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Figure Legend 
If you are citing a reference for the first time in these legends, please include 
all new references in the Online Methods References section, and carry on 
the numbering from the main References section of the paper.  

Extended Data Fig. 1 Extended Data Fig. 1 Fig_S1.tiff Figure S1. A t-SNE map showing de novo community 
clustering before, during and after recovery from 
antibiotic pulse at different antibiotic levels with or 
without immigration (N = 190). The different antibiotic 
levels are indicated by color coding, and the time points 
relative to the antibiotic pulse are indicated by different 
shapes. Low, intermediate and high antibiotic levels 
correspond to 4, 16 and 128 μg ml–1 streptomycin, 
respectively. All data points originate from the same t-
SNE analysis and have been separated into two panels 
(with same arbitrary axis units) only for the sake of visual 
clarity of immigration effect (at high antibiotic level, 
post-recovery communities indicated by diamonds more 
often resume pre-disturbance composition in upper left-
hand region). 

Extended Data Fig. 2 Extended Data Fig. 2 Fig_S2.tiff Figure S2. The extinction probability of species as a 
function of antibiotic level and the presence/absence of 
immigration (binomial glm estimate ± 95 % confidence 
intervals). Extinction is defined as the absence of a 
species after the antibiotic pulse (day 32 onwards) that 
was present prior to the pulse (day 16), and has been 
computed only for the species fulfilling these criteria in at 
least one experimental community (in total, 146 cases of 
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extinction were observed). Low, intermediate and high 
antibiotic levels correspond to 4, 16 and 128 μg ml–1 
streptomycin, respectively. 

Extended Data Fig. 3 Extended Data Fig. 3 Fig_S3.tiff Figure S3. Bacterial biomass estimated by optical density 
(OD) at 600 nm at different levels of antibiotic pulse 
(expressed in μg ml–1) in the pre-disturbance (day 16), 
post-disturbance (day 32) and post-recovery (day 48) 
phases (mean ± standard deviation). 

Extended Data Fig. 4 Extended Data Fig. 4 Fig_S4.tiff Figure S4. Global comparative view of community 
composition as shown by Kullback-Leibler (KL) 
divergence across all samples (N = 190). The color scale 
from blue to red indicates the degree to which community 
composition differs between two communities. KL 
divergence has been computed from species 
compositional data. The heat map has been color-
annotated for the different immigration and antibiotic 
treatments and experimental phases. Low, intermediate 
and high antibiotic levels correspond to 4, 16 and 128 μg 
ml–1 streptomycin, respectively. 

Extended Data Fig. 5 Extended Data Fig. 5 Fig_S5.tiff Figure S5. Competitive fitness landscapes across all 
samples during the antibiotic pulse and recovery phases 
(N = 126). The color scale from blue to red indicates the 
degree to which the competitive fitness landscapes are 
correlated between two communities. Correlations have 
been computed from competitive fitness data for each 
species in the communities. The heat map has been color-
annotated for the different immigration and antibiotic 
treatments and experimental phases. Low, intermediate 
and high antibiotic levels correspond to 4, 16 and 128 μg 
ml–1 streptomycin, respectively. The black boxes show 
the data presented at species-level detail in Figure 4 in the 
main text. 

Extended Data Fig. 6 Extended Data Fig. 6 Fig_S6.tiff Figure S6. Correlation of competitive fitness landscapes 
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within replicates in each experimental treatment (mean + 
95 % confidence interval). Correlations have been 
computed from competitive fitness data for each species 
in the communities. The figure aggregates the pairwise 
correlation values shown for each replicate pair within 
treatments in Figure S4. Low, intermediate and high 
antibiotic levels correspond to 4, 16 and 128 μg ml–1 
streptomycin, respectively. 

Extended Data Fig. 7 Extended Data Fig. 7 Fig_S7.tiff Figure S7. Percentage of variance in the competitive 
fitness of species explained by the experimental 
treatments (antibiotic level and presence / absence of 
species immigration) and species traits (antibiotic MIC 
and intrinsic growth rate). The variance partitioning is 
based on ANOVA on competitive fitness performed 
separately for the antibiotic pulse and recovery phases 
(detailed results are presented in Tables S1 and S2). 

Extended Data Fig. 8 Extended Data Fig. 8 Fig_S8.tiff Figure S8. Illumina read recruitment (median per 
species) in whole genome alignments for deep sequencing 
data (two upper panels) or raw 16S rRNA amplicon data 
(bottom panel). The HAMBI codes of the species are 
indicated in the horizontal axis, with two exceptions: K12 
and RP4 denote the chromosome and plasmid sequence, 
respectively, from E. coli JE2571. Read recruitment in 
whole genome alignments is indicated as number of reads 
(100 bp) in 1,000 bp blocks, and needs to be divided by 
10 ((100 bp × read count)/(1,000 bp block)) to obtain an 
estimate of genome coverage. For instance, a median read 
count of 1,000 corresponds to roughly 100× genome 
coverage. In the uppermost panel, deep sequencing data 
was mapped separately to the genome of each individual 
species, and in the middle panel, the data was mapped to 
a multi-FASTA file containing all the genomes, 
producing comparable results. 16S rRNA amplicon read 
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counts have been normalized to 15,000 reads per sample. 
Extended Data Fig. 9 Extended Data Fig. 9 Fig_S9.tiff Figure S9. Deep sequencing read recruitment across the 

genomes of abundant species. Genomic position is 
indicated as relative position (0–1) across the whole 
chromosome for closed genomes or largest contig for 
draft genomes. Read recruitment in whole genome 
alignments is indicated as number of reads (100 bp) in 
1,000 bp blocks, and needs to be divided by 10 ((100 bp × 
read count)/(1,000 bp block)) to obtain an estimate of 
genome coverage. 
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Abstract 31 

 32 

In an era of pervasive anthropogenic ecological disturbances, there is a pressing need to understand 33 

the factors constituting community response and resilience. A detailed understanding of disturbance 34 

response needs to go beyond associations and incorporate features of disturbances, species traits, 35 

rapid evolution and dispersal. Multispecies microbial communities experiencing antibiotic perturba-36 

tion represent a key system with important medical dimensions. However, previous microbiome 37 

studies on the theme have relied on high-throughput sequencing data from uncultured species with-38 

out the ability to explicitly account for the role of species traits and immigration. Here we serially 39 

passaged a 34-species defined bacterial community through different levels of pulse antibiotic dis-40 

turbance, manipulating the presence or absence of species immigration. To understand the ecologi-41 

cal community response measured by amplicon sequencing, we combined initial trait data measured 42 

for each species separately and metagenome sequencing data revealing adaptive mutations during 43 

the experiment. We found that the ecological community response was highly repeatable within the 44 

experimental treatments, which could be partly attributed to key species traits (antibiotic suscepti-45 

bility and growth rate). Increasing antibiotic levels were also coupled with increasing species ex-46 

tinction probability, making species immigration critical for community resilience. Moreover, we 47 

could detect signals of antibiotic resistance evolution occurring within species at the same time 48 

scale, leaving evolutionary changes in communities despite recovery at the species compositional 49 

level. Together these observations reveal a disturbance response which appears as classic species 50 

sorting but is nevertheless accompanied by rapid within-species evolution. 51 

  52 
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Introduction 53 

 54 

In the Anthropocene1 characterized by anthropogenic perturbations of environments ranging in 55 

scale from the individual organism (e.g. gut microbiota of mammal) to the global ecosystem (e.g. 56 

climate change and loss of biodiversity), it is paramount to understand factors determining biologi-57 

cal resilience2. Understanding how the effects of perturbations percolate through the ecosystem is 58 

vital to better understand the risks and benefits of human driven control efforts in the restoration 59 

and conservation of populations. For instance, antibiotic treatment affects not only the pathogen 60 

population but also off-target species in the microbiota of the patient, promoting the spread of anti-61 

microbial resistance3. Rational interventions require a detailed, ideally mechanistic, understanding 62 

that goes beyond associations, integrating community dynamics, species traits, environmental vari-63 

ables, evolutionary events and stochasticity. However, we are far from such an understanding, 64 

which has in part been attributed to the sparsity of controlled studies amidst in vivo, field and theo-65 

retical studies4. Nevertheless, recent advances in predictive modeling suggest that such an under-66 

standing is possible for certain rapidly evolving systems5. 67 

 68 

A notable case of interest is the response of multispecies bacterial communities to perturbations by 69 

antibiotics, pharmaceuticals and other compounds of an anthropogenic origin. Understanding this 70 

response can be critical, among others, for rational therapeutics to mitigate unwanted effects on 71 

patient health caused by changes in the gut microbiota (e.g. Clostridioides difficile infection6), man-72 

agement of waste water treatment to ensure the maintenance of key functionalities in bacterially 73 

driven processes7, and redesigning of agricultural practices to maintain microbiota contributing to 74 

crop health and productivity8.  75 

 76 
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Traditionally, ecological timescales have been considered shorter than evolutionary timescales, 77 

causing ecological processes to drive the community response to environmental change. The com-78 

munity response to perturbation is therefore expected to be determined by selection on pre-existing 79 

traits at the species level9. Selection may also act on the standing genetic variation within popula-80 

tions and affect the community response to perturbation10-13. However, the role of standing trait 81 

variation at the species level in the bacterial disturbance response remains unclear, because large 82 

population sizes and short generation times can render bacterial populations virtually unlimited by 83 

mutation supply. This leads to the omnipresence and rapid generation of intraspecific trait variation, 84 

which can play a major role in ecological dynamics14, especially since mutations in the bacterial 85 

genome can have strong effects on traits. For instance, a single point mutation in the gene rpsL can 86 

make a bacterium over 250-fold more resistant to the antibiotic streptomycin15. Overall, strong evi-87 

dence has emerged in recent decades showing that rapid evolution can alter ecological dynamics in 88 

communities across a range of systems, even those with lower rates of evolution compared to mi-89 

crobial systems16. Similarly, a community ecology context can be important for evolutionary trajec-90 

tories17. While there is an extensive number of studies on both the species compositional effects of 91 

antibiotic perturbation on the microbiome and the genetics of antibiotic resistance evolution in indi-92 

vidual species, both aspects have rarely been analyzed together. Furthermore, high-throughput se-93 

quencing based approaches allowing the investigation of mutations in longitudinal microbiome data 94 

have focused on in vivo and field samples where the species are uncultured and the pre-existing 95 

traits of the species cannot be explicitly estimated18. This may hinder the ability to assess the im-96 

portance of evolution relative to species sorting in the perturbation response of communities.  97 

 98 

Ecological resilience describes the ability of a community not only to withstand a perturbation (eco-99 

logical resistance) but also to recover from it. Studies have shown variable results concerning the 100 

resilience of the human gut microbiota to antibiotic perturbations at high, clinical concentrations19-21. 101 
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Effects of antibiotics that may or may not completely reverse after the perturbation include reduced 102 

community stability22 and diversity23, which have been associated with adverse health consequenc-103 

es in patients24,25. However, the sparsity of longitudinal studies and the variability in time points 104 

sampled since the perturbation pose challenges for comparing studies and assessing whether the 105 

communities are still in a state of recovery at the time of sampling. Moreover, the conditions deter-106 

mining a particular community response remain unclear. These include factors such as the level of 107 

perturbation and species immigration26, a key feature of microbial communities and form of bacte-108 

riotherapy (e.g. probiotic supplementation after antibiotic treatment)27. There is also a practical need 109 

to understand how the disturbance and immigration responses of bacterial communities interact. For 110 

example, this information is critical for the design of minimal artificial communities to replace fecal 111 

microbiota transplantation (FMT), where gut microbial communities disturbed by antibiotic pulses 112 

are treated by a fecal “immigration” to restore a healthy microbiota28. 113 

 114 

Here we used a 34-species model bacterial community to examine the role of ecological and evolu-115 

tionary processes in the community response to different levels of pulse disturbance by the amino-116 

glycoside antibiotic streptomycin in the absence or presence of species immigration. We performed 117 

a serial passage experiment, collecting amplicon data to track ecological dynamics and deep se-118 

quencing data to track evolutionary dynamics, and combined experimental data with pre-existing 119 

trait data on community members (Figure 1). We found that communities responded sensitively and 120 

repeatably to the different environments. This could be linked to species sorting and selection on 121 

their traits (growth rate and antibiotic susceptibility) as well as an increase in the extinction proba-122 

bility of particular species at increasing antibiotic levels in the absence of immigration. Adaptive 123 

mutations also occurred but could not be linked to the ecological dynamics. Despite the sensitive 124 

response to the perturbation, communities were able to recover close to the initial community state 125 

in all but the highest antibiotic level. However, the loss of species as a function of antibiotic level as 126 
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well as the occurrence of evolutionary changes within species still left persistent changes in com-127 

munities, compromising their resilience over the long term. Importantly, immigration played a key 128 

role in resilience at the species level by preventing species extinctions. 129 

 130 

Results 131 

 132 

Both antibiotic level and immigration strongly determine ecological resilience 133 

 134 

The communities were compositionally sensitive to the different antibiotic levels and the presence 135 

of immigration (Figures 2 & 3; Extended Data Figure 1). Machine learning models could be trained 136 

to correctly predict the antibiotic level during the antibiotic pulse from species composition data 137 

(random forest, rf, model using community composition data from all treatments immediately post-138 

perturbation to classify antibiotic level: permutation test p < 0.001, accuracy estimated by leave-139 

one-out cross-validation, LOOCV, 0.88). However, the ability to distinguish between the antibiotic 140 

levels decreased after the recovery period (rf model using community composition data from all 141 

treatments immediately post-perturbation to classify antibiotic level: permutation test p < 0.001, 142 

LOOCV accuracy 0.53). In contrast, machine learning models could correctly classify the immigra-143 

tion treatment only after the recovery period (rf model using community composition data from all 144 

treatments immediately post-perturbation to classify immigration presence/absence: permutation 145 

test p = 0.19, LOOCV accuracy 0.53; rf model for immigration post-recovery: permutation test p < 146 

0.001, LOOCV accuracy 0.69). These results suggest that the antibiotic perturbation had a composi-147 

tional effect specific to the antibiotic level, this effect decreased with recovery, and the latter pro-148 

cess was influenced by species immigration. 149 

 150 
 151 
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To further investigate factors determining ecological resilience, we inspected the effect of the dis-152 

turbance on two measures of entropy. We used the Shannon diversity (information entropy incorpo-153 

rating species richness and evenness) after the disturbance and Kullback-Leibler (KL) divergence 154 

(relative entropy comparing species composition) in individual communities over time after the 155 

disturbance relative to the pre-disturbance state29 (Figure 3). An analysis of this data shows that 156 

diversity decreased (ANOVA for linear regression model on Shannon diversity with lowest AIC 157 

value; antibiotic F3,60 = 12.1, p < 0.001; the immigration treatment did not have a significant effect 158 

during the antibiotic pulse and was not included in the best model; Figure 3a) and community com-159 

position became increasingly altered as a function of antibiotic level during the pulse, and that im-160 

migration enhanced community recovery after the pulse (ANOVA for gls model on KL divergence 161 

with lowest AIC value: antibiotic level F3,118 = 19.8, p < 0.001; immigration F1,118 = 6.33, p = 0.013; 162 

recovery time F1,118 = 8.31, p = 0.005). Pairwise comparisons of estimated marginal means for KL 163 

divergence show significant differences (p < 0.02) between all of the antibiotic levels except for the 164 

control and lowest level. 165 

 166 

Persistent alterations in community composition were only observed for the highest antibiotic level 167 

in the absence of immigration (Figure 3b). Increasing antibiotic levels increased, however, species 168 

extinction probability, which was strongly counteracted by immigration (ANOVA for binomial glm 169 

model with lowest AIC value: antibiotic χ2
3,1643 = 22.3, p < 0.001; immigration χ2

1,1646 = 27.3, p < 170 

0.001; species χ2
25,1618 = 166, p < 0.001; antibiotic × immigration χ2

2,1615 = 7.52, p = 0.057; Extend-171 

ed Data Figure 2). Therefore, in the absence of immigration, loss of species caused alterations in 172 

community composition, and the magnitude of the effect was proportional to the magnitude of the 173 

perturbation. The reported community effects of antibiotic level and immigration are unlikely to 174 

have been affected by changes in total bacterial biomass, since similar levels of biomass were ob-175 

served across the experimental conditions and time points (Extended Data Figure 3). This indicates 176 
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that the relative abundance of species is here a close approximation of absolute abundance, which is 177 

not always the case in microbial community studies and can have important implications for study 178 

conclusions30. 179 

 180 

Ecological dynamics are highly repeatable within antibiotic and immigration treat-181 

ments 182 

 183 

We next investigated whether increasing antibiotic levels are coupled with decreased repeatability22 184 

in community trajectories, as this could be a signal of alternative stable states (including bi- and 185 

multi-stability), stochastic species extinctions or adaptive de novo mutations. In contrast with this 186 

expectation, we found relatively low levels of divergence in community states within each antibi-187 

otic and immigration treatment (Extended Data Figure 4). To further examine this result, we esti-188 

mated the competitive fitness of each species in the community during the antibiotic pulse or recov-189 

ery phase using the replicator equation from evolutionary game theory. In this approach, the fre-190 

quency change of one species over time is considered to be an outcome of its fitness reduced by the 191 

average fitness of the community. We found that the competitive fitness of the species responded 192 

repeatably to the different antibiotic levels, and that many of the species displaying a strong positive 193 

response during the pulse displayed an inverse response during the recovery phase (intermediate 194 

antibiotic level without immigration illustrated in Figure 4; for complete data for all treatments, see 195 

Extended Data Figures 5 and 6). We also found that increasing antibiotic levels increased fitness 196 

variance (particular species exhibited very high or low competitive fitness values), as hypothesized 197 

previously31, which is reflected by increasingly correlated competitive fitness landscapes during the 198 

antibiotic pulse and becomes reversed during the recovery phase (Extended Data Figures 5 and 6). 199 

We could attribute 10–13 % variation in the competitive fitness of species during the antibiotic 200 

pulse and recovery phases to the interplay between antibiotic level and key species traits, intrinsic 201 
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antibiotic susceptibility (streptomycin MIC) and intrinsic growth rate (rmax; Tables S1 and S2; Ex-202 

tended Data Figure 7). For instance, two species with high growth rate combined with high antibi-203 

otic susceptibility, Aeromonas caviae HAMBI 1972 (MIC = 0.75 μg ml–1) and Pseudomonas chlo-204 

roraphis HAMBI 1977 (MIC = 8.0 μg ml–1), decreased in abundance and competitive fitness at 205 

increasing antibiotic levels (Figures 2 and 4). Potential reasons for why a higher proportion of var-206 

iation in competitive fitness could not be explained by species traits despite the highly consistent 207 

ecological response include the presence of important unmeasured species traits, species interac-208 

tions, or non-linear system-level behavior (e.g. dramatic community change only after particular 209 

concentration reached). Such information would be useful for predictive modelling.  210 

 211 

To more precisely inspect the low levels of community divergence observed within treatments (Ex-212 

tended Data Figure 4), we quantified the repeatability of community trajectories within each antibi-213 

otic and immigration treatment using the diversity dissimilarity index33 which relates diversity 214 

pooled over replicate communities to the mean diversity of replicate communities. This yields a 215 

value between zero and one, where zero indicates that replicate communities are identical and one 216 

that they are completely different. The community trajectories were highly repeatable (close to zero) 217 

in the different experimental treatments when species were weighted based on their abundance, 218 

although a slight (approximately 5 %) decay in repeatability was observed for the highest antibiotic 219 

level during the pulse (Shannon entropy panel in Figure 5). The high repeatability suggests that rare 220 

stochastic mutational events are unlikely to have been a major driver of the ecological dynamics of 221 

the abundant species. However, there was a higher decay in repeatability when species were given 222 

equal weight regardless of abundance, indicating that low-abundance species account for most of 223 

the loss in repeatability (species richness panel in Figure 5). When combined with the finding that 224 

the extinction probability of species increased as a function of antibiotic level (Extended Data Fig-225 

ure 2), these results suggest that the stochasticity introduced by antibiotic perturbation was at least 226 
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partially accounted for by low-abundance species being driven extinct differentially between repli-227 

cate communities. Nevertheless, a potential role for evolutionary rescue in the stochasticity of the 228 

ecological dynamics of low-abundance species cannot be ruled out. 229 

 230 

Antibiotic resistance mutations occur despite repeatable ecological dynamics 231 

 232 

To investigate mutational dynamics, we deep-sequenced three of the eight replicate communities 233 

during and after recovery from the antibiotic pulse. From these community metagenomes, we could 234 

extract whole-genome data for abundant species with sufficient genome coverage in a particular 235 

community. We focused on genes estimated to be under selection (N = 91) based on containing 236 

more nonsynonymous hits in independent populations than expected by chance. Most of these 237 

genes contained mutations across experimental treatments, suggesting that they represent adapta-238 

tions to the general experimental conditions rather than treatment-specific adaptations (Figure 6). 239 

Nevertheless, antibiotic and immigration also significantly enriched mutations for a small subset of 240 

genes even when controlling for the presence or absence of whole-genome data (and thereby, in-241 

formation for a particular mutational target) for the different species in each community meta-242 

genome (PERMANOVA for binary vectors of mutated genes, i.e. mutational profiles: species R2 = 243 

0.81, p < 0.001; antibiotic R2 = 0.015, p < 0.001; immigration R2 = 0.0082, p < 0.001). 244 

 245 

Among the mutational targets that occurred only in the presence of the antibiotic, several have been 246 

previously associated with increased levels of streptomycin or aminoglycoside resistance or with 247 

the presence of these agents, suggesting that antibiotic-related adaptations occurred during the ex-248 

periment. These genes include rpsL (encoding ribosomal protein S12, a common streptomycin re-249 

sistance target)34, rsmG (ribosomal methyltransferase)35, phoQ (PhoP-PhoQ two-component regula-250 

tory system)36, cya (adenylate cyclase)37, cra (catabolite repressor/activator)37, cspA (cold shock 251 
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protein)38, relA (GTP pyrophosphokinase mediating stringent response)15 and spoT ((p)ppGpp syn-252 

thase/hydrolase mediating stringent response)15. Most of these mutations occurred in the intermedi-253 

ate or highest antibiotic concentration, while displaying no general pattern with respect to the pres-254 

ence or absence of immigration (observed only without immigration: rpsL (1×) and cspA (2×); only 255 

with immigration: rsmG (2×); both without and with immigration: cra (2×), cya (13×), phoQ (2×), 256 

relA (4×); Figure 6). Notably, mutations in a particular gene were not required for a species to suc-257 

ceed at a given antibiotic level. For instance, an rpsL mutation in Agrobacterium tumefaciens 258 

HAMBI 105 and rsmG mutations in Pseudomonas chlororaphis HAMBI 1977 only occurred in a 259 

subset of the replicates where the species displayed high abundance in the respective antibiotic 260 

treatment (Figure 6). The low level of within-treatment repeatability in mutational targets contrasts 261 

with the high level of within-treatment repeatability in ecological trajectories for abundant species. 262 

Therefore, we could not detect an influence of genomic evolution on the ecological dynamics with 263 

the methods employed in this study, although we acknowledge the limitations of our approach (fo-264 

cusing on abundant species in a subset of replicates). 265 

 266 

Discussion 267 

 268 

Using a controlled setup to investigate the antibiotic response of a multispecies bacterial community 269 

in the presence and absence of species immigration, we found that the replicate communities re-270 

sponded repeatably to the different treatments, with the magnitude of the community response and 271 

persistent community changes increasing with increasing antibiotic levels. The community effects 272 

of antibiotics expectedly included both abundance changes and extinctions of particular species. 273 

Persistent community changes were linked to increasing species extinctions at increasing antibiotic 274 

level, which prevented abundant high-growth-rate species sensitive to the antibiotic from rebound-275 

ing to their pre-disturbance abundance during the recovery phase, and could be counteracted by 276 
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species immigration. This was not a straightforward outcome, since the original community compo-277 

sition may not have recovered despite reintroduction of sensitive species if communities had 278 

reached an alternative stable state during the antibiotic pulse. Overall, these findings highlight the 279 

importance of classic and relatively simple ecological processes, species sorting and immigration, 280 

in defining how microbial communities respond to antibiotic perturbation. 281 

 282 

The high level of repeatability of the ecological dynamics in our study appears to contrast with pre-283 

vious studies showing decreased stability22 and bistability39 in microbial communities following 284 

antibiotic exposure. However, similar to these studies, the minor decay in repeatability we observed 285 

did occur under high antibiotic levels (Figure 5). Furthermore, at the intermediate antibiotic level, 286 

certain replicate communities experienced a more dramatic decline in diversity compared to others 287 

(Figure 3a and Extended Data Figure 1), indicating that this antibiotic level may be close to a tip-288 

ping point concentration where bistable system-level behavior is possible. Quantifying these effects 289 

more precisely would have required experimenting with a wider range of antibiotic concentrations. 290 

Moreover, a previous study shows that high rates of immigration can fuel adaptation to antibiotics 291 

by increasing the supply of genetic variation40. Therefore, higher levels of immigration could poten-292 

tially have exacerbated the role of evolution in our immigration treatment such that replicate com-293 

munities would have diverged more during the antibiotic pulse, as species containing adaptive mu-294 

tations by chance or the timing of occurrence of these mutations would differ between them. This 295 

could also have decreased the rate of recovery in the immigration treatment, since there would have 296 

been an increased likelihood of communities reaching alternative stable states and larger differences 297 

in post-disturbance genetic composition may have slowed down species compositional recovery 298 

rate. However, establishing this would have required experimenting with different levels of immi-299 

gration. Therefore, the level of ecological repeatability observed may be influenced by a number of 300 

study conditions.   301 
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 302 

We also found adaptive mutations sweeping to high frequencies in populations of individual species, 303 

although we could not connect these with species abundance. This shows that the disturbance re-304 

sponse in microbial systems results from a combination of ecological and evolutionary processes 305 

operating at the same timescale. However, connecting these processes may not always be straight-306 

forward41. Similar to our finding, in a recent analysis of longitudinal linked-read sequencing data 307 

from human gut microbiota subjected to antibiotic treatment, antibiotic resistance mutations were 308 

found to sweep to high frequencies in the populations of single species without necessarily resulting 309 

in an increased abundance of the species in the community18. In a microbial community, species 310 

sorting and adaptive mutations occur simultaneously in multiple species, and all these factors have 311 

the potential to interact, making it challenging to disentangle ecological from evolutionary process-312 

es. Furthermore, in a number of conditions, relative fitness increases within a species based on al-313 

lele frequency changes do not translate into changes in absolute fitness (population size)32. In a 314 

multispecies setup, the competitive release of an adapted species may be suppressed, for example, 315 

by the presence of other abundant species with relatively low intrinsic antibiotic susceptibility and 316 

equal or higher resource use ability. The occurrence of a fitness trade-off between growth rate and 317 

antibiotic resistance42 could also make the net fitness advantage of antibiotic resistance low, causing 318 

a weak ecological effect difficult to detect in a multispecies setup. Importantly, whatever the under-319 

lying mechanism, this study supports the notion that within-species adaptive evolution can occur 320 

during a perturbation even when this is not readily suggested by the ecological dynamics. 321 

 322 

Our findings have important implications for the understanding and management of ecological re-323 

silience. Although we found similar outcomes from antibiotic perturbation as those reported in hu-324 

man gut microbiome studies, such as decreased diversity23, these outcomes were mostly limited to 325 

the community state at the end of the perturbation, and were followed by community recovery close 326 
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to the pre-disturbance state. This is non-trivial taken that priority effects43 or the presence of alter-327 

native stable states44,45 could cause a perturbed community to recover to an altered state, and em-328 

phasizes the need to assess ecological resistance during perturbations separately from recovery and 329 

longer-term resilience46. More generally, since the advent of amplicon and metagenomic sequenc-330 

ing, changes in bacterial communities have been found in response to a plethora of environmental 331 

factors, but our findings suggest that such changes may not persist and a need for caution in data 332 

interpretation in the absence of longitudinal data. Nevertheless, despite the communities mostly 333 

rebounding, species extinctions, which were more likely at increasing antibiotic levels, left persis-334 

tent marks in community composition, similar to recent findings from human gut microbiota20, alt-335 

hough species immigration enabled community recovery. This indicates that storing and reintroduc-336 

ing susceptible low-abundance species with key functionalities could play a crucial role in human 337 

management of ecological disturbances. Ecological resilience was most notably compromised for 338 

the highest antibiotic level, suggesting that in a therapeutic context, intermediate antibiotic levels 339 

may represent a desirable compromise minimizing off-target effects assuming they are sufficient to 340 

treat a pathogen3. Notably, here we considered only a single pulse disturbance, while communities 341 

often face multiple disturbances, with historical disturbance regimes frequently priming populations, 342 

communities and ecosystems, both ecologically and evolutionarily, to similar disturbances in the 343 

future39,47,48. Therefore, the types of persistent ecological (lost species) and evolutionary (resistance 344 

mutations) changes observed in this study may have important consequences for the response of 345 

communities to future perturbations.  346 

 347 

Methods 348 

 349 

Strains and culture conditions 350 

 351 
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The liquid medium used in the experiment was specifically developed for complex communities 352 

and a long culture cycle. An artificial bacterial community consisting of 34 species (for species list, 353 

see Supplementary Materials in 49) was almost entirely chosen from the HAMBI Culture Collection, 354 

University of Helsinki, except for Escherichia coli K-12 strain JE257150. The bacteria are gram-355 

negative and represent three classes (Alpha-, Beta- and Gammaproteobacteria) in the phylum Prote-356 

obacteria and three classes (Chitinophagia, Flavobacteriia and Sphingobacteriia) in the phylum Bac-357 

teroidetes. The species are not representative of a particular natural system but were rather selected 358 

based on growth in simple, uniform laboratory conditions. Different versions of the artificial com-359 

munity have been used in two previous studies49,51, where details are reported regarding its con-360 

struction and the phenotypic and genomic characteristics of the species. 361 

 362 

A medium was specifically refined for the selected community and long culture cycles. The co-363 

culture medium contains 1 g l–1 R2A broth (Labema, Helsinki, Finland) and 0.5 g l–1 of cereal grass 364 

medium (Ward’s Science, St Catharines, ON, Canada) in M9 salt solution. The cereal grass medium 365 

stock was prepared by autoclaving it in deionized H2O and filtering through 5 μl to remove particu-366 

late matter. 367 

 368 

Serial passage experiment 369 

 370 

A 48-day serial passage antibiotic pulse experiment was performed consisting of three epochs: 16 371 

days without streptomycin to allow the community composition to acclimatize to experimental con-372 

ditions, 16 days with streptomycin at the concentrations 4, 16, and 128 μg ml–1, and 16 days without 373 

antibiotics to allow the community to recover (Figure 1). The experiment included an antibiotic-free 374 

control treatment. The experiment was performed in a full-factorial design without and with immi-375 
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gration consisting of adding an inoculum of the original community at each transfer. Each treatment 376 

combination was replicated eight times. 377 

 378 

The experiment was conducted in ABgene™ 96 Well 2.2 ml Polypropylene Deepwell Storage 379 

Plates (Thermo Fisher Scientific, Waltham, MA, USA) in the co-culture medium. Prior to starting 380 

the experiment, all the strains were transferred to the co-culture medium and cultured for 96 hours 381 

at 28 °C / 50 rpm. Following this, they were pooled together in equal volumes and freeze-stored 382 

with 30% glycerol at –80 °C. To start the experiment, 10 μl of 100-fold diluted freezer-stock com-383 

munity was added to each well containing 500 μl of medium and 50 μl of sterile dH2O to compen-384 

sate the dilution caused by streptomycin additions. Equal volumes were used instead of using more 385 

precise methods such as plate counting or flow cytometry to equalize cell numbers for each species 386 

prior to starting the experiment since we assumed that uncertainty in the latter methods and differ-387 

ences between species in cell viability and revival from frozen inoculum would nevertheless have 388 

introduced substantial initial differences in species abundances. We therefore accepted that the 389 

starting conditions are biased toward high growth ability species which would in any case have 390 

been likely to rise to dominance rapidly during the initial culture cycles (first 16-day acclimation 391 

epoch). Culturing throughout the experiment was performed at 28 °C / 50 rpm. The experiment was 392 

maintained every 96 hours by transferring 50 μl, about 10%, to fresh medium prepared as in the 393 

beginning of the experiment (representing approx. 3.33 bacterial generations per culture cycle with 394 

the minimal assumption that bacteria multiply until reaching carrying capacity). For the immigra-395 

tion treatment, 10 μl of 100-fold diluted freeze-stored community was also added. For cultures con-396 

taining streptomycin, the dH2O was replaced with an equal volume of the appropriate streptomycin 397 

stock solution. 398 

 399 

Data collection 400 
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 401 

The pre-existing phenotypic trait data for community members used in this study, including intrin-402 

sic growth rate and streptomycin minimum inhibitory concentration (MIC) values, was obtained as 403 

described previously49. To monitor bacterial density during the serial passage experiment, optical 404 

density values at 600 nm wavelength (OD600nm) were measured from old cultures prior to the dis-405 

turbance (day 16), after the disturbance (day 32), and after the recovery period (day 48) using a well 406 

plate reader (Tecan Infinite M200 well-plate reader, Tecan Trading AG, Switzerland). Samples 407 

from time points 16 days (before streptomycin addition), 32 days (last time point with streptomycin) 408 

and 48 (final time point) days were also frozen in glycerol at –80 °C for further analysis. 409 

 410 

DNA was extracted from the original freezer-stock community and the first three (1–3) out of eight 411 

experimental replicate communities from days 16, 32 and 48 in the serial passage experiment for a 412 

first batch of amplicon sequencing and the deep sequencing. A second batch of DNA extraction and 413 

amplicon sequencing was later performed for the remaining five replicates (4–8). DNA extraction 414 

was performed directly on freeze-stored samples without regrowing with the DNeasy 96 Blood & 415 

Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions using 400–600 416 

μl of defrosted sample. DNA concentrations were measured with the QubitTM 2.0 (Life Technologies 417 

Corporation, Carlsbad, CA, USA) fluorometer using the QubitTM dsDNA HS Assay Kit (Thermo 418 

Fisher Scientific, Waltham, MA, USA). Paired-end 16S rRNA amplicon sequencing (V3 and V4 419 

regions, 2 × 300 bp; all three time points) and metagenomic deep sequencing (2 × 101 bp; only days 420 

32 and 48) was performed by the Institute for Molecular Medicine Finland (FIMM) using the Illu-421 

mina MiSeq and Illumina HiSeq2500 platforms, respectively, employing in-house protocols similar 422 

to those described before49. 423 

 424 

Sequence data processing 425 
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 426 

For 16S rRNA amplicon data, raw reads were first paired using the paired-end read merger Pear 427 

v0.9.652 with defaults settings. Adapters and primers were removed from the paired reads using 428 

Cutadapt v1.1053 with the options -q 28 (quality-cutoff for trimming 3′ end of read), -n 2 (two 429 

rounds of adapter searching), -e 0.2 (maximum error rate of 20 % for adapter identification), and --430 

minimum-length 400 (discarding reads < 400 bp after quality control steps). Read quality was con-431 

trolled with FastQC v0.11.8 (www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC 432 

v1.754 before and after running Pear and Cutadapt. USEARCH v1.1055 was used to quality filter the 433 

reads using the --fastq-filter command with the options -fastq_maxee 1 (maximum expected er-434 

rors 1), -fastq_truncqual 10 (truncating reads at first incidence of quality 10), -fastq_minlen 150 435 

(minimum read length after other filtration steps), and -fastq_trunclen 150 (truncating reads at 436 

length 150 bp). Unique sequences were obtained by dereplicating using the VSEARCH v2.13.356 437 

command --derep_fulllength, followed by removal of chimeric sequences using the VSEARCH 438 

command --uchime_denovo with default settings. The reads were mapped to a reference database 439 

containing the 16S rRNA gene sequences of the 34 experimental species with USEARCH -440 

closed_ref command with > 97 % identity requirement. Problems associated with closed reference 441 

operational taxonomic unit (OTU) clustering for environmental bacterial communities57, such as 442 

false positive genus assignment, should not apply to this case as the community is defined and has 443 

its own reference database. The two DNA extraction and amplicon sequencing batches (replicates 444 

1–3 vs. replicates 4–8) display a minor but distinct batch effect in community composition (Figure 445 

2). However, performing downstream analyses separately for the two batches did not affect the 446 

qualitative findings in the study. 447 

 448 

For deep sequencing data, Cutadapt 1.1253 was used to remove sequencing adapters and quality trim 449 

sequence data, with the parameters -O 10 (minimum overlap for an adapter match), -q 28 (quality 450 
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cutoff for the 3′ end of each read), and --minimum-length 30 (minimum length of trimmed read). 451 

Sequence data quality before and after Cutadapt was assessed using FastQC 452 

(www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC54. The deep sequencing data 453 

was mapped to a multi-FASTA file containing the whole-genome sequences of all experimental 454 

isolates (genome accessions indicated in 49) except for one rare species lacking genome data (Rose-455 

omonas gilardii HAMBI 2470), using bowtie258 with default settings. The Picard command Mark-456 

Duplicates was used to mark duplicates in alignment (BAM) files after sorting with SAMtools59. 457 

Subsequently, BEDtools 2.2 was used to compute genome coverage in 1 kb windows60. This pan-458 

genome mapping approach produced similar results compared to mapping the data to each genome 459 

individually, indicating that genome coverage was not reduced due to biased read recruitment in 460 

homologous regions, as well as cross-validating amplicon data (Extended Data Figure 8). Genome 461 

coverage data also indicated a lack of major copy number aberrations (Extended Data Figure 9). 462 

 463 

Prior to variant calling and annotation, the metagenomic alignment files were split by species using 464 

SAMtools59. Alignment files containing below 200,000 reads, representing 5× genome coverage for 465 

a 4 Mb bacterial genome, were removed. Since differential genome coverage would affect variant 466 

count, nucleotide diversity and allele frequency estimates and thereby act as a confounder in down-467 

stream analyses comparing experimental treatments, all remaining BAM files were downsampled to 468 

200,000 reads. Following this, genomic variants (SNPs and short INDELs) were called from BAM 469 

files with FreeBayes 1.1.0-6061, using a population level approach (--pooled-continuous) and call-470 

ing only one variant allele per locus (--use-best-n-alleles 1). Variants were filtered based on exceed-471 

ing Phred-scaled quality 20 ("QUAL > 20") and read depth 2 ("DP > 2") using vcffilter from vcflib 472 

(https://github.com/vcflib/vcflib). This allowed detecting variants that had reached high frequency 473 

(min. 50 %) in a total of 229 samples representing abundant species in the experiment during (day 474 
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32) and after recovery from (day 48) the antibiotic pulse. Variants were annotated using SnpEff 475 

4.362. 476 

 477 

Ecological analyses 478 

 479 

All analyses were performed in the R v3.6.1 environment63. The t-distributed stochastic neighbor 480 

embedding (t-SNE) map for Extended Data Figure 1 was created using the Rtsne package64 with the 481 

options perplexity = 20 and theta = 0.5. Random forest models using community composition data 482 

to classify the antibiotic or immigration treatments after the antibiotic pulse or following the recov-483 

ery period were generated using the randomForest package65. Before analyses, rare species were 484 

removed based on > 80 % of values being zero, and the data was standardized by converting each 485 

value into a Z-score (subtracting each sample’s mean and dividing by the sample’s standard devia-486 

tion). Random forest classification was performed using the function randomForest implementing 487 

the Breiman’s random forest algorithm, with the options importance = TRUE and proximities = 488 

TRUE. Subsequently, permutation tests (1,000 permutations) were implemented using the function 489 

rf.significance to test whether the models perform better than expected by chance. Following this, 490 

the function train in the package caret66 was used to systematically partition the data into training 491 

and tests sets repeatedly using the leave-one-out cross-validation (LOOCV) approach to estimate 492 

model performance (accuracy). 493 

 494 

The influence of the experimental treatments on KL divergence relative to the pre-disturbance state 495 

was investigated using generalized least squares models (gls) as implemented in the nlme package67, 496 

specifying a residual variance structure dependent on the antibiotic level. The stepAIC function in 497 

the MASS package68 was subsequently used to select the best model based on the Akaike infor-498 

mation criterion (AIC). The competitive fitness of species during the antibiotic pulse or the recov-499 
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ery period was estimated as the logarithm of the final frequency relative to the starting frequency, 500 

which can be directly derived from the replicator equation in evolutionary game theory. The strain 501 

Azospirillum brasilense HAMBI 3172 was chosen to be the reference and its logarithm of the final 502 

frequency relative to the starting frequency was subtracted from all other values. To control for 503 

noise from the frequency changes of low-abundance species and to award more weight to species 504 

with high abundance in at least one of the estimated time points, a pseudocount constituting 1 % 505 

proportion was added to the species abundance data prior to computing competitive fitness. The 506 

effect of the experimental treatments on species extinction probability was tested using the base R 507 

function glm with the option family = “binomial”. 508 

 509 

To quantify the repeatability of ecological dynamics, we used the diversity dissimilarity index33: 510 

௠௘௔௡ܦ௣௢௢௟௘ௗܦ 511  − ܯ1 − 1  

 512 

where D is a diversity index (either Shannon diversity or species richness computed using the vegan 513 

package69), and M is the number of communities whose species compositions are compared (over 514 

time). If the species compositions of replicates are identical, the diversity of the pooled community 515 

is equal to the mean diversity, and the diversity dissimilarity index equals 0, and if the communities 516 

have no species in common, the index equals 1. 517 

 518 

Evolutionary analyses 519 

 520 

We used minimal criteria to filter raw genomic variants from the downsampled variant data prior to 521 

downstream analyses. First, we removed data for one species, HAMBI 403, which had a large num-522 
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ber of variants (130,000) indicative of an incorrect reference genome. Second, there were peaks 523 

above 80 % in variant frequency distributions across the communities. Such a high level of parallel-524 

ism suggests that the variants are either ancestral or systematic sequencing errors, and variants oc-525 

curring in over 80 % of the communities were therefore removed. 526 

 527 

From this variant data set, we extracted nonsynonymous mutations and devised a threshold for re-528 

currence. Of all the coding genes in all the genomes, we drew mutations from a multinomial distri-529 

bution with replacement. If these 588 mutations were randomly distributed over the 58,220 coding 530 

genes in the genomes, we would expect only five genes mutated in two or more populations. In total, 531 

there were 1092 coding nonsynonymous mutations across 47 genes independently mutated in two 532 

or more populations. Therefore, we focused on multi-hit genes which were independently mutated 533 

in two or more populations. This set was used for the statistical analysis below, while a larger set 534 

from genomic variant data prior to downsampling, and also including the known streptomycin re-535 

sistance gene rpsL, was used for Figure 6 to present the maximum amount of functionally annotated 536 

potential targets of selection. 537 

 538 

We used permutational analysis of variance (PERMANOVA)70 to test whether the antibiotic level 539 

or presence/absence of immigration affected the targets of mutation. Each community was scored 540 

by the presence (1) or absence (0) of a nonsynonymous mutation in each of the multi-hit genes, and 541 

these data were used to calculate the Euclidian distance between populations71. Before performing 542 

PERMANOVA, its assumption of homogeneity of multivariate dispersions within treatments was 543 

tested with the betadisper function in the vegan package that uses the PERMDISP2 procedure as 544 

described previously72. The adonis function in the vegan package was then used to test the probabil-545 

ity that the observed distances could arise by chance by comparing them with random permutations 546 

of the raw data73. 547 
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 548 

 549 

Data availability 550 

 551 

Raw sequence data (fastq files) has been deposited in the NCBI Sequence Read Archive (SRA) 552 

under the accession PRJNA632457. All code and pre-processed data needed to reproduce the 553 

downstream analyses and figures are available via GitHub: 554 

https://github.com/johannescairns/repeatable_dynamics (permanent doi: 555 

https://doi.org/10.5281/zenodo.3908935). 556 

 557 
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Figure legends 742 

 743 

Figure 1. Experimental design. (A) Physical setup. A serial passage experiment was conducted 744 
with a 34-species artificial community in deep 96-well plates. Initial key traits of community mem-745 
bers (intrinsic growth rate, represented by growth curve with yellow background, and intrinsic anti-746 
biotic susceptibility level, represented by growth curve in purple background) were measured sepa-747 
rately for individual isolates used to construct the community. (B) Layout of antibiotic pulse exper-748 
iment. The experiment consisted of serial propagation at 4-day (96 h) intervals for three 16-day 749 
epochs: an acclimation period, an antibiotic pulse period with three different levels of pulse antibi-750 
otic disturbance together with an antibiotic-free control treatment, and a recovery period. To inves-751 
tigate the role of species immigration, the full experiment was performed without and with reintro-752 
ducing a small amount (1:500 cells relative to serial transfer inoculum) of the original community at 753 
each transfer. Each unique treatment combination was replicated eight times. Samples (N = 192) 754 
were collected for DNA extraction prior to the pulse (T0), after the pulse (T1) and after recovery 755 
(T2) to track community composition (amplicon sequencing) and genomic evolution (metagenomic 756 
sequencing). 757 
 758 

Figure 2. Community dynamics during antibiotic pulse experiment. The figure depicts the frequen-759 
cies of abundant species across time in eight replicate communities for each unique treatment com-760 
bination indicated on the right (low, intermediate and high antibiotic levels correspond to 4, 16 and 761 
128 μg ml–1 streptomycin, respectively). The shaded area shows the antibiotic pulse epoch, with 762 
increasingly dark hue indicating increasing antibiotic level. The top four panels show the different 763 
antibiotic levels for the immigration-free treatment and the bottom four panels for the immigration 764 
treatment. The y-axis has been square root transformed and scaled 0–1 to allow visual discernment 765 
of less abundant species. “Others” denotes rare taxa that fail to reach a frequency of 5 % in at least 766 
one community and time point. In total, 190 experimental samples are included in the figure togeth-767 
er with one stock community sample to represent initial species composition for all communities. 768 
For two communities, adequate amplicon sequence data could not be recovered for day 48. 769 
 770 

Figure 3. Community response to antibiotic perturbation. (A) Shannon diversity at the end of the 771 
antibiotic pulse (N = 64). (B) Ecological resilience without (left) and with (right) species immigra-772 
tion (N = 190). Resilience has been quantified for each community separately as the Kullback-773 
Leibler (KL) divergence of community composition over time after the disturbance relative to the 774 
pre-disturbance state. In both panels, the data for the respective metric (Shannon diversity or KL 775 
divergence, both computed from species composition data) is displayed by a box and whiskers plot 776 
overlaid by raw data points. The lower and upper hinges of the box and whiskers plot correspond to 777 
the 25th and 75th percentiles, while the lower and upper and whiskers extend from the hinge to the 778 
smallest or largest value, respectively (max. 1.5 × interquartile range from hinge). Low, intermedi-779 
ate and high antibiotic levels correspond to 4, 16 and 128 μg ml–1 streptomycin, respectively.  780 
 781 

Figure 4. Competitive fitness of species in replicate communities (N = 8) during and after recovery 782 
from intermediate-level antibiotic pulse (16 μg ml–1 streptomycin) in the absence of immigration 783 
(mean indicated by dashed line). The figure illustrates the repeatability of the species response be-784 
tween replicate communities and the inverse response for multiple species during the perturbation 785 
(top panel) versus recovery (bottom panel) phases. The competitive fitness of species is estimated 786 
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as the logarithm of the final frequency relative to the starting frequency, derived from the replicator 787 
equation in evolutionary game theory. Data for replicate 7 is missing from the panel below because 788 
of inadequate amplicon sequence data for one community sample (final time point). 789 
 790 

Figure 5. Repeatability of community trajectories, assessed using the diversity dissimilarity index 791 
(± bootstrapped standard error; N = 190) where zero indicates perfect identity and one complete 792 
dissimilarity between replicate communities. Repeatability is shown separately for Shannon diversi-793 
ty (top), which gives more weight to abundant species, and species richness (bottom), which gives 794 
equal weight to all species. The antibiotic pulse epoch is indicated by grey shade. Low, intermediate 795 
and high antibiotic levels correspond to 4, 16 and 128 μg ml–1 streptomycin, respectively. The di-796 
versity dissimilarity index has been computed from species compositional data. 797 
 798 

Figure 6. Targets of adaptive mutations reaching high frequencies (> 0.3 to fixation) in high-799 
abundance species during or after recovery from antibiotic pulse. The same mutations were mostly 800 
observed in both time points when the species was detectable (i.e. mutation not lost during recov-801 
ery). The heat map shows functionally annotated targets of recurrent nonsynonymous mutations, as 802 
well as the known streptomycin resistance gene rpsL which is only mutated in a single community. 803 
Since the genomic variants were recovered from deep sequencing data, they could only be con-804 
firmed for a subset of the three sequenced replicates and experimental treatments owing to differen-805 
tial abundance of species and volume of sequence data. Color coding is used to indicate the number 806 
of the replicates where a genomic target of interest was mutated relative to the number for which 807 
genomic variant data could be recovered in a particular experimental treatment. 808 
 809 
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