .

In the case of two stress tensor insertions, it yields

〈∂̄T (w1)∂̄T (w2)Oh(1)Oh(2)〉 (A.2)

= (2π)2〈Oh(1)Oh(2)〉
[
Chw1(1, 2)Chw2(1, 2) + Ch{w1,w2}(1, 2)

]
,

with

Ch
w(1,2)=−h

[(
∂w + 2

z12

)
δ(w− z1) + (z1↔z2)

]
, (A.3)

Ch
w1,w2

(1,2)=−2Cw1(1,2)∂w2δ(w2−w1) + δ(w2−w1)∂w1Cw1(1,2) (A.4)

+h
[
δ(w2− z1)

(
∂2

w1
+ 2∂w1

z12
+ 2
z2

12

)
δ(w1− z1)− 2δ(w2− z1)δ(w1− z2)

z2
12

+ (z1↔z2)
]
.

7The authors of [4] further argued that the Alekseev-Shatashivili action may be successfully quantized,
leading to a quantum theory of boundary gravitons.
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Note that the symmetrizer {w1, w2} = 1
2 [(w1, w2) + (w2, w1)] ensures that (A.2) is sym-

metrical under w1 ↔ w2 as it should. The careful reader already sees the structure of
the reparametrization formalism appearing at this stage. Indeed, integration of Chw(1, 2)
against ε propagators yields the bilocal vertex operator b(1)

h (1, 2). Upon insertion of (A.2)
into (4.23) of the main text, the terms in the first line of (A.4) conspire to a total derivative
and therefore do not contribute to the final result (4.24), while the second line yields the
bilocal vertex operator b(2)

h (1, 2).
At large central charge and in the light-light limit h = O(

√
c), repetitive use of the

conformal Ward identity (A.1) yields

〈∂̄T (w1) . . . ∂̄T (wn)Oh(1)Oh(2)〉 (A.5)

= (2π)n〈Oh(1)Oh(2)〉
[
Chw1(1, 2) . . . Chwn(1, 2) +O(1/

√
c)
]
.
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