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Abstract
Introduction: Changes in speech have the potential to provide important information on the 
diagnosis and progression of various neurological diseases. Many researchers have relied on 
open-source speech features to develop algorithms for measuring speech changes in clinical 
populations as they are convenient and easy to use. However, the repeatability of open-source 
features in the context of neurological diseases has not been studied. Methods: We used a 
longitudinal sample of healthy controls, individuals with amyotrophic lateral sclerosis, and 
individuals with suspected frontotemporal dementia, and we evaluated the repeatability of 
acoustic and language features separately on these 3 data sets. Results: Repeatability was 
evaluated using intraclass correlation (ICC) and the within-subjects coefficient of variation 
(WSCV). In 3 sets of tasks, the median ICC were between 0.02 and 0.55, and the median WSCV 
were between 29 and 79%. Conclusion: Our results demonstrate that the repeatability of 
speech features extracted using open-source tool kits is low. Researchers should exercise cau-
tion when developing digital health models with open-source speech features. We provide a 
detailed summary of feature-by-feature repeatability results (ICC, WSCV, SE of measurement, 
limits of agreement for WSCV, and minimal detectable change) in the online supplementary 
material so that researchers may incorporate repeatability information into the models they 
develop. © 2020 The Author(s)
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Introduction

Speech is known to change in a host of neurological conditions. There has been recent 
interest in using machine learning models applied to speech recordings to assess changes in 
clinical conditions automatically [1, 2]. For example, it has recently been used to identify indi-
viduals with major depressive disorder [3], amyotrophic lateral sclerosis (ALS) [4], and 
Alzheimer disease [5]; predict speech severity in participants with Parkinson’s disease [6]; 
and detect changes in affective states in individuals with bipolar disorder [7]. Speech is a 
high-dimensional acoustic signal, which is sampled at tens of thousands of times per second 
for acoustic analysis. To make problem-solving tractable under these conditions, open-source 
feature extraction software packages have been developed to extract a smaller number of 
low-level features that serve to reduce the dimensionality of the signal. Wide availability of 
open-source tool kits for acoustic and language feature extraction has democratized the 
development of algorithms that aim to detect and track diseases.

However, despite the popularity of using speech as a biomarker, the features commonly 
used in models have not undergone the rigorous validation work which is typically done in 
the medical field when evaluating new assessment tools. To develop reliable clinical models 
using speech, it is important to distinguish natural variation in speech production from 
disease-related change in the measures of interest. An individual undergoing repeated 
measurements is likely to show natural variation such that the scores vary across different 
days (and even within the same day). When the natural variation is large, it becomes difficult 
to detect when there is an important disease-related change. For example, in Parkinson 
disease, weakness of muscles used in speaking causes a decrease in loudness; however, many 
factors unrelated to Parkinson disease can also impact the day-to-day speaking loudness. The 
more loudness variation is exhibited by healthy individuals, the harder it becomes to detect 
a true loudness decline due to Parkinson disease progression. Even in cross-sectional studies, 
high-variance features combined with small sample sizes increase the risk of overfitting to a 
dataset. Therefore, it is important to understand the typical natural variation of speech 
features if speech is to be used as a biomarker.

In this paper, we define repeatability as the average variation over a short period of time 
in which disease-related decline is unlikely to be evident or manifested through the features. 
Although publicly available speech features have been used in many clinical research studies, 
no study has systematically evaluated their repeatability. Therefore, in this study we eval-
uated the repeatability of a commonly used set of acoustic and language features extracted 
through open-source tool kits. As the results show, we found that the majority of the features 
had repeatability below typical acceptable limits for clinical practice regardless of the measure 
of repeatability and regardless of the population used.

Methods

We evaluated 2 classes of repeatability measures, i.e., those that considered the vari-
ability in measurements within a single person, and within-person variability relative to the 
variability in the full sample. Furthermore, we evaluated repeatability using a sample of 
healthy individuals and 2 samples of individuals with ALS. The healthy sample allowed for 
evaluating repeatability in a sample with no speech impairment. ALS, on the other hand, is a 
neurodegenerative disease which impacts speech, resulting in a highly heterogeneous sample, 
allowing evaluation of repeatability in participants with a wide dynamic range of values. The 
2 complementary repeatability measures and the 2 contrasting samples allowed a thorough 
evaluation of the repeatability of the speech features.
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Repeatability Measures
We measured repeatability using 2 unit-independent measures [8], i.e., the within-

subjects coefficient of variation (WSCV) and intra-class correlation (ICC). These 2 measures 
offer different information about a feature’s repeatability, which we describe briefly in the 
following paragraphs.

The WSCV indicates the expected variation in an individual’s score expressed as a 
percentage from the mean [8]. It is the ratio of the within-person SD to the mean, and it 
assumes that the variability within individuals is proportional to the mean. It provides an 
estimate of how close adjacent measurements are expected to be and, because it is a percent- 
age, it can be compared across features directly. Low WSCV indicate a low variability (i.e., high 
repeatability in the feature).

The ICC [8] is a measure of within-person variability relative to the variability of the full 
sample; rather than indicating how much an individual is expected to vary (i.e., WSCV), it 
additionally indicates whether individuals generally maintain the same rank in the sample 
across repeated measures. This measure of repeatability is useful beyond within-person vari-
ability alone because it provides context for whether the amount of variability is small or 
large relative to the possible range of the data. For example, consider a feature where indi-
viduals are expected to change by 10 units on average across occasions; this change may be 
small or large depending on how different participants are from each other and the dynamic 
range of the feature. High ICC values indicate that the measure is repeatable. However, it 
needs to be interpreted within the context of the sample. A measurement with little within-
person variability may result in low ICC if the sample is highly homogeneous. Therefore, the 
ALS sample provided an excellent test case, as it was heterogeneous with a wide dynamic 
range on the speech features due to the participants’ speech impairment.

Although we do not discuss the following in the main body of the paper, we additionally 
computed: (1) the standard error of measurement (SEM), which is the expected variation in 
a given individual’s score expressed in the measure’s scale; (2) the minimal detectable change 
(MDC), which is the smallest change in scores that indicates a change in the individual’s true 
or average score and is calculated using the SEM; and (3) the limits of agreement for the WSCV 
(LOACV), which is conceptually similar to the MDC but expressed as a percentage and 
therefore useful when the within-subject variability is proportional to the subject’s mean. The 
SEM is similar to the WSCV in that both provide an indication of how much each individual is 
expected to change across different measurements; however, the SEM is useful when the 
participant’s variability is independent from the participant’s mean score while the WSCV is 
useful when the participant’s variability is proportional to the participant’s mean score. The 
SEM, the MDC, and the LOACV are not discussed in the paper since they depend on the scale 
of the features (SEM and MDC require understanding the scale and units of the measures) or 
are redundant (LOACV is calculated based on the WSCV). However, we provide these values 
for each feature in our online supplementary material (for all online suppl. material, see 
www.karger.com/doi/10.1159/000511671).

In Data Analysis, we provide more detail about the equations used for the measures of 
repeatability. The results focus on summarizing the findings in the unit-independent measures 
(ICC and WSCV), which are the most appropriate for discussion as they do not require the 
reader to know the scale of each feature in order to interpret them. 

Samples
In order to evaluate repeatability for a range of values that might be expected in both 

healthy individuals and individuals with impaired speech, we collected speech from 3 separate 
samples.
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Samples 1 and 2
Sample 1 consisted of participants with ALS and sample 2 consisted of healthy indi-

viduals. These 2 samples were obtained from “ALS at Home,” an observational, longitudinal 
study [9]. Healthy participants had no history of generalized neurological conditions. ALS is 
a neurodegenerative disease characterized by an eventual loss of muscle function, including 
those used to breathe and speak. It causes impairment of speech motor control and weakness 
of muscles required for vocalization. The resulting speech disturbance is referred to as dysar-
thria, which is evident perceptually and acoustically.

Participants provided speech samples on a daily basis by reading a set of sentences and 
holding out an “ahh” sound (sustained phonation). The sentences and phonations were used 
for measuring acoustic features. In an attempt to reduce the impact of nuisance variables on 
the acoustic features, the participants were requested to provide recordings under the same 
conditions and using the same devices each time. Acoustic features were extracted from each 
task from all participants using openSMILE [10] and Praat [11], 2 open-source tool kits.

To avoid capturing variability due to disease progression, we limited the sample to each 
participant’s first 7 days of data. We did this for both the ALS and the healthy participants. A 
mobile application was used for data collection. It led participants through a series of speech 
tasks, including sentence reading and sustained phonation.

Sample 3
The third sample was obtained from a separate observational, longitudinal study that is 

currently in progress. It consisted of ALS participants with cognitive symptoms secondary to 
suspected frontotemporal dementia. Therefore, these participants changes experienced not 
only in speech motor control but also in cognition. Previous studies have utilized language 
features from connected speech for assessing cognition, such as identifying participants with 
Alzheimer disease [5]. Therefore, the participants completed the same speech tasks as the 
participants in “ALS at Home” (the same set of sentences and phonations), with an additional 
task for eliciting connected speech. In the connected speech task, participants were asked to 
describe in detail a displayed picture. All speech samples for this task were manually tran-
scribed. In each session, this picture was rotated among a set of 8 to mitigate familiarization 
effects. Pictures were normed to elicit responses of a similar length. Language features were 
extracted from the transcripts using Talk2me, an open-source tool kit [5].

Unlike “ALS at Home” samples 1 and 2, the speech samples in this study were provided 
on a weekly basis; we used the participants’ first 2 sessions, which were typically 1 week 
apart, unless a participant missed a session. If the first 2 sessions were more than 13 days 
apart, the participant was excluded.

This sample allowed us to replicate the repeatability results from “ALS at Home” and to 
use the connected speech task to evaluate the repeatability of open-source language measures 
extracted from the picture descriptions in a sample exhibiting a range of cognitive impairment. 
Thus, acoustic features were extracted from samples 1, 2, and 3, and language features were 
extracted from sample 3.

Feature Extraction
A large number of speech and language analysis tools are available for analyzing speech. 

For example, Amazon’s Comprehend, Google’s Cloud Natural Language API, and IBM’s Natural 
Language Understanding provide algorithm designers with NLP tools for analyzing text data. 
Similarly, the Python libraries librosa and scipy provide practitioners with signal processing 
routines for analyzing speech acoustics. These tools do not calculate speech features directly; 
rather, they provide code that can be used to engineer features. In addition to these, there are 
also several tools for extracting speech and language features directly from audio or tran-
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scripts. These features have become increasingly popular in clinical applications as they allow 
digital health algorithm designers to build sophisticated speech-based models without 
requiring significant expertise in speech and language processing. 

In this paper, we focused on the repeatability of open-source speech and language 
features and not on the tool kits that can be programmed to do speech and language analysis. 
As a result, for the evaluation we identified 3 open-source packages that have been used in 
clinical applications and that measure both acoustic and language aspects of speech. These 
include openSMILE [10], Talk2me [5], and Praat [11]. The output of these feature extraction 
programs were used without modifications. We did not derive new features and we used the 
default settings for extracting each set of features.

Acoustic features were extracted from the sentences and phonations from participants. 
Two tools used for this purpose were openSMILE [10] and Praat [11], 2 open-source feature 
extraction tool kits which extract acoustic features from audio files. We extracted features 
using the openSMILE emo_large configuration, which extracts over 6,000 acoustic features, 
the openSMILE eGeMAPS configuration, a minimalistic set which extracts 88 features [12], 
and Praat Voice Report, which extracts 26 features. Language features were extracted from 
text transcripts obtained from the connected speech in the picture description task using 
Talk2Me [5], an open-source library which extracts 405 language features from transcripts.

Given the large number of features, we grouped them into 6 acoustic categories [12], i.e., 
energy, frequency, MFCC, pitch, spectral, and temporal, and 4 language categories [5], i.e., 
lexical, pragmatic, semantic, and syntactic. Table 1 shows the number of features within each 
category and a brief description of each category. We included examples of what we considered 
to be easily understood or meaningful features within each category.

Note that there were over 6,000 features computed in this study. Table 1 provides a 
summary for each category of features. The description of each category provides an expla-

Table 1. Description of features

Task Category (features, n) Description

Sentences and 
phonations

Energy (135) These are features related to the energy generated in the acoustic signal, such as loudness and the 
harmonics-to-noise ratio

Frequency (31) These are features related to the frequencies in the acoustic signal, such as the frequencies of 
formants 1, 2, and 3

MFCC (1,521) These are features related to mel-frequency cepstral coefficients. MFCC are a parametric repre-
sentation of the slow-changing part of the spectrum. They are often used to represent how the 
vocal tract shape manifests itself in the envelope of the spectrum

Pitch (356) These are features related to the pitch (F0), such as the mean pitch or the variability in pitch

Spectral (4,493) These are features that describe the energy distribution across different center frequencies in the 
spectrum. Examples include spectral slope and vowel formant energy

Temporal (130) These are features related to the rhythm of speech, such as the rate of loudness peaks and voiced/
unvoiced regions

Connected 
speech

Lexical (92) These are features that are related to word use, such as the number of filler words and the 
proportion of words that are unique

Pragmatic (119) These are features related to contextually appropriate language use, such as identifying topics 
within the text

Semantic (45) These are features that compute semantic similarity between words

Syntactic (149) These are grammatical features, such as part-of-speech counts and propositional density
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nation of representative features for that category but it is not an exhaustive list of all of the 
features associated with that category. Readers interested in learning more can refer to 
openSMILE [10], eGeMAPS [12], Praat [11], and Talk2Me [5].

Data Analysis
In this article we provide results relating to the ICC and WSCV, and in the online supple-

mentary material we include the SEM, the MDC, and the LOACV. Therefore, we describe here 
how each was calculated.

For computing the ICC, we used a two-way mixed effects model allowing random inter-
cepts for the participants and the testing dates [13]. Therefore,

ICC = σ2
s/(σ2

s + σ2
T + σ2

e)

such that σ2
s was the between-subject variance, σ2

T was the testing date variance, and σ2
e 

was the error variance for each subject within each window. The SEM was obtained from σ2
e 

in the same mixed-effects model [8]. The MDC was:

1 96 2    .  =  MCD × × SEM

For obtaining the WSCV, a log transformation of the data was obtained. WSCV only make 
sense for measures such that all values are positive. Therefore, we excluded from this analysis 
any features that had values of 0 or below. A mixed-effects model was fit to the log-trans-
formed data, and the residual variance σln,e

2 was extracted, such that [8]:
1 100ln ,e  (e ) %= -  WSCV ×

For computing the Bland-Altman LOACV, we used the Rousson [14] adaptation using σln,e 
and transformed it back into percentages using the same transformation as the one for WSCV:

1 96 2 1 100ln ,e.  
WSCVLOA    (e ) %= -  × × ×

All analyses were done in R [15]. The R Package lme4 [16] was used for fitting the mixed-
effects models.

Results

Samples 1 and 2
The data consisted of 72 ALS participants (sample 1: a total of 430 sessions, mean age = 

59.8 years, SD = 10.4; 24 females) and 22 healthy controls (sample 2: a total of 132 sessions, 
mean age = 50.1, SD = 14.7; 16 females). The ALS participants were characterized by a wide 
range of dysarthria severity. The clinical standard for measuring motor speech impairment 
in ALS is the ALS Functional Rating Scale – Revised (ALSFRS-R), which ranges from 0 (total 
loss of speech) to 4 (normal speech). Participants in the sample had mean speech ALSFRS-R =  
3.22 with scores between 0 and 4.

Sample 3
The data consisted of 24 ALS participants (a total of 49 sessions, mean age = 67.4 years, 

SD = 11.3; 7 females). Participants in the sample had a mean speech ALSFRS-R of 3.35, with 
scores between 2 and 4. The participants’ cognitive function was measured with the Montreal 
Cognitive Assessment (MoCA), with scores that ranged from 0 (most impaired) to 30 (no 
impairment). The participants in the sample had a mean MoCA of 22.5, with scores between 
9 and 27.



115Digit Biomark 2020;4:109–122

 
Stegmann et al.: Repeatability of Speech Features

www.karger.com/dib
© 2020 The Author(s). Published by S. Karger AG, BaselDOI: 10.1159/000511671

M
ea

n 
M

FC
C2

 a
t t

im
e 

t +
 1

Mean MFCC2 test-retest plot

Mean MFCC2 at time t

20

20

–20

–20

0

0
c

Co
nt

en
t d

en
sit

y 
at

 ti
m

e 
t +

 1

Content density at time t

Content density test-retest plot

0.6

0.6

0.5

0.5

0.4

0.4
g

Lo
ud

ne
ss

 p
ea

ks
 p

er
 se

co
nd

 a
t

tim
e 

t +
 1

Loudness peaks per second at time t

Loudness peaks per second
test-retest plot

8

6

4

2

0

0 2.5 5.0 7.5
e

Shimmer mean at time t

4

3

Sh
im

m
er

 m
ea

n 
at

 ti
m

e 
t +

 1

Shimmer mean test-retest plot

3

2

2

1

1

0

0 4
a

Pitch variability test-retest plot

Pi
tc

h 
va

ria
bi

lit
y 

at
 ti

m
e 

t +
 1

Pitch variability at time t

10,000

10,000

0

0

20,000

20,000

30,000

30,000
d

TT
R 

at
 ti

m
e 

t +
 1

Type to token ratio (TTR)
test-retest plot

0.8

0.7

0.6

0.5
0.5 0.6

TTR at time t
0.7 0.8

h

W
or

d 
le

ng
th

 a
t t

im
e 

t +
 1

Word length test-retest plot

4.0

3.6

3.2

3.2
Word length at time t

3.6 4.0
f

Jitter at time t

0.075

0.075

0.050

0.025

0.025 0.050

0

0

Jitter test-retest plot

Jit
te

r a
t t

im
e 

t +
 1

b

Fig. 1. Sample test-retest plots for 
a set of open-source features. 
Test-retest plots: shimmer mean 
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pitch variability (d), loudness 
peaks per second (e), and word 
length (f). TTR, type-to-token ra-
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Summary of Results
The 3 samples were analyzed separately, such that there was a set of repeatability 

measures for ALS speech (sample 1), healthy speech (sample 2), and ALS with cognitive 
decline speech (sample 3). Using openSMILE and Praat, acoustic features were extracted from 
sustained phonations and sentences separately from healthy controls and ALS participants. 
Repeatability measures were calculated for the phonations and sentences separately.

The median ICC for the phonations, sentences, and language features were: 0.31, 0.55, 
and 0.02, and the median WSCV were: 79, 29, and 52%, respectively.

To better visualize the spread of the data, we chose a sample of features and plotted the 
test-retest plots in Figure 1a–h using the phonations from the ALS sample (sample 1) for the 
acoustic features and the language features from the ALS with cognitive decline sample 
(sample 3). The disease groups (as opposed to the healthy sample) were chosen for visual-
izing the plots because they exhibited a wider dynamic range in the data. All observations 
from all of the participants are included such that the x-axis shows the participants’ observa-
tions on a given assessment date and the y-axis shows the participants’ observations in the 
following assessment date. Given that there was a large number of features, we selected 
features that have been used in papers related to clinical speech analytics and features that 
readers would be familiar with. For example, jitter and shimmer aim to measure instability 
in the voice, which has been found to become pronounced in ALS and Parkinson disease 
patients [17–19]. The second MFCC coefficient has been used to classify between patients 
with Parkinson disease and healthy controls [20]. Content density is the number of content 
words (nouns, verbs, adjectives, and adverbs) normalized by the total number of words 
produced. The type-to-token ratio is the proportion of words that are unique. Changes in 
noun use, the time-to-token ratio, and the density of information content are linked to 
cognitive changes seen in Alzheimer disease [21]. Pitch, loudness, and length of words are 
expected to be familiar to most readers, and we therefore included them. 

Table 2a and b shows the 5th percentile, the 25th percentile, the median, the 75th 
percentile, the 95th percentile, and the mean ICC and WSCV (as percentages) for the 3 tasks 
separately (sentences, phonation, and connected speech) across the 3 samples (ALS, ALS with 
cognitive decline, and healthy controls). Table 3a and b shows the ICC and WSCV separated 
by categories (energy, frequency, etc.) and samples. As Tables 2 and 3 show, the sentences 
had a higher repeatability (higher median ICC and lower median WSCV) than the phonations, 
and the connected speech features had the lowest repeatability scores (lowest ICC and highest 
WSCV).

Table 2. Percentiles, medians, and means by task

Task 5th
percentile

25th 
percentile

Median Mean 75th 
percentile

95th 
percentile

a ICC for the features separated by task
Connected speech 0.00 0.00 0.02 0.15 0.32 0.49
Phonation 0.00 0.14 0.31 0.33 0.52 0.71
Sentences 0.14 0.42 0.56 0.55 0.70 0.86

b WSCV for the features separated by task (%)
Connected 6.61 23.37 52.45 93.49 61.15 365.29
Phonation 14.48 40.05 79.19 109.04 126.69 315.46
Sentences 5.11 12.32 28.87 39.99 56.35 130.35
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Table 3. ICC and WSCV by category and sample

Diagnosis Category 5th 
percentile

25the 
percentile

Median Mean 75the 
percentile

95th 
percentile

a ICC separated by category and diagnosis
ALS (sample 1) Energy 0.14 0.40 0.67 0.60 0.80 0.91

Frequency 0.01 0.41 0.58 0.51 0.70 0.87
MFCC 0.09 0.37 0.60 0.55 0.75 0.88
Pitch 0.11 0.31 0.52 0.49 0.68 0.86
Spectral 0.09 0.38 0.56 0.53 0.71 0.84
Temporal 0.01 0.37 0.62 0.57 0.80 0.90

ALS cognitive decline (sample 3) Energy 0.00 0.12 0.46 0.42 0.65 0.87
Frequency 0.00 0.07 0.54 0.44 0.71 0.92
MFCC 0.00 0.08 0.36 0.37 0.62 0.82
Pitch 0.00 0.13 0.37 0.37 0.59 0.76
Spectral 0.00 0.18 0.40 0.39 0.58 0.80
Temporal 0.00 0.12 0.33 0.39 0.67 0.85
Lexical 0.00 0.00 0.01 0.14 0.25 0.57
Pragmatic 0.00 0.00 0.32 0.23 0.32 0.39
Semantic 0.00 0.00 0.19 0.25 0.44 0.66
Syntactic 0.00 0.00 0.00 0.05 0.01 0.35

Healthy subjects (sample 2) Energy 0.08 0.27 0.48 0.46 0.65 0.74
Frequency 0.01 0.14 0.35 0.35 0.55 0.81
MFCC 0.02 0.22 0.37 0.37 0.53 0.66
Pitch 0.03 0.23 0.47 0.46 0.65 0.87
Spectral 0.01 0.25 0.44 0.40 0.55 0.69
Temporal 0.08 0.30 0.46 0.44 0.60 0.72

b WSCV separated by category and diagnosis
ALS (sample 1) Energy, % 7.40 11.63 21.56 46.11 45.93 165.45

Frequency, % 2.75 7.07 18.32 29.34 44.10 85.68
MFCC, % 5.07 9.90 16.73 34.52 33.79 74.42
Pitch, % 7.20 14.87 29.35 39.88 48.12 98.98
Spectral, % 9.63 33.74 60.95 81.32 95.40 229.41
Temporal, % 9.64 16.28 21.78 47.21 47.03 165.70

ALS cognitive decline 
(sample 3)

Energy, % 7.93 13.60 29.43 52.36 56.90 153.44
Frequency, % 2.93 6.08 16.11 34.98 57.74 95.64
MFCC, % 4.72 10.43 22.11 40.59 42.30 97.38
Pitch, % 9.62 16.72 30.57 47.04 45.59 106.56
Spectral, % 9.85 38.76 63.49 95.37 116.80 285.77
Temporal, % 7.99 12.62 29.66 62.63 67.39 188.73
Lexical, % 4.22 7.32 16.61 37.48 27.49 150.01
Pragmatic, % 52.45 52.45 52.45 138.88 147.77 584.25
Semantic, % 7.95 10.50 15.21 22.40 30.42 49.90
Syntactic, % 16.55 30.82 44.69 42.64 54.50 64.74

Healthy subjects (sample 2) Energy, % 5.12 10.75 23.10 42.26 50.84 124.29
Frequency, % 2.20 8.21 14.16 24.38 32.01 92.52
MFCC, % 4.81 8.55 17.69 36.49 34.22 91.74
Pitch, % 5.67 10.44 22.32 34.48 37.18 94.13
Spectral, % 5.97 31.42 66.39 84.85 110.06 229.70
Temporal, % 6.57 21.71 26.57 55.46 49.89 204.46
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Table 4 shows the 3 features with the highest and lowest ICC for each category, using 
the sentences from sample 1 (ALS sample) for the acoustic features and transcripts of the 
picture description task from sample 3 (ALS with cognitive decline sample) for the language 
features.

The category of features that had the highest repeatability scores was the energy category 
(i.e., features related to loudness and the energy produced in the acoustic signal). However, 
there was considerable variability, and there was not a clear explanation for what differen-
tiated the most repeatable from the least repeatable features. For example, among the energy 
features, pcm_LOGenergy_sma_meanPeakDist and pcm_LOGenergy_sma_numPeaks were 2 
features related to the peaks of energy in the acoustic signal, yet they had the highest and 
lowest ICC (0.94 and 0.23) in the energy features of sample 1 in the sentences. Because the 
features are not directly interpretable, it is difficult to identify the reasons why a small subset 
of features has a high reliability, while most of the features are unreliable.

Table 4. Features with the highest and lowest ICC per category

Category Highest ICC Lowest ICC

Energy pcm_LOGenergy_sma_de_de_linregerrA (ICC = 0.93) pcm_LOGenergy_sma_de_centroid (ICC = 0.39)
pcm_LOGenergy_sma_de_de_nzabsmean (ICC = 0.93) pcm_LOGenergy_sma_de_de_qregerrA (ICC = 0.39)
pcm_LOGenergy_sma_meanPeakDist (ICC = 0.94) pcm_LOGenergy_sma_numPeaks (ICC = 0.23)

Frequency F0semitoneFrom27.5Hz_sma3nz_amean (ICC = 0.89) F0semitoneFrom27.5Hz_sma3nz_meanFallingSlope (ICC = 0.28)
F0semitoneFrom27.5Hz_sma3nz_percentile50.0 (ICC = 0.92) F0semitoneFrom27.5Hz_sma3nz_stddevFallingSlope (ICC = 0.21)
F0semitoneFrom27.5Hz_sma3nz_percentile80.0 (ICC = 0.88) F0semitoneFrom27.5Hz_sma3nz_stddevRisingSlope (ICC = 0.24)

MFCC mfcc_sma_de_de.0._percentile95.0 (ICC = 0.95) mfcc_sma_de_de.11._centroid (ICC = 0.20)
mfcc_sma.12._meanPeakDist (ICC = 0.98) mfcc_sma_de_de.11._linregc1 (ICC = 0.18)
mfcc_sma.12._qregerrA (ICC = 0.94) mfcc_sma_de_de.8._quartile2 (ICC = 0.06)

Pitch voiceProb_sma_linregerrQ (ICC = 0.89) F0_sma_quartile1 (ICC = 0.09)
voiceProb_sma_qregerrA (ICC = 0.90) F0env_sma_de_de_quartile2 (ICC = 0.02)
voiceProb_sma_qregerrQ (ICC = 0.91) F0env_sma_de_quartile2 (ICC = 0.00)

Spectral pcm_fftMag_melspec_sma.1._meanPeakDist (ICC = 0.92) mfcc2_sma3_stddevNorm (ICC = 0.00)
pcm_fftMag_melspec_sma.2._meanPeakDist (ICC = 0.92) mfcc4_sma3_stddevNorm (ICC = 0.00)
pcm_fftMag_melspec_sma.2._qregerrA (ICC = 0.93) slopeV0.500_sma3nz_stddevNorm (ICC = 0.00)

Temporal loudnessPeaksPerSec (ICC = 0.94) pcm_zcr_sma_de_de_amean (ICC = 0.27)
pcm_zcr_sma_de_de_numPeaks (ICC = 0.92) pcm_zcr_sma_de_de_qregc1 (ICC = 0.21)
pcm_zcr_sma_de_numPeaks (ICC = 0.92) pcm_zcr_sma_de_de_qregc2 (ICC = 0.25)

Lexical brunet (ICC = 0.71) adverbs (ICC = 0.00)
MATTR_50 (ICC = 0.59) coordinate (ICC = 0.00)
TTR (ICC = 0.75) familiarity (ICC = 0.00)

Pragmatic rst_num_attribution (ICC = 0.39) topic18 (ICC = 0.00)
rst_num_background (ICC = 0.39) topic20 (ICC = 0.00)
rst_num_cause (ICC = 0.39) topic22 (ICC = 0.00)

Semantic avg_wn_ambig (ICC = 0.69) avg_max_wn_depth_vb (ICC = 0.00)
kurt_wn_ambig_vb (ICC = 0.72) avg_min_wn_depth_vb (ICC = 0.00)
sd_wn_ambig (ICC = 0.64) avg_wn_sim_LC (ICC = 0.00)

Syntactic S (ICC = 0.73) ADJP_.._JJ (ICC = 0.00)
VP_.._VB_VP (ICC = 0.50) ADJP_.._RB_JJ (ICC = 0.00)
W (ICC = 0.67) ADVP_.._RB (ICC = 0.00)

For information about the features, readers can refer to openSMILE and Praat for the acoustic features and Talk2me for the language features.
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Discussion

Our study evaluated the repeatability of speech features from several complementary 
perspectives. In this paper, we summarized the findings of the repeatability measures that 
were not unit dependent (ICC and WSCV); however, in the online supplementary material we 
provide all measures of reliability for every acoustic feature from healthy individuals and 
individuals with ALS (samples 1 and 2) separately, as well as every language feature from the 
ALS individuals with cognitive decline (sample 3).

Overall, we found that the average repeatability scores were well below acceptable limits 
for clinical decision making. In medical applications, it is recommended that reliabilities 
exceed ICC = 0.75 [22], with some authors arguing that they should be above ICC = 0.90 [23]. 
However, only 11% of the features were above ICC = 0.75. Low ICC are indicators that partic-
ipants are not well separated according to their features. The WSCV were generally large, 
with half of the metrics having a WSCV above 48%, indicating that half of the features had 
within-subject SD of 48% or larger than the mean. High WSCV indicate a large natural vari-
ability within subjects, which makes it difficult to detect disease-related changes in indi-
viduals. In the online supplementary material, we include repeatability scores from the 
acoustic features from samples 1 and 2 (ALS and healthy) and the language features from 
sample 3 (ALS with cognitive decline).

Sources of Speech Variation and Mitigation Strategies
The results of this study beg the question: why are speech and language features so 

variable, even when collected under approximately the same conditions? Every person’s 
speech characteristics vary from utterance to utterance, and day to day, for a variety of 
reasons unrelated to neurological health. Speech and language characteristics can change as 
a function of the physiological state of the speaker (e.g., fatigue, hydration, hormonal state, 
mood, and engagement level) and the degrees of freedom in the speaking task (e.g., repeating 
a word vs. describing a picture). Additional sources of variability are introduced by the 
recording setup and environment (e.g., background noise, reverberation, and mic-to-mouth 
distance), as well as the algorithms themselves. Quality research paradigms can help to 
attenuate the variability in the study design. In our study, we attempted to control for this by 
having participants use the same app on the same device and perform the same tasks in the 
same location session after session. Nevertheless, there was still considerable variation in the 
measured features. We posit that this is because most of the features in our consideration set 
were developed for other applications and have only been adopted in the clinical literature 
out of convenience. For example, OpenSMILE was developed for speech-based emotion recog-
nition and music information retrieval [10, 12, 24]; many of the linguistic features in Talk2Me 
were developed to assess second-language proficiency [25]. Developing features that are 
useful in clinical applications and robust to the nuisance variables that drive variability 
requires targeted work.

Another way of reducing variability in the features is to collect data from a larger 
number of tasks and average features across them. It is appealing to expect that, from a 
single task (e.g., picture description), we can extract measures that can be reliably extracted 
from session to session; however, it is well-known that performance on any single task can 
vary. Many neuropsychological tests accommodate this variation by measuring the same 
construct in multiple ways and ensuring that the internal validity – the correlation between 
related items – is high [26]. For this reason, it is critical to oversample speech collection 
from multiple, related tasks such that clinical variables of interest can be estimated more 
reliably.
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Implications for Digital Health Algorithm Design and Research
Broadly speaking, open-source features have been used in 2 different ways in the clinical-

speech literature, i.e., longitudinal tracking of speech features and combining features to 
build complex machine learning models for detecting disease. Our results have implications 
for both use cases, as described below.

Longitudinal Tracking of Speech
Some studies have tracked speech features (or combinations of speech features) longitu-

dinally to assess disease progression or the effects of an intervention. For example, D’Alatri 
et al. [27] used changes in features such as jitter and shimmer to evaluate the effects of medi-
cations on Parkinson disease progression. In studies such as this, the repeatability analysis 
can be used for study design. That is, the SEM and the MDC results can be used for power 
analysis and to determine the minimum effect size required to detect a change in that feature.

Machine Learning Model Development
A large number of studies in the literature use combinations of features to develop 

machine learning models that predict a clinical variable of interest. For example, the various 
challenges in speech-based prediction of Parkinson disease severity [28] and depression [29, 
30] have led to a slew of papers utilizing this approach. Studies have shown that machine 
learning models, and deep learning models especially, are sensitive to noise in the input 
features [31, 32]; this is especially true in cases where the sample sizes are small, such as in 
clinical applications [33]. In this case, our results highlight the need for integration of feature 
repeatability into the design of speech-based machine learning algorithms. The results in the 
online supplementary material provide another criterion that algorithm designers can use for 
feature selection and model selection.

Limitations and Future Work
One limitation of our work is that we only considered the repeatability of the features for 

healthy speech and ALS speech. Our focus on ALS allowed us to explore the repeatability of 
the features across a range of dysarthria severity and cognitive impairment levels. The broad 
nature of the impairment in ALS provides a useful test case for assessing the reliability in a 
heterogeneous population with a wide variety of speech acoustic and natural language 
features. Therefore, our expectation is that the findings of this study will likely be general-
izable to other patient populations as well; however, this needs to be empirically confirmed 
in other repeatability studies using speech data from other diseases.

The current study explored a very large number of features for a broad overview of the 
repeatability of open-source speech measures. However, we did not conduct an in-depth 
exploration of each individual feature to identify the reasons for the low reliability. That effort 
is challenged by the lack of interpretability in the feature set, which makes it difficult to 
diagnose the sources of variation in the features. Future work should focus on developing a 
robust clinically interpretable set of speech features customized to targeted applications with 
improved repeatability. 
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