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40 Short Running Title: Repeatability of MRI Radiomic Features

41 ABSTRACT

42 Purpose: To assess repeatability of radiomic features in magnetic resonance (MR) imaging of 

43 glioblastoma (GBM) tumors with respect to test-retest, different image registration approaches 

44 and inhomogeneity bias field correction.

45 Methods: We analyzed MR images of 17 GBM patients including T1 and T2-weighted images 

46 (performed within the same imaging unit on two consecutive days). For image segmentation, 

47 we used a comprehensive segmentation approach including entire tumor, active area of tumor, 

48 necrotic regions in T1-weighted images, and edema regions in T2-weighted images (test studies 

49 only; registration to retest studies is discussed next). Analysis included N3, N4 as well as no 

50 bias correction performed on raw MR images. We evaluated 20 image registration approaches, 

51 generated by cross-combination of 4 transformation and 5 cost function methods. In total, 714 

52 images (17 patients × 2 images × ((4 transformations × 5 cost functions) + 1 test image) and 

53 2856 segmentations (714 images × 4 segmentations) were prepared for feature extraction. 

54 Various radiomic features were extracted, including the use of pre-processing filters, 

55 specifically wavelet (WAV) and Laplacian of Gaussian (LOG), as well as discretizations into 

56 fixed bin width and fixed bin count (16, 32, 64, 128 and 256), Exponential, Gradient, 

57 Logarithm, Square and Square Root scales. Intra-class correlation coefficients (ICC) were 

58 calculated to assess repeatability of MRI radiomic features (high repeatability defined as ICC 

59 ≥ 95%).

60 Results: In our ICC results, we observed high repeatability (ICC ≥ 95%) with respect to image 

61 preprocessing, different image registration algorithms and test-retest analysis, for: RLNU and 

62 GLNU from GLRLM, GLNU and DNU from GLDM, Coarseness and Busyness from 

63 NGTDM, GLNU and ZP from GLSZM, and Energy and RMS from first order. Highest fraction 

64 (percent) of repeatable features were observed, amongst registration techniques, for the method 

65 Full Affine transformation with 12 degrees of freedom using Mutual Information cost function 
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66 (mean 32.4%), and amongst image processing methods, for the method Laplacian of Gaussian 

67 (LOG) with Sigma (2.5-4.5 mm) (mean 78.9%). The trends were relatively consistent for N4, 

68 N3 or no bias correction.

69 Conclusion: Our results showed varying performances in repeatability of MR radiomic 

70 features for GBM tumors due to test-retest and image registration. The findings have 

71 implications for appropriate usage in diagnostic and predictive models.

72 Keywords: Radiomics, MRI, Test–retest, Repeatability, Glioblastoma, Image registration, bias 

73 correction.INTRODUCTION

74 Glioblastoma multiform (GBM) is a very heterogeneous cancer with poor prognosis and 

75 treatment outcome 1. The median survival for GBM patients is about 15 months and its 

76 occurrence rate is two or three cases per 100,000 per year 2. Surgical resection followed by 

77 radiotherapy and chemotherapy is the current standard approach to treat GBM 3. In this context, 

78 magnetic resonance imaging (MRI) plays a critical role in clinical diagnosis and treatment, 

79 particularly towards informed surgery and radiotherapy treatment planning 3.

80 For years, qualitative MR image sequences have been used for GBM management. In recent 

81 years, quantitative image-derived so-called radiomic features extracted from standard MR 

82 images have been increasingly studied as powerful prognostic tools to enhance patient 

83 management through improved stratification 4. Studies have identified that MR image features 

84 extracted from GBM tumors are highly correlated with tumor heterogeneity, response failure 

85 and survival5-7, metastasis and genomic parameters8-11 (as reviewed in 12).

86 Radiomics is an active area of research, aiming to quantify images using different feature 

87 categories towards improved clinical tasks 13-17. In radiomics studies, a wide range of features 

88 are extracted from high quality images for several applications, such as clinical correlations, 

89 therapy response prediction, tumor characterization and survival assessment 18-21. Radiomics is 

90 a multi-step process applied to medical images involving image segmentation, feature 

91 extraction, feature selection and multivariate analysis21,22. Variations in these main steps and 

92 their sub-steps, may result in notable alterations in radiomic features as considered for final 

93 outcome analysis. Although radiomic analyses are becoming increasing mature, there are a 

94 number of important technical limitations, and many radiomic features are vulnerable to 

95 significant variations based on image acquisition, reconstruction and processing methods, as 

96 reported by ongoing radiomics studies 23-27. Moreover, as hundreds of feature sets are available 

97 for consideration in medical imaging, it is necessary to consider the reproducibility and 

98 repeatability of radiomic features as a feasible measure to pre-select features for further 

99 analysis, such as classification and clinical correlation 23.
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100 In image biomarkers development, there are two main frontiers which should be assessed in 

101 regard to robustness of radiomic features. Specifically, repeatability and reproducibility of 

102 radiomic features can be important towards discovery of high-performance image biomarkers 

103 for using in preclinical or clinical settings. The Quantitative Imaging Biomarker Alliance 

104 (QIBA) Technical Performance Working Group has defined repeatability as the “variability of 

105 the image biomarker when repeated measurements are acquired on the same experimental unit 

106 under identical or nearly identical conditions” and reproducibility as “the variability in the 

107 image biomarker measurements associated with using the imaging instrument in real world 

108 clinical settings which are subject to a variety of external factors that cannot all be tightly 

109 controlled” 28.

110 Although a number of studies have been conducted on repeatability and reproducibility of 

111 radiomic features in different imaging modalities, some issues remain to be explored, 

112 particularly for MRI radiomic features in GBM cancer 29,30. Gourtsoyianni et al. 31 assessed 

113 day-to-day repeatability of global and local regional MR imaging texture features derived from 

114 primary rectal cancer, and demonstrated that repeatability is higher for global texture 

115 parameters relative to local-regional texture parameters, indicating that global texture 

116 parameters should be sufficiently robust for clinical practice. Baessler et al. 32 investigated the 

117 robustness of radiomic features in different MRI sequences. In that study, a phantom was 

118 scanned on a clinical 3T system using FLAIR, T1w, and T2w sequences, and scans were 

119 repeated after repositioning of the phantom. The study showed that only 15 of 45 features had 

120 good robustness across all MRI sequences. Including repeatable features in diagnostic and 

121 predictive models can be key for ensuring model generalizability 33-35. As such, the present 

122 study focuses on the study of repeatability, but in a novel context of studying image registration 

123 methods for mapping retest images to test images. As image registration plays a critical role in 

124 several clinical settings, such as treatment planning, we studied the temporal variations of MR 

125 imaging features in two consecutive days.
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141 MATERIAL AND METHODS

142 Figure 1 illustrates the various processes followed in this work, as elaborated below. 

143 Repeatability assesses feature variability in the context of varying imaging times (test-retest) 

144 under otherwise similar processes.

145

146 Patient data

147 We included 19 patients with pathologically confirmed GBM. The RIDER NEURO MRI 36 

148 dataset were obtained from the cancer imaging archive (TCIA) 36,37 were used for this study. 

149 All patients had two MR images, including T1- (gradient echo (GRE), gadolinium enhanced) 

150 and T2- (fluid attenuation inversion recovery (FLAIR), gadolinium enhanced) weighted 

151 sequences which had been acquired in two consequent days with the same protocols on a 1.5 

152 tesla MRI scanner (Siemens Healthcare, SYNGO MR 2004V 4VB11D). Image acquisition and 

153 reconstruction parameter details were presented in Table 1. After reviewing all images, two 

154 patients were excluded: one patient because of challenges on finding the tumor, and another 

155 patient because of missing second day images. Finally, we analyzed MR images of 17 (two 

156 patients were excluded from 19 patients because of low image quality and miss one the image 

157 sequence) GBM patients including T1 and T2-weighted images.

158 Image segmentation

159 We performed all image segmentations manually using the open source software ITK-Snap 38. 

160 For image segmentation, we used a comprehensive segmentation approach based on 

161 BRATS39,40 including a) entire tumor (enhancing + necrotic core), b) active area of tumor 

162 (enhancing core), c) necrotic regions (necrotic core) in T1-weighted images, and d) edema 

163 regions (edema core) in T2-weighted images (test studies only; registration to retest studies is 

164 discussed next). In total, the following segmentations were obtained per patient: 3 

165 segmentations in the T1 weighted image, and 1 segmentation in the T2 weighted image. This 

166 was followed by reciprocal transfer of segmentations from T1 (T2) to T2 (T1) weighted images, 

167 arriving at 8 segmentations in total (4 on T1 and 4 on T2) for each patient.
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168 Image registration

169 Each segmentation performed above for a given patient image was naturally mapped to the 

170 subsequent follow-up image following image registration of retest images to test images. 

171 Overall, we performed 20 types of image registrations obtained by cross combination of 4 

172 transformations and 5 cost function methods, using Mango open source software 41. For 

173 transformation, we applied full affine (FA), full scale (FS), global scale (GS) and rigid-body 

174 (RB) with 12, 9, 7 and 6 degrees of freedom (DOF), respectively. Cost functions consisted of 

175 correlation ratio (CR), mutual information (MI), normalized mutual information (NMI), 

176 normalized correlation (NC) and least squares (LS).

177 Feature extraction

178 In total, 714 images (17 patients × 2 images × ((4 transformations × 5 cost functions) + 1 test 

179 image))) and 2856 segmentations (714 images × 4 segmentations) were prepared for feature 

180 extraction. The N342 and N443 bias correction methods were additionally applied on raw MRI 

181 images. For pre-processing, we applied filters including wavelet (all possible combinations of 

182 applying either a high or a low pass filter in each of the three dimensions, including HHH, 

183 HHL, HLH, HLL, LHH, LHL, LLH and LLL)) and Laplacian of Gaussian (LOG) with 

184 different sigma values (0.5 to 5 with steps 0.5) all with 64 bins. Subsequently, images were 

185 discretized into 16, 32, 64, 128 and 256 fixed bin count and fixed bin widths, Exponential, 

186 Gradient, Logarithm, Square and Square Root scales. Three types of features, namely first-

187 order, shape-based and textural features, were then extracted. Texture sets consisted of gray 

188 level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level 

189 dependence matrix (GLDM), gray level size zone matrix (GLSZM) and neighboring gray tone 

190 difference matrix (NGTDM). In sum, more than twenty-six million (26,295,192) features were 

191 extracted from the original as well as N3 and N4 bias corrected images for further analysis. 

192 Details on image features are shown in Supplementary Table 1. Different tools have been 

193 developed for extraction of radiomics feature 44-47. Our current study performs mage feature 

194 extraction using the Python library PyRadiomics 44 which the feature definition is compliant 

195 with the Image biomarker standardization initiative (IBSI) . As an exception, the definition of 

196 Kurtosis from first order features differs between PyRadiomics and IBSI. IBSI and 

197 PyRadiomics calculates Kurtosis with –3 and +3 respectively, and this stem from the fact that 

198 a gaussian distribution has a kurtosis.

199 Statistics and data analysis

200 In the present work, we used applied intra-class correlation coefficient (ICC) test for analysis 

201 of feature repeatability.
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202 The intra-class correlation coefficient (ICC) is a widely used reliability index in test-retest, 

203 interrater and interrater reliability analyses. ICC can be defined as follows:

204  Eq. 1
 

-

-1

R W

R W

MS MS
ICC

MS k MS




205 where MSR denotes mean square for rows (each feature value in test and retest), MSW indicates 

206 mean square for residual source of variance, k is the number of observers involved, and n is 

207 the number of subjects.

208 Based on ICC, robust features were categorized into five categories, namely 1) ICC <50%, 

209 2) 50% < ICC < 80%, 3) 80% < ICC < 90%, 4) 90% < ICC < 95% and 5) ICC > 95%. Features 

210 with ICC > 95% were defined as highly robust features. For comparison of image registration 

211 methods, we reported the peak value of the probability density function for each feature set. 

212 The R package, version 3.1.3 IRR, was used for ICC computations.

213 ICC results are shown by the probability density distribution (PDD), which is used to 

214 provide quantitative statistical description of ICC. In PDD, shape, and peak value can be used 

215 to compare the ICC results. Specifically, in our work, we use this framework to assess how 

216 radiomic features are impacted against different image registration methods in the test-retest 

217 setting.
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234

235

236

237

238

239 RESULTS

240 Analyzing the large set of radiomic features obtained from image types, different bias 

241 corrections, image registrations, regions, as well as pre-processing and feature sets, here we 

242 report the most relevant findings, while other findings are presented as supplementary data.

243 Figure 2 illustrates ICC values (categorized 1 to 5: 1 = low and 5 = highly robust) of 

244 radiomic features as extracted from discretization with 64 gray level fixed bin width for 

245 different image registration algorithms (N4 bias corrected images). The ICC values for all 

246 shape features were found to be more than 95% due to the fact that same segmentations in test 

247 images were mapped onto retest images. As such, these features were excluded from further 

248 analysis. Several first-order (FO) features including RMS, Mean, TE, Energy and 90Percentile 

249 and RLNU from GLRLM had ICC > 95%. In addition, for Laplacian of Gaussian (LOG) with 

250 Sigma (3.5 mm) and Wavelet with LLL decomposition preprocessing, as used prior to 

251 extraction of radiomic features (Figures 3 and 4 in N4 bias corrected images, respectively), the 

252 above-mentioned FO features were found to be robust. On the other hand, as shown in Figure 

253 3, certain features including GLCM (CP, CT, IV, SS), GLDM (DNU, GLNU, GLV, SDE, 

254 SDHGLE), GLRLM (GLNU, GLV, RLNU), GLSZM (GLNU, SZNU, ZP), NGTDM 

255 (Busyness, Strength), were commonly robust to different image registration algorithms. Also, 

256 as shown in Figure 4, certain features including GLCM (DE), GLDM (DNU, GLNU), GLRLM 

257 (GLNU, RLNU), GLSZM (GLNU, ZP) were highly robust to different image registration 

258 algorithms. Supplemental Tables 2, 5 and 8 present the percent of each ICC group (for different 

259 image registration and image processing settings) for the original as well as N4 and N3 bias 

260 corrected images, respectively. Supplementary Tables 3 and 4 show the highest (ICC>95%) 

261 and lowest repeatable features (ICC<50%), respectively, for original images in different image 

262 processing and registration settings. Supplementary Tables 6 and 7 show these for N4 bias 

263 corrected images, while Supplementary Tables 9 and 10 show them for N3 bias corrected 

264 images. The other results for ICC values, including heat maps for fixed bin count (16, 32, 64, 

265 128, 256), fixed bin width (16, 32, 128, 256), Exponential, Gradient, Logarithm, Square, 

266 Square Root, LOG and Wavelet are presented as supplementary Figures 1-17 and 18-33 and 

267 33-50 for the original, N4 and N3 bias corrected images, respectively.
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268

269

270

271

272

273

274 In Figure 5-a, we present bar plots depicting percent of five ICC categories for different 

275 image preprocessing methods (across all radiomic features and registration algorithms) in N4 

276 bias corrected images. The results show LOG pre-processing with medium sigma (2.5-4.5 mm) 

277 with highest fraction (percent) of robust features (mean 78.9%). In addition, Figure 5-b depicts 

278 ICC bar plots of different registration methods (across all radiomic features and image 

279 preprocessing methods) for N4 bias corrected images. As shown, the FA method with MI cost 

280 function (mean 32.4%) vs. GS registration method with LS cost function (mean 18.8%) 

281 depicted highest vs. lowest fraction (percent) of robust features, respectively. Similar bar plots 

282 for Original and N3 Bias Corrected images are presented in supplementary Figures 75 and 77, 

283 respectively. 

284 In Supplementary Figures 63-66, 67-70 and 71-74, we illustrate bar plots of ICC groups for 

285 radiomic features against applied registration algorithms for the original, N4 and N3 bias 

286 corrected images, respectively. Interestingly, it is seen that the reproducibility performances 

287 for each of these 3 sets of images (i.e. Original, N3 and N4) are relatively consistent with 

288 respect to one another. Specifically, Supplemental Figure 69 depicts LOG pre-processing filter 

289 in N4 Bias Corrected images, arriving at highest number of reproducible features amongst 

290 preprocessing methods. As also seen, FA method with MI cost function provided highest 

291 number of reproducible features (10.8-79.6% depending on LOG sigma value; optimized for 

292 2.5-4.5mm), and GS method with LS methods depicted lowest (5.4-36.6%) number of 

293 reproducible features.  Supplementary Figures 75 and 77 show ICC Bar plots for the original 

294 and N3 bias corrected images, respectively, for different image preprocessing methods (across 

295 all radiomics feature and registration algorithms), different registration methods (across all 

296 radiomic features and image preprocessing methods), and different features (across all 

297 radiomic features and image preprocessing methods), arriving at generally similar 

298 observations.

299 Supplementary Figure 76 show ICC bar plots of different features in N4 bias corrected 

300 images (different image preprocessing and registration algorithm). ICC results showed high 

301 repeatability for RLNU (90.8%) and GLNU (88.8%) from GLRLM, GLNU (76.1%) and DNU 
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302 (69.2%) from GLDM, Coarseness (65.8%) and Busyness (54.9%) from NGTDM, GLNU 

303 (57.4%) and ZP (39.7%) from GLSZM, and Energy (65.5%) and RMS (64.9%) from first order 

304 were most highly repeatable with respect to image preprocessing and different image 

305 registration algorithms and test-retest analysis (ICC>95%). Correlation (24.4%) and AC 

306 (22.7%) from GLCM, HGLZE (22.9%), LAE (22.6%) and ZV (22.5%) from GLSZM, HGLRE 

307 (22.7%) from GLRLM, and HGLE from GLDM (22.7%) had lowest reproducibility with 

308 respect to image preprocessing, different image registration algorithms and test-retest analysis 

309 (with ICC<50%). 

310 Figure 6-a shows ICC bar plots between Original and N3 bias corrected images (across all 

311 radiomic features and registration algorithms). All preprocessed images except Fixed Bin 

312 Width (FBW) had high reproducibility. Figure 6-b ICC shows bar plots between Original and 

313 N4 bias corrected images (across all radiomic features and registration algorithms). It is 

314 essentially seen that N4 bias correction alters images more significantly than N3, with respect 

315 to Original images. Nonetheless, as discussed above, reproducibility performances within these 

316 3 sets of images (Original, N3 and N4), are relative consistent with respect to one another.

317 Figure 7 (a-f) depicts the probability density of ICC distribution for different types of 

318 radiomic features in N4 bias corrected images. The ICC distributions are different in several 

319 aspects, including peak values, ICC distribution per image registration method and density 

320 values. In Figure 7 (a-b), the main peak values of probability density for fixed bin count and 

321 fixed bin width discretized radiomic features (64 bin discretization) are ≥ 5, while in Figure 7 

322 (c and d), the peak values of features (Square and Square Root) are ≥ 5. For LOG features 

323 (Figure 7 e), the peak values of probability density are more than 18, while for Wavelet 

324 features, these values are more than 7.5. More details about the probability density plot are 

325 presented in supplementary Figures 51-54, 55-58 and 59-62 for the original, N4 and N3 bias 

326 corrected images, respectively.

327 Table 2 shows our results for highly repeatable features (ICC ≥ 0.95) against different 

328 registration schemes for N4 bias corrected images (the highest value in each row is set to bold). 

329 For all feature sets, highly repeatable features were found for the registration method FA-MI 

330 (range; 17.2-32.3% for BIN, 10.8-79.6% for LOG & 6.45-45.2% for wavelet). For LOG 

331 features, the highest repeatability was found for the RB-NMI registration scheme (82.8%). 

332 More details on repeatability are provided in supplementary Tables 2, 5 and 8 for the original, 

333 N4 and N3 bias corrected images, respectively.  The results for features with ICC>95% and 

334 ICC<50% against all registration methods are summarized in supplementary Tables 3-4,6-7 

335 and 9-10 for original, N4 and N3 Bias corrected images, respectively. The number of high 
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336 reproducible features (ICC>95%) were 243, 358 and 268 for Original, N4 bias corrected and 

337 N3 Bias corrected images, respectively (across all radiomic features, image preprocessing 

338 methods and registration algorithms).
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339 DISCUSSION

340 The assessment of repeatability and reproducibility for image features has garnered increasing 

341 interest 29. Accumulating evidence suggests the importance of taking such analyses into 

342 account. Studies have emphasized that repeatable radiomic features must be used for predictive 

343 modelling 31. In the present study, we aimed to assess test-retest repeatability of MRI radiomic 

344 features in GBM cancer patients as well as their repeatability against a wide range of image 

345 registration schemes. Different tools have been developed for radiomics feature extraction44-46; 

346 our study was conducted using the PyRadiomics package according to consensus definitions 

347 of the Image biomarker standardization initiative (IBSI) 48,49. IBSI is an independent 

348 international collaboration working towards standardization of image biomarkers. In this 

349 approach, all image features are standardized in terms of definitions, image processing, and 

350 reporting system.

351 In our ICC results, we observed high repeatability (ICC ≥ 95%) with respect to image 

352 preprocessing, different image registration algorithms and test-retest analysis for: RLNU and 

353 GLNU from GLRLM, GLNU and DNU from GLDM, Coarseness and Busyness from 

354 NGTDM, GLNU and ZP from GLSZM, and Energy and RMS from first order features. In 

355 addition, several first-order wavelet and LOG were found to be high-ICC features 

356 (supplementary Figures 15-16). As comparison, Schwier et al. 50 recently also reported that 

357 first-order features Mean and Median had ICC ≥ 95% in prostate MR image feature test-retest 

358 analysis.

359 Image registration is a key consideration in treatment response evaluation and adaptive 

360 radiotherapy. Our analysis shows that different image registration schemes have different 

361 effects on radiomic features. Depending on registration settings including transformation and 

362 cost function, feature performances vary. Highest percent of repeatable features were observed, 

363 amongst registration methods for the method Full Affine with 12 degrees of freedom with 

364 Mutual Information cost function (mean 78.9%), and amongst image processing methods for 

365 the method Laplacian of Gaussian (LOG) with Sigma (2.5-4.5 mm) (mean 32.4%).

366 There are a number of feature robustness analysis studies indicating that radiomic feature 

367 values vary with image acquisition and reconstruction parameters. Ford et al. 51 studied the 

368 impact of pulse sequence parameter selection on MRI-based textural features of the brain. Pulse 

369 sequences consisted of spin echo (SE), gradient echo (GRE), spoiled gradient echo (SP-GRE), 

370 inversion recovery spin echo (IR-SE), and inversion recovery gradient echo (IR-GRE). They 

371 found that radiomic features varied considerably among images generated by the five different 

372 T1-weighted pulse sequences, and that deviations from those measured on the T1 map varied 
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373 among features, from a few percent to over 100%. Yang et al. 52 examined the dependence of 

374 image texture features on MR acquisition parameters and reconstruction using a digital MR 

375 imaging phantom. They studied the effects of varying levels of acquisition noise, three 

376 acceleration factors, and four image reconstruction algorithms on MRI features. The 

377 investigators observed feature variance due to reconstruction algorithm and acceleration factor 

378 to be generally smaller than the clinical effect size. In that study, it was suggested that adequate 

379 precautions need to be taken regarding the validity and reliability of texture features, although 

380 some features had been preserved by changes in MR imaging settings. Molina et al. 53 studied 

381 potential variations of textural measures due to changes in MRI protocols including four 

382 different spatial resolution combinations and three dynamic ranges. The results showed that no 

383 textural measures were robust under dynamic range changes and entropy was the only textural 

384 feature robust under spatial resolution changes. Imaging-based changes including acquisition 

385 and reconstruction should be considered and separated from therapy related and tumor 

386 biological changes. In our study, we observed that several radiomic features change 

387 significantly across scan times.

388 Other researchers have attempted to assess robustness of radiomic features in different 

389 imaging modalities including CT. Cunliffe et al. 54 demonstrated that registration altered the 

390 values of the majority of CT texture features. They applied their texture analysis on serial CT 

391 scans and showed that 19 features remained relatively stable after demons registration, 

392 indicating their potential for detecting pathologic change in serial CT scans. They also 

393 indicated that combined use of accurate deformable registration using demons and texture 

394 analysis may allow quantitative evaluation of local changes in lung tissue due to disease 

395 progression or treatment response. Chou et al. 55 evaluated radiomic features stability when 

396 deformable image registration was applied. They applied feature analysis on lung cancer four-

397 dimensional computed tomography (4DCT), and deformable image registration (DIR) was 

398 applied between the inspiration and expiration phases of 4DCT datasets. They concluded that 

399 many features were unstable (mean variation > 50% or CCC < 0.5) when DIR is applied, 

400 caution is needed in radiomic feature analysis when DIR is necessary.

401 A recent study performed by Lv et al 56 in nasopharyngeal PET/CT showed that some 

402 radiomic features even with low ICC may perform well in disease discrimination. They 

403 demonstrated that poor absolute scale reproducibility of radiomic features did not necessarily 

404 translate into poor disease differentiation. In other words, features may change significantly 

405 due to different kinds of processing, but their relative ordering may remain the same. 

406 Nonetheless, this was a reproducibility study: in repeatability studies (including the present 
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407 work where for a given processing, test-retest values of features are evaluated), including high-

408 ICC repeatable radiomic features in diagnostic and predictive models may be critical for model 

409 generalizability.

410 Low frequency intensity non-uniformity presence in MR images, defined as field bias, could 

411 confound performance. To address this bias, different algorithms have been proposed including 

412 N342 and N4 bias correction57. In the present study, we used N3 and N4 bias correction and 

413 found that these algorithms had considerable impact on radiomic features. In reference to no 

414 bias correction, N3 bias correction produced higher number of reproducible features compared 

415 to the N4 algorithm, i.e. N3 algorithm had less impact on radiomics features with respect to 

416 non-bias corrected images. In addition, we identified that LHL decomposition from wavelet 

417 vs. exponential (as well as 64 fixed bin width) pre-processing led to highest vs. lowest number 

418 of reproducible features, respectively. 

419 Harmonization is also a critical issue in radiomics studies 58. Several studies have indicated 

420 that image features have to be harmonized against parameters which have great impact on 

421 feature values, such as scanner variations, reconstruction, imaging protocols 59-61 . In our study, 

422 all images were acquired on the same scanner using the same imaging protocol. As such, there 

423 was no need to harmonize image features, yet studies are needed to test or investigate methods 

424 to harmonize features in test-retest and registration methods. With regards to harmonization, 

425 Hu et al 62 demonstrated that normalized features have more stability 62. In addition, Orlhac et 

426 al 60 showed that harmonization can be efficient at removing multicenter effects on textural 

427 features.

428 Treatment response evaluation in GBM suffers from several uncertainties in differentiation 

429 among pseudo-progression, pseudo-response, treatment related necrosis and true progression 

430 63,64. Although, single imaging studies have found feasible results, several studies have 

431 indicated that diagnosis of pseudo-progression could not be achieved by a single imaging 

432 technique and suggested that serial imaging will results in improved diagnosis accuracy 65,66. 

433 On the other hand, there are several variations in the clinical definitions of pseudo-progression 

434 based on the imaging reports which requires higher-precision quantitative imaging 67. Some 

435 radiomics studies have shown feasibility of MR image radiomic features to discriminate 

436 between pseudo-progression compared to true progression 68-70 and genomic mutation 

437 prediction8-11,71,72 and treatment response assessments5,6. In the present image biomarker 

438 discovery era, our results would be important, wherein radiomic features with greatest 

439 robustness to image registration between images may be more beneficial in clinical studies. 

440 Specifically, because studies have suggested serial imaging for treatment response evaluation, 
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441 serial radiomic studies may benefit by integrating the identified robust radiomic features and 

442 methods as candidate biomarkers for GBM response assessment and prediction.

443 The limitation of this work is mainly the number of patients. The results of this study should 

444 be confirmed in a larger, multi-center dataset. In addition, the present work can be extended to 

445 other types of MR images, including diffusion weighted and dynamic contrast enhanced, and 

446 in other organs and diseases.

447

448 CONCLUSION

449 Repeatable radiomic features are potentially better candidates for usage in diagnostic and 

450 predictive models. Our results showed varying performance in repeatability of MR radiomic 

451 features for GBM tumors due to test-retest and image registration. The trends were relatively 

452 consistent for N4, N3 or no bias correction. Full Affine with 12 degrees of freedom with Mutual 

453 Information cost function and Laplacian of Gaussian (LOG) image processing resulted in 

454 highest percent of repeatable features in image registration and image processing, respectively. 

455
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Table 1. Image acquisition and reconstruction parameter details. 

Images Magnet TE, TR Resolution Flip Angle 

Contrast-enhanced 3D FLASH 1.5 T TR: 8.6 ms 

TE: 4.1 ms 

256 x 256 

1mm isotropic 

20 degree 

T2‐weighted 3D FLAIR 1.5 T TR: 6000 ms  

TE: 353 ms 

TI: 2200 ms 

256 x 256 

1mm isotropic 

180 degree 
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Table 2. 

Highly 

repeatable 

features (ICC 

≥ 0.95) 

against 

different 

registration 

settings in N4 

bias corrected 

images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Registration FA_CR FS_CR GS_CR RB_CR FA_LS FS_LS GS_LS RB_LS FA_MI FS_MI GS_MI RB_MI FA_NC FS_NC GS_NC RB_NC FA_NMI FS_NMI GS_NMI RB_NMI 

FBC (16) 21.5 14 10.8 14 14 14 9.68 15.1 26.9 19.4 11.8 15.1 14 14 10.8 14 19.4 18.3 14 18.3 

FBC (32) 19.4 15.1 11.8 15.1 16.1 16.1 9.68 15.1 24.7 19.4 12.9 18.3 16.1 16.1 11.8 15.1 21.5 19.4 15.1 20.4 

FBC (64) 21.5 16.1 12.9 12.9 15.1 15.1 9.68 14 25.8 19.4 14 15.1 17.2 15.1 12.9 16.1 20.4 21.5 16.1 19.4 

FBC (128) 18.3 12.9 11.8 14 15.1 14 11.8 14 21.5 17.2 12.9 11.8 14 12.9 11.8 14 17.2 17.2 15.1 16.1 

FBC (256) 23.7 20.4 11.8 19.4 18.3 19.4 11.8 20.4 28 20.4 12.9 14 19.4 20.4 11.8 20.4 21.5 20.4 15.1 19.4 

FBW (16) 21.5 17.2 16.1 18.3 17.2 17.2 15.1 17.2 25.8 22.6 17.2 17.2 18.3 18.3 16.1 17.2 22.6 22.6 20.4 20.4 

FBW (32) 21.5 16.1 16.1 17.2 16.1 16.1 15.1 16.1 23.7 20.4 17.2 17.2 17.2 17.2 16.1 17.2 20.4 20.4 19.4 18.3 

FBW (64) 18.3 12.9 12.9 12.9 12.9 12.9 11.8 12.9 20.4 16.1 15.1 15.1 12.9 12.9 12.9 12.9 16.1 15.1 16.1 16.1 

FBW (128) 15.1 9.68 9.68 9.68 9.68 9.68 8.6 9.68 17.2 12.9 10.8 11.8 9.68 9.68 9.68 9.68 12.9 12.9 12.9 11.8 

FBW (256) 30.1 26.9 26.9 26.9 25.8 25.8 24.7 25.8 32.3 30.1 28 24.7 22.6 23.7 26.9 25.8 30.1 30.1 30.1 28 

Exponential 3.23 3.23 1.08 1.08 1.08 2.15 0 2.15 4.3 4.3 0 1.08 3.23 2.15 1.08 2.15 4.3 4.3 0 2.15 

Gradient 9.68 9.68 7.53 10.8 9.68 8.6 3.23 9.68 10.8 9.68 7.53 7.53 9.68 9.68 7.53 9.68 10.8 9.68 6.45 9.68 

Logarithm 14 12.9 7.53 14 12.9 12.9 4.3 12.9 14 11.8 11.8 11.8 11.8 7.53 6.45 15.1 12.9 12.9 12.9 14 

Square 19.4 10.8 8.6 8.6 9.68 7.53 1.08 6.45 24.7 17.2 9.68 7.53 10.8 10.8 8.6 8.6 17.2 14 9.68 14 

Square Root 19.4 18.3 11.8 15.1 16.1 16.1 10.8 15.1 24.7 19.4 14 17.2 16.1 15.1 11.8 14 17.2 16.1 14 22.6 

LOG (S=0.5mm) 8.6 9.68 4.3 9.68 9.68 9.68 5.38 9.68 10.8 10.8 4.3 7.53 8.6 8.6 4.3 8.6 9.68 9.68 5.38 9.68 

LOG (S=1.0mm) 41.9 33.3 17.2 35.5 32.3 34.4 6.45 32.3 49.5 36.6 21.5 21.5 34.4 33.3 18.3 35.5 36.6 36.6 21.5 38.7 

LOG (S=1.5mm) 60.2 50.5 30.1 47.3 51.6 49.5 14 48.4 62.4 53.8 31.2 41.9 50.5 51.6 30.1 50.5 54.8 53.8 33.3 54.8 

LOG (S=2.0mm) 64.5 54.8 40.9 54.8 55.9 54.8 24.7 54.8 66.7 58.1 43 48.4 55.9 55.9 40.9 55.9 58.1 57 43 60.2 

LOG (S=2.5mm) 72 67.7 53.8 67.7 68.8 66.7 28 66.7 74.2 72 55.9 63.4 68.8 67.7 53.8 67.7 69.9 72 55.9 71 

LOG (S=3.0mm) 77.4 71 55.9 69.9 72 69.9 36.6 71 79.6 78.5 59.1 69.9 72 71 55.9 69.9 77.4 78.5 59.1 75.3 

LOG (S=3.5mm) 72 69.9 51.6 69.9 74.2 73.1 32.3 68.8 73.1 77.4 57 67.7 74.2 68.8 51.6 69.9 77.4 76.3 57 76.3 

LOG (S=4.0mm) 72 79.6 55.9 78.5 79.6 79.6 31.2 78.5 73.1 80.6 59.1 66.7 79.6 80.6 55.9 79.6 80.6 80.6 57 78.5 

LOG (S=4.5mm) 72 80.6 50.5 79.6 80.6 82.8 31.2 78.5 77.4 82.8 51.6 68.8 79.6 81.7 49.5 81.7 82.8 82.8 51.6 80.6 

LOG (S=5.0mm) 66.7 65.6 44.1 64.5 66.7 65.6 30.1 64.5 66.7 68.8 46.2 65.6 68.8 66.7 44.1 66.7 69.9 69.9 46.2 71 

Wavelet (HHH) 7.53 7.53 4.3 7.53 7.53 7.53 4.3 6.45 6.45 7.53 3.23 6.45 7.53 7.53 4.3 7.53 7.53 7.53 3.23 5.38 

Wavelet (HHL) 7.53 8.6 3.23 6.45 6.45 6.45 2.15 6.45 8.6 7.53 3.23 7.53 7.53 8.6 3.23 6.45 7.53 7.53 3.23 7.53 

Wavelet (HLH) 7.53 8.6 5.38 8.6 7.53 8.6 5.38 8.6 8.6 8.6 5.38 8.6 7.53 8.6 5.38 8.6 8.6 8.6 5.38 8.6 

Wavelet (HLL) 7.53 7.53 5.38 8.6 7.53 7.53 3.23 7.53 9.68 8.6 5.38 7.53 7.53 8.6 6.45 8.6 7.53 7.53 5.38 7.53 

Wavelet (LHH) 10.8 9.68 5.38 8.6 9.68 9.68 5.38 8.6 9.68 8.6 5.38 8.6 9.68 9.68 6.45 8.6 8.6 8.6 5.38 8.6 

Wavelet (LHL) 10.8 10.8 3.23 11.8 9.68 9.68 2.15 11.8 11.8 11.8 2.15 11.8 9.68 10.8 3.23 10.8 11.8 11.8 2.15 11.8 

Wavelet (LLH) 9.68 7.53 4.3 8.6 8.6 8.6 3.23 7.53 9.68 8.6 3.23 9.68 6.45 7.53 3.23 8.6 7.53 8.6 4.3 7.53 

Wavelet (LLL) 44.1 38.7 25.8 36.6 38.7 37.6 16.1 35.5 45.2 41.9 30.1 37.6 36.6 35.5 24.7 37.6 44.1 40.9 30.1 44.1 A
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*FBC: Fixed Bin Count, FBW: Fixed Bin Width, LOG: Laplacian of Gaussian, S: Sigma 
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