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In dynamic environments, such as the World Wide Web, a changing document collection, query

population, and set of search services demands frequent repetition of search effectiveness (rele-

vance) evaluations. Reconstructing static test collections, such as in TREC, requires considerable

human effort, as large collection sizes demand judgments deep into retrieved pools. In practice it is

common to perform shallow evaluations over small numbers of live engines (often pairwise, engine

A vs. engine B) without system pooling. Although these evaluations are not intended to construct

reusable test collections, their utility depends on conclusions generalizing to the query population

as a whole. We leverage the bootstrap estimate of the reproducibility probability of hypothesis

tests in determining the query sample sizes required to ensure this, finding they are much larger

than those required for static collections. We propose a semiautomatic evaluation framework to

reduce this effort. We validate this framework against a manual evaluation of the top ten results

of ten Web search engines across 896 queries in navigational and informational tasks. Augmenting

manual judgments with pseudo-relevance judgments mined from Web taxonomies reduces both

the chances of missing a correct pairwise conclusion, and those of finding an errant conclusion, by

approximately 50%.
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1. INTRODUCTION

Evaluating the effectiveness of information retrieval systems, in terms of rel-
evance, requires a large amount of human effort. Many environments, such as
the World Wide Web, grow and change too rapidly for a single evaluation to
carry meaning for any extended period. Changes in their document collection,
query population, and set of search services demand the repetition of evalua-
tions over time. In these environments, static test collections become outdated
too quickly and require too much effort to reconstruct. Rather, practitioners of-
ten compare a small number of live engines by judging every result retrieved at
a shallow depth—without system pooling. The number of queries necessary for
such an evaluation to be reliable1 must be determined, however. We hypothesize
that combining automatic evaluation techniques with a smaller set of manual
relevance judgments can provide more reliable pairwise conclusions (“engine A
outperforms engine B”) than the manual set alone. We propose a semiautomatic
framework for combining manually judged queries with automatically evalu-
ated ones, our ultimate goal being to reduce manual evaluation effort by finding
reliable conclusions using less manually judged queries. To test our hypothesis,
we adopt the reproducibility probability (“. . . probability of observing a signifi-
cant clinical result from a future trial . . . ” [Shao and Chow 2002]) as our esti-
mate of reliability. We then compare conclusions drawn with high reproducibil-
ity probability from semiautomatic evaluations against those from a manual
evaluation of the top ten results of ten Web search engines over 896 queries.2

The available content on the Web changes 8% every week, along with dra-
matic changes in the number of servers and pages [Cho et al. 2000; Ntoulas
et al. 2004]. In our experimentation, we found that only 61% of Web search
engines’ top ten results remained the same three months later on average, and
only 38% for the most changed engine [Jensen 2006]. Searchers’ interests and
the popular queries they use to express them are also in a constant state of flux,
with 20% of even the 30,000 most popular queries changing from one week to
the next, and less than half remaining the same after six months [Pass et al.
2006]. Even the topical categories these queries fall into have changing relative
popularities within days, weeks, months, and years [Beitzel et al. 2004b, 2006;
Jansen and Spink 2005]. Not only is the query population rapidly changing, but
its size and diversity also indicate that a large number of queries are required
to construct a representative random sample [Pass et al. 2006]. Popular queries
and even popular query terms make up only a small portion of the total query
stream, with approximately half of all queries being repeated ten or fewer times

1We follow Tague-Sutcliffe’s definition of reliability as a general term meaning “the extent to which

the experimental results can be replicated” and elaborate on specific applications where necessary

[Tague-Sutcliffe 1996].
2Available from http://ir.iit.edu/collections
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over a week [Beitzel et al. 2006; Jansen et al. 2005]. Developing new algorithms,
or even tuning traditional retrieval strategies for emerging applications (im-
age search, blog search, etc.) requires reliable, repeatable3 evaluations on their
respective dynamic environments.

Static test collections, such as those constructed for the Text Retrieval Con-
ference (TREC), become outdated too quickly to address these changes in
popular queries and their associated relevant results. With typical TREC eval-
uations requiring well over 500 assessor-hours (see Section 2), these sorts of
collections are too expensive to reconstruct when changes in effectiveness over
time must be measured. This effort is exacerbated by rapidly growing collection
sizes, as the reusability of such collections depends on the depth of their pooled
evaluations (also detailed in Section 2). Therefore, practitioners in dynamic
environments often dispense with efforts to build reusable test collections in
favor of reevaluating each engine as decisions are required. However, based on
analysis of our manual evaluation, we find that such shallow judgments de-
mand a large number of queries to provide reliable conclusions (as many as 650
in our environment). A method of reducing the effort needed to draw reliable
conclusions in such an environment is needed.

To make the repetition of such large evaluations over time feasible, we pro-
pose a semiautomatic framework that incorporates automatically evaluated
queries (using pseudo-relevance judgments) with manually judged ones. This
provides insight into conclusions earlier in the evaluation process so that poorly
performing engines can be eliminated before judging every result from every
engine over a large query sample. We identify two methods for integrating au-
tomatic judgments. Each provides a different form of guidance for evaluators
to reach reliable conclusions with less effort than manual judgments alone:

Semiautomatic Filtering: Verify conclusions drawn from a smaller num-
ber of manual judgments based on their agreement with automatic techniques.

Semiautomatic Prediction: Directly combine automatically judged
queries with manual ones to yield samples of larger sizes whose conclusions
can be used as an estimate of those that might be found with that many man-
ual judgments.

To test our hypothesis that this semiautomatic framework yields more reli-
able conclusions than those available from the manually judged sample alone,
we must adopt a specific method of estimating reliability. We use reproducibil-
ity probability (how likely a pairwise conclusion is to hold across any query
sample of a given size) as our estimate of reliability for two reasons. First, mea-
suring changes in performance over time in a dynamic environment demands
conclusions that generalize to the query population as a whole at the time of
evaluation. If applying an identical evaluation methodology to different query
samples from the same time period yields inconsistent conclusions, nothing can
be concluded about changes in engine performance over time. Comparing the
conclusions from any two evaluations that use different query samples would

3We take some liberty with the term “repeatable” to reference both the feasibility in terms of effort

of repeating evaluations and to emphasize that reproducibility is the fundamental criterion of

reliability.
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be impossible. Implicit in this assertion is our view of the query stream at a
given point in time as a hypothetical infinite population, in following with the
frequentist approach we adopt (well reviewed recently for information retrieval
in Cormack and Lynam [2006]). Second, we seek to reduce manual evaluation
effort by exploiting the fact that larger differences in evaluation scores are de-
tectable with smaller query sample sizes, possibly available from an evaluation
in progress. Information retrieval traditionally uses a priori heuristics for de-
termining the necessary query sample size to yield a desired level of reliability,
such as TREC “rules of thumb” about the minimum absolute difference be-
tween scores often derived from empirical meta-evaluation (see Section 2.2.3).
However, these do not address the problem of detecting reliable conclusions
from an evaluation in progress. We leverage the pointwise bootstrap estimate
of reproducibility probability of hypothesis tests that quantifies the reliabil-
ity of conclusions from any pairwise evaluation, without the prerequisite of a
sufficient query sample size to estimate parameters such as the mean score
difference or a context of meta-evaluation over a diverse set of engine pairs.
The ability to develop intelligent evaluation strategies, such as discarding re-
sults from an engine that is clearly inferior based on a small number of judg-
ments, is largely unexplored because the “running averages” available from
evaluations over small query sample sizes have been shown to be unreliable
when viewed as whole [Voorhees and Buckley 2002]. Quantifying the utility of
intelligent evaluation strategies is also difficult using existing methods of com-
paring evaluations (meta-evaluation). For example, prior automatic evaluation
and implicit preference research (reviewed in Section 2.3) focuses on optimiz-
ing the correlation of engine rankings from a purely automatic evaluation to
a manual one. However, critical decisions such as which search service to em-
ploy, and so forth, demand a more rigorous comparison of conclusions drawn by
these methods with those from manual judgment. By leveraging reproducibil-
ity probability, we ensure only conclusions with high reproducibility probability
are compared; those that would not generalize to other query samples using the
same evaluation technique are considered “ties.”

Next, we review related work in information retrieval evaluation and relia-
bility estimation. In Section 3, we show that our manual Web search evaluation
is reliable and we validate reproducibility probability estimation techniques on
it. Having established that prerequisite, we propose and validate our semiau-
tomatic framework in Section 4 using two simple automatic evaluation tech-
niques. Even with these naı̈ve techniques, errors are often reduced by half
compared to using small sets of manual judgments alone. More importantly,
metrics for comparing evaluations and measuring the utility of semiautomatic
methods are developed.

2. RELATED WORK

First, we review evaluation of information retrieval systems on the Web.
We then examine four methods for estimating the reliability of evaluations:
hypothesis testing, confidence intervals, empirical meta-evaluation, and repro-
ducibility probability estimation. Finally, we review prior work in automatic
evaluation techniques.
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2.1 Web Search Evaluation

Evaluating the effectiveness (relevance) of live Web search engines provides
many unique challenges because they operate on data that are continually
changing [Hawking et al. 1999; Savoy and Picard 2001]. The set of popular
Web queries and the relevant documents for those queries changes dramat-
ically over time [Pass et al. 2006]. Previous studies concluded that overlap
among results from different Web search engines was too high for them to be
deemed significantly different [Ding and Marchionini 1996]. However, when
a decision must be made, some form of reliable evaluation is necessary. Most
of the work in evaluating search effectiveness follows the Text Retrieval Con-
ference (TREC) methodology for constructing reusable test collections. TREC
holds constant the document collection and query set, pooling the top ranked
results up to a given depth (typically 100) from each engine and manually judg-
ing each document in this pool as relevant or not relevant. If this judgment
depth is large enough, these collections are reusable, in that the relative effec-
tiveness of runs from new engines over the same documents and queries can
be evaluated simply by applying the existing judgments and assuming docu-
ments that are not judged are not relevant [Zobel 1998]. Studies of evaluation
in TREC (meta-evaluations) have shown that although relevance is an ambigu-
ous concept [Borlund 2003], variations in relevance judgments due to assessor
disagreement do not destabilize evaluation [Voorhees 1998]. The TREC Web
track applies this methodology to static Web document collections. The recog-
nition that Web search users perform tasks other than the TREC standard
informational task (searching for many relevant documents topically related
to the query) has led to the incorporation of navigational homepage or named-
page-finding evaluations that assume there is a single best-known item (sans
duplications) the searcher wants to find. Most recently, TREC has begun to
address the question of whether building reusable collections through pooled
evaluation is scalable to terabyte-sized collections [Clarke et al. 2005]. Recent
work by Sanderson and Zobel [2005] shows that judging only the top ten results
of each engine provides reliable evaluation for less effort than system pooling.

Evaluations are very labor intensive. Our own precision oriented evaluation
of the top ten results of ten Web search engines over 896 queries required 225
assessor-hours to complete [Jensen et al. 2005; Jensen 2006]. This is approx-
imately 15 minutes per query, to assign binary relevance and choose the best
result from an average of 43 distinct results. A previous navigational evaluation
we performed, selecting only the best page and its duplicates from a pool of six
Web search engines’ results (about 25 on average) over 418 queries, required 87
hours, or approximately 12 minutes per query on average [Beitzel et al. 2003b].
Creating reusable test collections such as those developed in TREC requires a
larger amount of effort. Recent TREC efforts have employed six assessors gen-
erally working 20 hour weeks for over a month [Soboroff 2006]. The TREC 2001
Web ad hoc search task required 761.25 assessor-hours to perform judgments
over 50 topics, and an additional 283 hours to develop those topics. The 2004
terabyte track ad hoc task required 1037.5 hours total, with over half spent
performing judgments over 50 topics. Even in the 2003 homepage/named page
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task where the query was developed for a prechosen best document, the process
of simply checking shallow retrieved pools for duplicates over the 300 queries
required as many as 100–120 hours.

2.2 Estimating Evaluation Reliability

The ultimate goal of evaluation is to facilitate the construction of engines that
are a “meaningful” improvement over the state of the art. However, this im-
provement (often characterized as a level of difference discernable to users)
may be achieved through several iterations of reliable improvements. We spe-
cialize on Tague-Sutcliffe’s [1996] definition of reliability for the case of a pair-
wise conclusion from an information retrieval evaluation as its reproducibility
probability across any random query sample of equivalent size. We focus only
on the reliability of conclusions, as minimum levels of difference could easily
be incorporated into such analysis by selecting a different null hypothesis, and
would only increase the required sample sizes. Next, we review several methods
of estimating reliability.

2.2.1 Hypothesis Tests. Applying statistical hypothesis tests to informa-
tion retrieval evaluations has a history of controversy, as most tests rely on
observations conforming to continuous, often particular, distributions, but typ-
ical information retrieval evaluation metrics are bounded, discrete and often
non-normal in nature [van-Rijsbergen 1979]. Bootstrap hypothesis tests, such
as those applied to information retrieval evaluation by Savoy [1997] or Sakai
[2006], do not require these assumptions because they estimate the empirical
distribution by resampling thousands of times. When performing a handful
of these tests, this computational cost is not of consequence, but estimating
their power is computationally and theoretically challenging [Davidson and
MacKinnon 2006]. Therefore, we choose the Wilcoxon signed rank test with
standard corrections for noncontinuity in our experimentation because its non-
parametric nature does not require assuming a particular distribution, but it is
easily calculable and maintains higher power than very simple tests such as the
sign test [Hollander and Wolfe 1973]. Although the reproducibility probability
of any test could be estimated with the nonparametric bootstrap we leverage
below, the distribution of scores in our evaluation motivated this decision. They
failed a Shapiro-Wilk test for normality but did appear to be symmetric, as
required for the Wilcoxon test [Jensen 2006]. Our own and others’ experimen-
tation with the t-test, the sign test with and without the “zero fudge,” Wilcoxon
test with both the continuity correction and normal approximation, and also an
exact version of the Wilcoxon test that computes every permutation in the case
of tied ranks, found none that resulted in substantially more reliable repro-
ducibility probability estimates than others [Jensen 2006; Sanderson and Zobel
2005]. Our same prior investigation showed that reliable reproducibility proba-
bility estimates with a 95% confidence level would have required more queries,
so we chose α = 0.10. The fundamental problem with relying on the p-value
from a single hypothesis test is that it does not address the problem of ade-
quately representing the query population to ensure reproducibility [Goodman
1992]. Because of this, it is possible to find statistically significant differences
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over a particular sample of queries that may not generalize to the query
population.

Another factor that must be considered in applying hypothesis tests to in-
formation retrieval evaluation is that performing multiple tests with the same
null hypothesis requires simultaneous testing procedures (such as the com-
monly used Bonferroni correction) to account for the overall larger probability of
finding a significant result by random chance. Miller distinguishes between ex-
periments designed for “uncovering leads that can be pursued further to deter-
mine their relevance to the problem” versus those that report final conclusions,
suggesting that multiple test procedures are more important in the latter case
[Miller 1981]. Our primary endpoint is comparing conclusions that result from
pairwise hypothesis tests of semiautomatic evaluations versus those of bench-
mark manual ones. Because each comparison between a pair of engines has
its own hypothesis, differing from others, multiple testing procedures are not
required in our analysis. However, if the primary endpoint is to find the best
engine or to rank the engines, multiple testing procedures for step-wise and
pairwise comparisons should be considered, to ensure conservative estimates
[Munzel 2001].

2.2.2 Confidence Intervals. Many advocate reporting confidence intervals
for the parameter of interest (which in evaluation is typically the score dif-
ference) rather than hypothesis testing because they are easier to interpret
correctly. Cormack and Lynam [2006] construct confidence intervals of average
precision over varying document collections in the TREC informational task,
using the bootstrap. If we use a confidence interval to decide whether or not
one engine significantly outperforms another (by checking whether the null hy-
pothesis, typically zero difference in scores, lies outside the interval), we are
performing exactly the same analysis as the equivalent hypothesis test. Again,
this does not address the problem of adequately representing the query popu-
lation or quantifying reproducibility.

2.2.3 Empirical Meta-Evaluation. Empirical meta-evaluation (studying
the results of an evaluation over a large number of engines) focuses on esti-
mating the reliability of an evaluation as a whole. This sort of analysis is a key
component of TREC, where it is almost exclusively applied due to the lack of
such a large, diverse set of engines in proprietary environments. In empirical
meta-evaluation, reliability is defined as the stability (consistency) of the ranked
list of engines across query sets. Kendall’s Tau or Spearman’s rank correlation
measures are often used to compare evaluations based on their ranking of en-
gines. However, the most relevant metric to our work is the error rate (probabil-
ity of a pair of engines flipping positions relative to one another in the ranked
list of engines when using a different query sample) as defined in Buckley and
Voorhees [2000]. It is estimated post hoc by counting the number of pairwise
flips in the rankings of a large number of engines across varying query samples
by resampling the pilot query set (total available judged queries) into smaller
samples. In Voorhees and Buckley [2002], they focused on performing this cal-
culation for several different query sample sizes up to half the size of the pilot
sample and then extrapolating to estimate the error rate at the total pilot set’s
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size. By also calculating the error rate for several different fuzziness (minimum
difference in average scores to not be considered a tie) values and leveraging
the extrapolations to the pilot set size, these estimates can be used to devise
a priori heuristics sometimes cited when planning or analyzing experiments
at TREC. Typically, these take the form of “an X% difference in mean average
precision is needed to ensure an error rate of less than 5% with 50 queries.”
However, these heuristics do not account for the differences in distribution of
a particular pair of engines’ scores (their variance, for example). While error
rate is useful for post hoc comparison, these general heuristics derived from it
are only applicable to a completed evaluation. Applying these heuristics to an
evaluation in progress is questionable, as preliminary differences in average
scores are subject to influence from outlying scores, such as zero and one.

Recent work builds on error rate with improved theoretical foundations.
Sanderson and Zobel [2005] mitigate distributional issues by requiring both
that a pair of engines pass a hypothesis test, and have a difference in average
scores large enough to correspond with a low error rate. Lin and Hauptmann
[2005] derive error rate from statistical principles, showing that variance in en-
gines’ scores dramatically impacts the reliability of evaluations. Sakai [2006]
uses bootstrapping to find the score difference required to achieve a given sig-
nificance level in bootstrap hypothesis testing. Each of these methods has in
common the use of a large number of diverse runs to provide a general rule for
the difference in average scores required. They do not address the problem of
reducing the effort needed to answer specific questions without such a context,
such as “does engine A outperform engine B?” from an evaluation in progress.

2.2.4 Reproducibility Probability. Although we are unaware of its appli-
cation to information retrieval evaluation, we adopt reproducibility probability
because it directly measures the likelihood that a particular pairwise conclu-
sion generalizes to the query population as a whole, while its generality enables
its application to evaluations in progress and does not require a large number
of diverse engines as a context. Shao and Chow [2002] analyze several meth-
ods of estimating reproducibility probability. We follow their first in which “the
reproducibility probability can be defined as an estimated power of the future
trial using the data from the previous trial(s).” For clarity, we briefly diverge
to differentiate between the true power (typically referred to simply as the
“power”), or probability of rejecting a legitimately false null hypothesis, and
this “estimated power” described by Shao and Chow. The true power (defined
as an expectation in Equation 1 borrowing notation from Lehmann [1986]) is
commonly used a priori in experimental design to determine what sample size
will be large enough to detect a significance difference if one exists. However,
calculating the true power depends on specifying a particular distribution, F,
that satisfies the alternative hypothesis. This can be inaccurate when little is
known about the actual distribution of observations [Bacchetti 2002]. When
F is unknown, the true power of nonparametric tests is most accurately esti-
mated using the bootstrap by creating artificial subsamples of a pilot sample in
which the alternative hypothesis is enforced [Troendle 1999]. We are primar-
ily concerned with comparing evaluations based only on their conclusions with
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high reproducibility probability, not the true power of hypothesis tests, which
determines the likelihood of detecting a significant difference where one exists.

πn,α,F = P (�α(X 1, . . . , X n) = 1) = EF [�α(X 1, . . . , X n)]

Where: X 1, . . . , X n are any random sample of independent random variables
from identical distribution F satisfying H1

�α is a hypothesis test returning one for p-values less than or equal
to α and zero otherwise

Equation 1. True power of a hypothesis test.

The “estimated power” method of estimating reproducibility probability de-
scribed by Shao and Chow differs from this true power in that it comes from
observed experimental data where the truth-value of the null hypothesis is un-
known. For this reason, it is also known as the “observed power.” Like Shao
and Chow, however, we prefer the term “reproducibility probability” to avoid
any implication about the truth of the null hypothesis (inference). Post hoc
power analysis has drawn criticism for the way it has been misinterpreted as
evidence against the null hypothesis for tests that do not reject the null hy-
pothesis (since the observed power is greater than zero, we must simply not
have a large enough sample to support our conclusions) [Hoenig and Heisey
2001]. This is the trap of the large sample; that any two nonidentical engines
are significantly different with a large enough sample. We focus only on tests
that do reject the null hypothesis and have high reproducibility probability at
sample sizes just large enough to reliably estimate reproducibility probability
(as analyzed in Section 3.3).

Although their definition is general, Shao and Chow [2002] only apply the
“estimated power” approach to reproducibility probability for the parametric
t-test. However, it can be applied in the general case (to include nonparamet-
rics) using the point-wise bootstrap estimate, i.e. as done by De Martini [2006].
This pointwise estimate (Equation 2) is based on Efron and Tibshirani’s [1993]
nonparametric bootstrap, “A preliminary data set, datan, is used to estimate a
probability distribution, in this case F̂ . Then the desired power or sample size
calculations are carried out as if F̂ were the true distribution,” as discussed in
their example of estimating the true power of a bioequivalence test. We provide
an algorithm implementing Equation 2 specifically for information retrieval
in Section 3.2. Note that this is in the same spirit as the error rate heuristic
discussed in Section 2.2.3, but formalizes reproducibility probability of a partic-
ular pairwise conclusion without requiring a completed evaluation over a large
variety of engines.

pm,α(x1, . . . , xn) = EF̂ [�α(x∗
1, . . . , x∗

m)] = 1

B

B∑

b=1

�α

(
x∗b

1 , . . . , x∗b
m

)

Where: x1, . . . , xn are the observed values of a pilot sample of independent
random variables with empirical distribution F̂

x∗
1, . . . , x∗

m are random subsamples (with repetition) of size m from x1, . . . , xn
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Equation 2. Point-wise nonparametric bootstrap estimate of
reproducibility probability.

However, these reproducibility probability estimates are just that, estimates
that are influenced by the variability in the observed data (pilot sample). The
necessary pilot sample size required to reliably (reproducibly across pilot sam-
ples) estimate them must be established. We leverage graphical methods for
comparing true power to estimates that have been developed for just this pur-
pose [Collings and Hamilton 1988]. Aggregated numerical methods have also
been introduced, but they are targeted at relative comparison of power estima-
tion techniques rather than our focus of determining necessary sample sizes [De
Martini and Rapallo 2003]. One method of making more conservative bootstrap
estimates is to perform a double bootstrap, essentially performing secondary
bootstrap replications of each of the bootstrap samples [De Martini 2006; Hall
and Martin 1988]. When performing a hypothesis test for each bootstrap sam-
ple of reasonable size, this is computationally prohibitive. Our validation of the
reliability of reproducibility probability estimates in Section 3.3 follows a lim-
ited version of this procedure, visualizing differences in estimates over several
pilot samples.

2.3 Reducing Evaluation Effort

Two aspects of reducing evaluation effort have been studied in prior work:
evaluation strategies that reduce the number of judgments needed in a man-
ual evaluation, and automatic evaluation techniques that heuristically infer
pseudo-relevance judgments. Studies in each of these areas suffer from a dif-
ficulty in comparing conclusions drawn from one evaluation to another: to en-
sure lower-effort techniques provide correct conclusions with respect to more
thorough methods. Simply knowing that the engine rankings of one evaluation
correlate with another does not address differing levels of confidence in con-
clusions and the associated issue of whether too many errant conclusions are
being drawn or too few correct conclusions (too many ties) are found.

Several evaluation strategies are proposed as extensions or alternatives to
the TREC pooling methodology to reduce manual effort. Soboroff [2006] focused
on the problem of changes in the document collection, proposing to maintain
existing TREC collections to limit the impact of these changes over time. Re-
cent work dramatically improves on the evaluation effort required in TREC
by intelligently selecting results to be evaluated [Aslam et al. 2006; Carterette
et al. 2006]. Cormack et al. [1998] proposed interactive searching and judging,
in which no system pooling is used; evaluators simply perform various queries
for a topic, marking relevant documents as they proceed. Sanderson and Joho
[2004] analyze methods of producing test collections without any system pooling
and find that their quality correlates with that of TREC collections. Sanderson
and Zobel [2005] quantified the relative advantage of not pooling in terms of
the evaluation effort required to achieve a desired error rate.

Fully automatic evaluation techniques are widely employed in domains
where manual evaluation would require a prohibitive amount of effort
[Goldstein et al. 2005]. Two categories of automatic evaluation techniques
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proposed for information retrieval are inferring pseudo-relevance judgments
from the retrieved documents themselves, and using external resources to aid
in this inference. Several approaches randomly sample the documents from
the retrieved pools, based on known statistics about the typical distribution
of relevant documents, as pseudo-relevant documents, but find that the
effectiveness of only typical engines, but not the best engines, can be predicted
[Aslam et al. 2003; Nuray and Can 2006; Soboroff et al. 2001; Wu and Crestani
2003]. Others use similarity functions between documents and the query to
automatically estimate relevance [Shang and Li 2002].

Several methods of leveraging external resources to infer pseudo-relevance
judgments have been proposed. Some advocate the use of click-through data
(tuples consisting of a query and a user-clicked result) for automatic assess-
ment. However, there is a well-known presentation bias inherent in these data:
users are more likely to click on highly ranked documents regardless of their
quality [Boyan et al. 1996]. Joachims et al. [2005] find that clickthrough data
can, however, be used to infer relative preferences between documents. Others
have made use of taxonomies to fuel automatic evaluation, such as the Open
Directory Project (referred to as DMOZ or ODP), Yahoo’s directory, and Looks-
mart [Haveliwala et al. 2002; Srinivasan et al. 2005]. These taxonomies divide
the Web into a hierarchy of categories, with some pages placed in multiple cat-
egories. Each category has a title, and a path that represents its placement in
the hierarchy. They also typically have editor-entered page titles that do not
necessarily correspond to the titles of the pages themselves.

3. RELIABLE MANUAL EVALUATION

Evaluating our semiautomatic framework requires a reliable manual evalua-
tion for comparison. We are unaware of currently available large manual eval-
uation in a dynamic environment, such as the Web. Therefore, we performed
our own evaluation of ten Web search engines over 896 queries (based on the
assessor time we allocated, with no preference for this particular number). We
briefly review this experimental environment, with more details available in
Jensen [2006]. We then examine the question of reliability of conclusions drawn
from such an evaluation. With prior techniques for estimating reliability inap-
plicable, we review reproducibility probability, and specifically the pointwise
bootstrap estimate that we leverage. As with any reliability estimate, the con-
ditions for the estimate itself to be reliable must be verified. We therefore con-
tinue by validating the reliability of these reproducibility probability estimates
themselves, finding the minimum query sample size necessary in our environ-
ment to ensure that high reproducibility probability estimates from a sample
correspond to similarly high levels on larger samples.

3.1 Experimental Environment

We manually evaluated the top ten results of ten Web search engines over 896
queries without system pooling. The engines evaluated (AltaVista, AllTheWeb,
Gigablast, Google, Lycos, MSN, MSN Tech Preview (now their main engine),
Teoma, Wisenut, and Yahoo) are anonymized in no particular order as E1, E2,
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Table I. Overall Scores for Manual Web Evaluation of 896 Queries

AvgP P@10 MRR
Ranking Mean Median Ranking Mean Median Ranking Mean Median
E1 0.632 0.686 E1 0.690 0.800 E1 0.359 0.125

E2 0.620 0.676 E2 0.681 0.800 E2 0.338 0.111

E3 0.611 0.646 E3 0.676 0.800 E10 0.313 0.000

E5 0.607 0.642 E5 0.672 0.800 E3 0.312 0.000

E4 0.600 0.630 E4 0.667 0.800 E5 0.311 0.000

E7 0.585 0.600 E7 0.657 0.700 E7 0.300 0.050

E10 0.573 0.580 E9 0.635 0.700 E6 0.291 0.000

E6 0.572 0.600 E10 0.634 0.700 E4 0.283 0.000

E9 0.568 0.600 E8 0.634 0.700 E8 0.282 0.000

E8 0.562 0.600 E6 0.625 0.700 E9 0.241 0.000

. . . E10. We randomly sampled 896 distinct queries from an AOL Search query
log consisting of the entire search traffic, hundreds of millions of queries, for the
two days 9/17 and 9/18, 2004. Queries in the log are lowercased and stripped of
most punctuation. We were careful to randomly select from the true distribu-
tion of queries, creating a sample that approximates the frequency distribution
of the query population [Beitzel et al. 2004b, 2006]. Results from all ten engines
were pooled in a uniform interface based on canonicalized URL, including the
surrogate document representations consisting of title, snippet, and the link to
the page that assessors could optionally click through. For each query, a group
of AOL editors, undergraduate and graduate computer science student asses-
sors manually assigned each result as relevant or not relevant and selected a
single best result from the entire pool. Assessors were instructed to imagine
they had posed the query to determine the most likely information need based
on only the typically short query from the log. Of course, this environment may
suffer from problems of assigning navigational and informational interpreta-
tions to each query, shifting definitions of relevance, or differing perceptions of
relevance based on the quality of surrogates. Our focus on finding conclusions
that generalize to the query population as a whole, motivated us to use the lim-
ited number of assessor hours available to us to judge more queries rather than
attempt to reduce such sources of random error. A more controlled evaluation
environment would likely reduce the number of queries required, but at a cost
of higher effort per query. Detailed statistics about this evaluation, including
score distributions, and so on, are available in Jensen [2006]. For each engine
over each query, we calculated three evaluation metrics: average precision at
ten (precision averaged at each retrieved relevant document, limiting the de-
nominator to the maximum number of retrieved results, ten), denoted as AvgP,
precision at ten, denoted as P@10, and reciprocal rank of the best page, denoted
as MRR for familiarity despite our point-wise use of it. See Table I for mean
and median scores, ranked by mean.

Next, we performed pairwise hypothesis testing for significant differences in
median score using the Wilcoxon test as motivated by Section 2.2.1. While over-
all median is not terribly descriptive in Table I due to the discretized nature of
a top-ten evaluation, simply the discrepancies between means and medians are
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Fig. 1. Significant differences with Wilcoxon test α = 0.10 using all 896 queries.

indicative of non-normal distributions. We visualize the significant differences
found as a hierarchy, where any path to a lower node represents that the higher
node significantly outperforms the lower one (Figure 1). These hierarchies are
simply a visualization conveying the same information as more common tex-
tual approaches to represent groups, such as those provided in TREC using
IR-STAT-PAK [Blustein and Tague-Sutcliffe 1995]. We believe they are more
readable than purely textual approaches when engines are not strictly ranked
by their average scores. Nodes are collapsed together when they have an equiv-
alent set of relationships. For example, E1 significantly outperforms every other
engine under the MRR evaluation metric because there is a path from E1 to E2
to E3 and E10, and so on. E6 and E4 under MRR, by contrast, neither outper-
form nor are outperformed by E8, but they both significantly outperform E9.
We make our best effort to place engines with larger scores higher, but favor
readability over enforcing this strictly. As one would hope for any measure of re-
liability, all of our results produce figures that are associative, never requiring
more than one node to represent an engine.

Precision at ten is not shown, as it is nearly identical to average precision over
the top ten results, with only two differences in significant conclusions, E6 >

E8 with AvgP (read “engine six significantly outperforms engine eight”) and E9
> E6 with P@10. While average precision is not typically used for retrieved sets
of ten, it does help to reduce the number of tied scores across engines, compared
to the more discretized P@10 (see Jensen [2006]), which we hypothesized would
increase reliability. However, we do not find any meaningful differences in either
the reliability or conclusions of AvgP versus P@10 (see Section 3.3), so for the
remainder of this article we simply choose AvgP.

3.2 Bootstrapping Reproducibility Probability

The algorithm we employ for bootstrap estimates of reproducibility probability
in pairwise information retrieval evaluations is detailed in Figure 2. This is
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Fig. 2. Bootstrap reproducibility probability estimates for pairwise evaluation.

a specialization of the nonparametric bootstrap (from prior work described in
Section 2.2.4, particularly an implementation of Equation 2) for the pairwise in-
formation retrieval evaluation problem. We first analyzed point-wise estimates
such as this in a preliminary investigation [Jensen et al. 2005]. For generality,
we leave the hypotheses stated as EA > EB (“engine A significantly outper-
forms engine B”), and the converse, because the specific hypotheses depend on
the test chosen. The null hypothesis for both tests is that there is no difference
between the two engines. We favor one-sided tests because the conclusions we
are ultimately interested in are whether one engine outperforms another, not
simply whether they differ. Implicit in deciding the direction of differences is
the risk of type III error (“actually drawing firm but incorrect conclusions”),
but for even minimal differences in engines this risk is small [Spiegelhalter
and Freedman 1986]. For the conclusions included in our comparisons, calculat-
ing reproducibility probability for each direction makes this choice abundantly
clear: we compare only conclusions with at least 90% reproducibility probability,
in which case the converse conclusions typically have reproducibility probabil-
ity less than 1%. Performing this procedure for every pair of k = 10 engines
results in k(k − 1) = 90 reproducibility probability estimates, from which we
simply discard the weakest estimate of each pair EA > EB or EB > EA leaving
k(k−1)/2 = 45 estimates in our analyses. Throughout our experimentation, we
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Fig. 3. Example growth and error of reproducibility probability estimates using AvgP.

set the number of bootstrap iterations, B = 2,401 (where B has no relation to
engine B which we always represent as EB). We have no preference for such an
odd number, except that it is larger than the recommended minimums for boot-
strap calculations, including those for bootstrapped hypothesis tests [Davidson
and MacKinnon 2000]. Preliminary experimentation also confirmed this was
more than sufficient.

3.3 Reliability of Point-wise Bootstrap Power Estimates

The margin of error for reliability estimates due to variability in their pilot sam-
ples is rarely studied. Since we cannot evaluate the entire query population,
any estimate of reliability is biased by the pilot query sample used to calcu-
late it. We focus on determining the sample size required to ensure that high
reproducibility probability estimates from any pilot sample correspond to sim-
ilarly high reproducibility probability estimates for the same engine pair from
our entire sample of 896 queries. Although this analysis must be performed
separately in each evaluation environment, it serves as a simple method for
establishing that high reproducibility probability estimates converge, in that
they remain high across pilot samples at a particular pilot sample size. Re-
quiring a certain number of pilot queries simply to estimate reproducibility
probability would seem to dissolve all hope of reducing evaluation effort, but,
as we demonstrate in Section 5, incorporating automatic judgments allows us
to meet this minimum sample size without manually evaluating each query.

In Figure 3, we provide an example of the growth of reproducibility prob-
ability for two example engine pairs with increasing bootstrap sample size m
(and corresponding size of pilot samples n′). Hereafter, the Wilcoxon test with
α = 0.10 is assumed. The scores for these three engines and their associated
rankings are detailed in Section 3.1. The points on the lines of Figure 3 pro-
vide relatively smooth curves because they are estimates from the same pilot
sample Q of all 896 queries. The error bars, however, represent the range of
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reproducibility probability estimates calculated using several other pilot sam-
ples Q′ created by randomly sampling m + 50 queries from Q . Throughout, we
use a bootstrap sample size of 50 less than the pilot sample to dampen the is-
sue of tied score differences due to duplicated queries created by sampling with
repetition. Equivalent score differences result in tied ranks in the Wilcoxon
test that reduce its accuracy. Error bars are not shown for m = 850, because
creating pilot samples that vary substantially out of the 896 queries available
is not possible. With over 600 queries, we are able to conclude that E2 reliably
outperforms E3 (their median AvgP scores are .676 and .646, respectively).
The candidate conclusion E5 > E3, however, clearly lacks the reproducibility
probability to support it with these sample sizes. With a very large number
of queries, we might expect to be able to distinguish between E3 and E5 reli-
ably. As discussed in Section 2.2.4, increasing the sample size until significant
differences are found is a dangerous and inefficient method of comparing en-
gines. Any nonidentical engines can be declared significantly different with a
large enough sample size. As our goal is to compare evaluations that use differ-
ing query samples, the sample sizes used in our analysis are determined by the
reliability of reproducibility probability estimates for any engine pair, not the
significance or reproducibility of particular conclusions.

How can we use reproducibility probability to determine the sample size
necessary to ensure reliable conclusions? One option would be to extrapolate
reproducibility probability estimates from smaller sample sizes to project the
sample size at which a conclusion will be reliable, as is often done for error
rate. However, we can see from the error bars in Figure 3 that estimates based
on small pilot samples vary wildly. Having only evaluated 450 queries, for ex-
ample, we might extrapolate that with 650 we would find a reliable difference
between E5 and E3. Instead, we favor a conservative approach of evaluating
enough queries to make it clear that reproducibility probability estimates are
converging to similar values across varying pilot samples for all pairs of engines.

The discrepancies between reproducibility probability estimates from one
pilot sample to another can be dramatic, even with substantial numbers of
evaluated queries. For example, in Figure 4 we plot reproducibility probability
estimates over all 45 pairs’ candidate conclusions (EA > EB) at bootstrap sam-
ple size 450 from varying pilot samples of 500 queries (created as described for
Figure 3) versus identically sized estimates using all 896 queries as the pilot
sample. Just as varying pilot samples produced large error margins in Figure 3,
here we see that reproducibility probability estimates above 0.9 from a pilot of
500 queries might correspond to estimates as low as 0.4 for the same conclusion
when using all 896 queries.

To determine the minimum query sample size necessary to ensure that highly
reproducible probability estimates from a given pilot sample will correspond to
similarly high estimates from other samples, we employ a simple metric: the
minimum reproducibility probability estimate from a pilot sample to ensure
a reproducibility probability of at least 90% using our entire sample of 896
queries as the pilot. In Figure 4, for example, we would judge that 500 queries
are insufficient because only sample estimates very near 1.0 meet this criterion.
The corresponding y-axis estimates from all 896 queries are below 0.9 for even
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Fig. 4. Example discrepancies in bootstrap reproducibility probability estimation from varying

pilot samples.

Table II. Minimum Reproducibility

Probability from Pilot to Ensure

Reproducibility Probability from All 896

of at Least 0.90

n′ AvgP P@10 MRR

300 1.000 None 0.996

350 0.997 0.999 1.000

400 0.991 1.000 1.000

450 0.997 0.995 None

500 0.996 0.999 0.996

550 0.995 0.993 0.991

600 0.997 0.984 0.994

650 0.984 0.986 0.982

800 0.971 0.969 0.980

high sample estimates. As our metric decreases with larger sample sizes, the
entire discrepancy graph continues to grow tighter to the diagonal. This anal-
ysis is a limited version of the conservative double bootstrap method proposed
by De Martini [2006], which is computationally infeasible for our sample sizes.
While such analysis could be performed on each engine pair individually, or by
bucketing pairs by levels of difference, this creates the same dependencies that
make error rate difficult to apply in new environments: defining the level of dif-
ference from unreliable preliminary values and an exaggerated dependence on
the diversity of engines evaluated. Ensuring that none of the pairs of engines
(especially those with small differences) yields a falsely high reproducibility
probability estimate removes the dependence on determining levels of differ-
ences from small query sets. Rather than generating synthetic differences or
engines, this analysis provides a minimum sample size that makes false pos-
itive errors unlikely for any new engine with similar score distribution in the
given environment.
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Fig. 5. Manual engine ranking with 99% reproducibility probability at m = 850.

In Table II, we detail this analysis for our web search evaluation, presenting
the minimum p′

m=n′−50,0.10 from 20 varying pilot samples of size n′ to ensure
pm=n′−50,0.10 ≥ 0.90 using all 896 as the pilot sample. For P@10 with samples of
300 queries and MRR with 450, even an estimate of 1.0 does not guarantee the
estimate from all 896 is above 0.90 for the same candidate conclusion. Because
of the margin of error for bootstrap estimates from a single pilot sample (which
depends on B), minimums of 0.99 and above are difficult to enforce. With pilot
samples of size 650, however, estimates begin to converge to ensure that high
reproducibility probability from a sample corresponds to a high reproducibility
probability estimate using all 896. Therefore, we conclude that 650 queries are
necessary to estimate reproducibility probability reliably in our environment.
Because this convergence takes place nearly 250 queries below the size of our
entire sample of queries, we conclude that it is not an artifact of pilot sample
size approaching that of our entire sample. This convergence takes place near
the same size for each evaluation metric, leading us to hypothesize that the size
of the pilot samples has more impact than the distributions under evaluation,
and providing further evidence that even different engines would likely have
reliable reproducibility probability estimates with this number of queries. We
performed this same analysis on several TREC collections in Jensen [2006],
finding conclusions difficult to generalize here, as such collections are not in-
tended to represent a query population.

3.4 Conclusions From Manual Web Search Evaluation

Having established that the point-wise bootstrap estimate of reproducibility
probability is reliable for high reproducibility probability estimates on large
enough sample sizes, we conclude by applying it to our manual evaluation. The
metric we chose for measuring reliability is also convenient for providing an
ad hoc correction to our reproducibility probability estimates. While we are in-
terested in conclusions with at least 90% reproducibility probability, we saw
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that estimates from a pilot sample of even 800 queries must be above 98% to
ensure this is valid for the population. To ensure we only examine reliable con-
clusions, therefore, we only include those with reproducibility probability of at
least 99% for the remainder of our investigation. These benchmark high repro-
ducibility probability conclusions from Wilcoxon tests using α = 0.10 are shown
in Figure 5. While many conclusions are significant based on a Wilcoxon test
(see Figure 1), approximately half of these have high reproducibility probability.

4. SEMIAUTOMATIC EVALUATION

We have shown that evaluations in dynamic environments are capable of
yielding conclusions that are reproducible across query samples. However, the
sample sizes necessary to ensure this are large, demanding substantial effort
to evaluate each query manually. To reduce the required manual judgment
effort so that evaluations can feasibly be repeated as the environment changes,
we propose a semiautomatic evaluation framework for integrating automatic
judgments with manual ones. Whereas small numbers of manually evaluated
queries are of little use on their own due to the large number of false positives
we saw in Section 3, combining them with automatic evaluation provides in-
sight into conclusions. Although any automatic evaluation technique; using
implicit preferences such as clickthrough data, fusion or metasearch based
approaches, and so on, could be applied in this framework, we leverage the
resource-based approach we developed in prior work: mining pseudo-relevance
judgments from taxonomies such as the Open Directory Project (referred to
as DMOZ) [Chowdhury 2005]. This serves as both an analysis of the utility of
our resource-based automatic evaluation technique, and more importantly, a
vehicle for developing our semiautomatic framework and demonstrating how
to apply and validate it.

First, we provide an overview of mining pseudo-relevance judgments from
taxonomies and give conclusions derived from its automatic judgments alone.
Next, we present the two basic ways in which automatic techniques can aug-
ment manual ones: by predicting conclusions that are likely to be found with
larger query sets, by using a combination of a smaller number of manual judg-
ments with automatic ones, and by filtering conclusions from small manual
evaluations to improve their reliability. Finally, we present simple methods for
leveraging each of these two aspects. We compare the reliable pairwise (engine
A vs. engine B) conclusions they provide, with those drawn from our manual
evaluation. Our analysis serves as an example of that which would be required
using any automatic evaluation technique in a given environment, thus illus-
trating our framework and corresponding metrics for analyzing the utility of
semiautomatic methods.

4.1 Mining Automatic Relevance Judgments

To validate our semiautomatic framework, we employ automatic evaluation
techniques developed in our previous work that address both the informational
and navigational tasks [Beitzel et al. 2003a; Chowdhury 2005; Jensen 2006].
These automatic techniques leverage two types of resources that are likely to
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Fig. 6. Automatic techniques: Title-Match (top) and Category-Match (bottom).

be available in most dynamic search environments: a log sufficiently represent-
ing the population of queries, and a human-edited taxonomy of documents in
the collection that is large enough to include a representative sample of the
collection. This could be any form of taxonomy, such as a corporate intranet
directory, Web taxonomy, or large collection of categorized bookmarks, but it
must represent human matches of topics to documents and not be biased to-
wards particular search services. Our initial investigations into automatic eval-
uation used the DMOZ and LookSmart taxonomies to show that on the Web
these techniques are not biased towards particular engines by the choice of tax-
onomy to mine judgments from, finding a 0.931 Pearson correlation between
MRR1 scores (the reciprocal rank of the first relevant result in the retrieved
list) of automatic evaluations using each [Beitzel et al. 2003b; Chowdhury and
Soboroff 2002]. These purely automatic techniques have correlations in the 0.7
range with manual evaluation scores [Beitzel et al. 2003a; Chowdhury 2005].
For the following experimentation, we repeated our automatic evaluations on
the Web using more recent DMOZ data (downloaded on 12/8/2004) applying
their judgments to queries from the same log and results from the same set of
ten Web search engines as in our manual evaluation. Details of this process are
provided in Appendix A.1.

An example of each technique is provided in Figure 6. For the navigational
homepage/named page-finding task, we mine pseudo-relevance judgments us-
ing a technique we term Title-Match. It collects documents from the taxonomy
whose editor-supplied titles exactly match a given query. These documents are
treated as the “best” or “most relevant” documents for that query. For the infor-
mational, topical search task, we use a technique termed Category-Match. If
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Fig. 7. Comparison of benchmark MRR manual conclusions (left) to purely automatic Title-Match

MRR1 engine ranking (right) with 99% reproducibility probability at m = 850.

the most specific component of a category name exactly matches a given query,
all documents from that category are used as the pseudo-relevant set.

Scores for the ten engines using these automatic techniques are available in
Appendix A.1. As with manual evaluations, ranking engines by their average
score and comparing rankings using correlations is insufficient. To compare
only the reliable conclusions drawn from automatic evaluations with those from
manual ones, we apply the same reproducibility probability analysis. Using the
randomly selected Title-Matched queries as the pilot sample, and setting the
bootstrap sample size equivalent to that of our manual evaluation, so that we
would detect differences of comparable magnitude, we found those diagrammed
in Figure 7. Comparing these conclusions with those of our manual evaluation
in Figure 5 (duplicated for convenience), the automatic technique ranks E10
and E6 relatively lower, while it ranks E4 and E5 higher. Category-Match has a
similar correlation, (see Appendix A.1). Although our focus is on demonstrating
our framework, we investigated several methods of improving this correlation,
including correcting for query popularity distribution, topical category distribu-
tion, and number of relevant results. None of these preliminary investigations
substantially improved correlation [Jensen 2006].

4.2 Integrating Manual and Automatic Judgments

Although they are useful in examining evaluation characteristics over query
sample sizes difficult to evaluate manually, we have seen that these purely au-
tomatic techniques are often inaccurate. We have also shown, in Section 3.3,
that evaluation of search engines in dynamic environments demands a large
query sample size even to estimate reproducibility probability. Incorporating
automatic techniques with smaller numbers of manual judgments provides a
sort of evaluation roadmap where there would otherwise have been little infor-
mation about engines’ relative performances. We focus on providing guidance
for developing an intelligent evaluation strategy without having to manually
evaluate the requisite number of queries for a reliable evaluation over every
engine. We examine the two basic advantages semiautomatic methods can of-
fer towards this goal: expanding the set of conclusions by predicting which will
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Fig. 8. Semiautomatic prediction.

have high reproducibility probability with more manual evaluation, and prun-
ing the set of conclusions from a manually judged query sample by removing
those that do not seem to be reproducible across samples of this size.

4.2.1 Semiautomatic Prediction. To aid evaluators in focusing on conclu-
sions that are likely to be reliable with further manual evaluation, we propose
the technique detailed in Figure 8. Although automatic and manual judgments
could also be combined per-result rather than on a query-by-query basis, we
hypothesized that evaluating only some of the results from a query is not dra-
matically less effort than evaluating all of a query’s results.

We employ this probabilistic sampling rather than simply using the same,
entire Qman sample in each bootstrap replication to reduce false positives by
increasing the diversity of the samples. We assume the number of queries with
automatic judgments is much larger than that used in each bootstrap replica-
tion to prevent a large number of tied scores. The primary goal of the following
experimentation is to determine the range of rman and nman parameters at which
the semiautomatic method predicts more of the correct conclusions than sim-
ply using Qman alone, while maintaining a relatively low probability of finding
errant, false positive, conclusions.

4.2.2 Semiautomatic Filtering. To finalize conclusions from manually
evaluated query samples too small to provide reliable conclusions on their own
(removing the need for further judgments of the associated engines), we propose
the technique detailed in Figure 9.

This technique leverages the large sample sizes possible using automatic
techniques to reduce the likelihood that initial conclusions are simply artifacts
of the insufficient manual sample size. For sizes nman too small to yield reliable
conclusions on their own (as discussed in Section 3.3), we hypothesize that
filtering their conclusions with those from an automatic evaluation can reduce
false positive errors enough to allow them to be accepted. The primary goal
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Fig. 9. Semiautomatic filtering.

of our experimentation with this technique is to determine the range of sizes
nman for which this effect is achieved, while not discarding too many of the
conclusions from the purely manual evaluation that are actually correct.

4.3 Utility of Semiautomatic Evaluation

The primary goal of these semiautomatic methods is to make repeating evalu-
ations feasible in large, dynamic environments. They address this by providing
insight into conclusions before completing an evaluation of every engine’s re-
sults over the entire query sample size required to ensure reliability. This en-
ables the development of intelligent evaluation strategies that reduce manual
effort by removing engines from an evaluation in progress. However, acceptable
levels of error for making decisions such as discarding an engine, depend on
factors specific to evaluation goals, making conclusions about total effort diffi-
cult to generalize. The level of investigation (are we trying to divide the best
engines from the worst, or determine whether one of the top two is truly better
than the other?), or even the relative efficiency, monetary cost, and so on, of the
engines considered to be likely, determines whether we are willing to tolerate
some false alarms or missed conclusions. This is outside the scope of comparing
the relative utility of various semiautomatic techniques. Therefore, we focus
only on the general utility of these semiautomatic techniques versus manual
judgments at finding the correct pairwise EA > EB conclusions using only a
small pilot sample of manually evaluated queries. We quantify this utility by
measuring the number of errant pairwise conclusions each of them yield and
the number of correct conclusions they miss. This is a typical method of evalu-
ating pairwise conclusions in filtering and categorization [Beitzel et al. 2004a;
Manmatha et al. 2002]. Our motivation for focusing on binary pairwise con-
clusions themselves, as opposed to the underlying reproducibility probability
estimates is twofold. First, we found in Section 3.3, that for reasonable sample
sizes, only very high reproducibility probability estimates are reliable. Based on
that analysis, throughout the following evaluation we only treat reproducibil-
ity probability estimates greater than 99% as asserting a conclusion. Second,
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practitioners are likely more concerned with making errant conclusions, rather
than the accuracy of actual values of reproducibility probability estimates. For
the same reasons, we provide the raw counts of errors rather than their percent-
ages, as the magnitude of number of errors is often of at least as much concern
as their proportions. Unlike using only the correlation of engine rankings to
compare evaluations, this framework focuses on conclusions with high repro-
ducibility probability, accounting for ties, and exposing whether an evaluation
is too weak to find correct conclusions, or too confident in errant conclusions.

Comparing evaluations is complicated by the need to define the “correct”
conclusions. For example, if an evaluation of 300 queries finds that EA outper-
forms EB, and a larger evaluation of 800 queries finds the same thing, but if it
also shows that 300 was not enough to reliably conclude that, is the conclusion
EA > EB based on the initial 300 queries “errant?”. To mitigate these issues
each of our analyses spans several benchmark query sample sizes (most easily
characterized by the bootstrap sample size, m, since we vary the size of the
pilot samples). Because our baseline is purely manual judgments, the follow-
ing analysis also provides an interesting corollary to our investigation into the
reliability of reproducibility probability estimates from manual judgments as
it further describes the type of errant conclusions they cause.

4.3.1 Results of Predicting from Auto-Manual Mixed Samples. First, we
evaluate the utility of the prediction procedure described in Section 4.2.1
against simply using the pilot sample of manually evaluated queries alone.
In the task of predicting what conclusions will be found with larger query sam-
ple sizes than those that have been evaluated, we seek to determine the range
of rman (the ratio of manual to automatically judged queries) and nman (the size
of the pilot sample) parameters for which the semiautomatic procedure sub-
stantially reduces errors compared to the manual. As we did in Section 3.3,
we analyze the manual method by finding the set of conclusions from each of
20 different distinct query samples, Q ′

man, with 50 more queries than the size
we bootstrap. With a mixture of automatically and manually evaluated queries
in the semiautomatic method, the need for a larger pilot manual sample than
the bootstrap sample size needed to prevent a large number of ties is dimin-
ished. To ensure a conservative evaluation, we therefore used sets Q ′

man of size
nman = E(m∗

man) for the semiautomatic method.
We begin with an examination of the navigational evaluation, using the

best page MRR manual evaluation and the Title-Match automatic approach. In
Figure 10 we compare the correct set of manual conclusions based on our bench-
mark pilot of all 896 queries bootstrapped into sets of 850 (a copy of Figure 5 for
convenience) to those from one of the twenty semiautomatic prediction runs.
This is in fact the worst case (the largest number of missed conclusions) out of
the twenty pilot Q ′

man samples of size 350 for the m = 850, E(m∗
man) = 350 test.

Comparing these example semiautomatic conclusions in Figure 10 to those of
the purely automatic technique in Figure 7, shows that the same general dis-
crepancies exist, but their severity is markedly decreased. The semiautomatic
still ranks E10 and E6 relatively too low and E4 and E5 higher than the manual,
just as the automatic method did. However, the number of errors is dramatically
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Fig. 10. Comparison of benchmark MRR manual conclusions (left) to worst misses case of semi-

automatic prediction with m = 850 and E(m∗
man) = 350 (right).

Table III. Selected Sizes of Predicting from Combined Manual MRR and Title-Match

Predicting with Combined
Manual MRR Manual MRR and Title-Match

False alarms Misses False alarms Misses
m E(m∗

man) Mean Max Mean Max Mean Max Mean Max
300 0 N/A N/A N/A N/A 14/16 14/16 1/3 1/3

300 200 1.30/3.15 6/8 1.15/3 3/3 4.45/6.70 8/10 0.75/3 1/3

450 200 0.50/3.15 3/7 7.35/10 10/10 6.15/13.60 10/18 2.55/10 4/10

600 200 0.15/3.15 2/7 10.00/13 13/13 9.90/18.35 14/24 4.55/13 5/13

850 200 0.05/3.15 1/7 12.90/16 16/16 13.85/24.25 16/26 5.60/16 6/16

850 350 0.25/6.55 2/11 9.70/16 14/16 9.80/21.00 12/23 4.80/16 7/16

fewer because it commits these infractions in only a small number of engine
pairs, whereas the automatic method is certain of its incorrectness in many
more cases.

This serves as an illustrative example of how the aggregated errors in the
following tables, such as Table III, are counted. Recalling that any path from
a higher node to a lower one implies that engine outperforms the lower one,
each of these sets contain 16 distinct conclusions (by chance). As recorded in
the final row of Table III, this case of the semiautomatic technique misses 7 of
the 16 correct conclusions, the largest absolute number of them across all 20
pilot samples. The missed conclusions are:

� {E1, E2} > E4
� E1 > {E5, E7, E8, E10}
� E6 > E9

Of the 16 conclusions this case draws, 9 are false alarms (errant false positives):

� {E2, E5} > {E10, E6}
� {E3, E4, E7} > E6
� E5 > E8
� E8 > E9
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The first column is the benchmark bootstrap sample size taken from the pilot
of all 896 that we compare with both the small manual and semiautomatic.
The expected number of manual queries in each test bootstrap sample for the
semiautomatic approach is given in the second column. This is equivalent to
the test bootstrap sample size for the purely manual approach, as we are in-
terested in how well a small number of manually evaluated queries predict the
conclusions of a larger number. The probability of a false alarm is expressed
as the ratio of the average number of false alarms to the average number of
conclusions drawn. The maximum absolute number of false alarms across all
20 runs is given with its associated number of conclusions on that pilot sample.
The probability of a miss is based on the number of correct conclusions, which
is constant for each benchmark m (the same for the manual and semiautomatic
method). There is one special case, E(m∗

man) = 0, where a purely automatic ap-
proach is provided. That case, does not make use of any pilot manual samples
so there is only a single result.

Table III includes selected rows where the semiautomatic approach reduces
errors dramatically compared to the manual. Complete results for these and
other ratios of manual to automatic results are provided in Appendix A.2. Pre-
dictions based on expanding the small manual sample with queries automat-
ically evaluated using Title-Match typically miss approximately half as many
of the correct conclusions as those from the manual sample alone. We exam-
ine predictions to four larger sizes: 300, to investigate our ability to predict
dramatic differences with very few judgments, 450, the first point when high
reproducibility probability estimates in the manual case begin to become reli-
able (see Table II), 600, where manual conclusions are reliable, and 850, the
most detailed conclusions our set of judgments can support. The small num-
ber of correct conclusions (three) in the 300 queries case makes it difficult to
choose one over the other as both the manual and semiautomatic methods have
difficulty. The manual one often misses all three, while the semiautomatic one
draws far too many conclusions in general, with over half of them being false
alarms. Random performance, however, would draw nearly all false alarms, as
only three conclusions of 45 are correct. Across the other prediction sizes, the
manual method often misses nearly all the correct conclusions at a maximum;
the semiautomatic often cuts this by half. Its number of false alarms, however,
is greater than when using manual queries alone. This can be mitigated by
incorporating a large enough ratio of manual queries (see Appendix A.2), which
also reduces the number of conclusions it draws in general (the denominator
of the probability of false alarm). Of course, larger available pilot samples for
the manual method increase the number of conclusions it draws on average,
subsequently decreasing the average number of misses with little increase in
false alarms. When a larger number of manual judgments are available, the
semiautomatic method may not be justified. Compared to not being able to
draw any conclusions at all, even a prediction method prone to some degree
of false alarms is likely useful; but how do we determine the bounds of this
utility? Clearly, we need a combined metric to compare these two methods
and determine when the semiautomatic method’s relative benefits justify its
use.
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Fig. 11. Cost of errors in manual MRR and predicting with combination of Title-Match for m =
450, 600, and 850.

To directly compare the cost of errors in the manual and semiautomatic
methods, we leverage a standard cost function (Equation 3) adopted from the
Topic Detection and Tracking (TDT) conference [Manmatha et al. 2002]. A lower
cost indicates fewer errors were made. This combines the ratios of errors shown
in the table with relative costs for each type of error, and normalizes them by the
relative number of correct conclusions in general. In our calculation of P(rel),
we assume the maximum number of pair-wise conclusions that could be found
among our 10 engines, with 45 as the denominator. Because the actual numbers
of correct conclusions for our four prediction sizes are much less than 45, this
may inherently provide extra weight to the false alarm errors.

Cost = Cmiss P (miss)P (rel ) + Cfa P (fa)(1 − P (rel ))

Equation 3: The TDT cost function.

In the prediction task, we set Cmiss = 5 ∗ Cfa to reflect the importance of finding
correct conclusions over suggesting errant ones. With the cost of misses twice, or
equal to, false alarms, the manual method typically outperforms the semiauto-
matic, although this may be inflated by the aforementioned bias from P (rel ). We
hypothesized that the key parameter was the ratio of manually judged queries
in the bootstrap samples, regardless of the overall magnitude of the sample.
In Figure 11, we show the costs for the manual and semiautomatic methods
at various ratios of manually evaluated queries to the predicted query sample
size when predicting sizes of 450, 600, and 850. This, and each of the follow-
ing cost graphs include trend lines for readability, created using a second order
polynomial regression since that yielded the largest R2 fitness measure for each
graph. We do not intend to make any general assertions about the shape of such
curves, as it is obvious they differ depending on the automatic technique used.
Errors are very highly correlated to the ratio of manual judgments regardless
of total sample size. When less than 50% of the sample size to be predicted
has been manually evaluated, the semiautomatic technique is more effective
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Fig. 12. Cost of errors in manual and predicting with combined Title-Match for m = 300.

at predicting conclusions than the smaller number of manually judged queries
alone. When roughly half of the sample size to be predicted has been manually
evaluated, the cost of false alarms introduced by the semiautomatic method
outweighs the reduction in missed correct conclusions compared to using the
manual sample alone.

We also hypothesized that conclusions with dramatically differing engines
could be predicted with very few manual judgments. As we saw in the raw
error counts of Table III, however, predicting conclusions at sample size 300
using the semiautomatic technique results in so many false alarms that its
cost is higher than using the small manual sets alone, despite their propensity
to miss many relevant conclusions (see Figure 12). When no manual judgments
are available, however, the cost of errors from the purely automatic method is
not terribly high. Again, it is likely to be useful compared to not being able to
predict any conclusions whatsoever.

The proposed semiautomatic framework and metrics enable us to compare
the effectiveness of different automatic judgment techniques, in the hopes of
moving beyond these naı̈ve ones. We performed the same experiments and
analysis with combining the average precision at 10 manual judgments and
Category-Match automatic judgments. The complete error counts are included
in Appendix A.2. Errors in the semiautomatic informational evaluation are
also very highly correlated with the ratio of manual results, as evidenced by
Figure 13. As with Title-Match, predicting distant conclusions is more useful
than nearer ones. However, integrating the Category-Match judgments does not
offer as much benefit as those of Title-Match in the navigational evaluation.
The number of false alarms does not decrease as quickly with larger ratios
of manually evaluated queries, and the number of misses actually increases
slightly; whereas it decreases with Title-Match. We believe this is because
the Category-Match evaluation has more disagreement with the manual AvgP
evaluation, causing the integration of more manual judgments to reduce the
number of both correct and incorrect Category-Match predictions. Like the nav-
igational evaluation, however, the manual samples alone often miss nearly all
of the correct conclusions. Just as with the navigational evaluation, predicting
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Fig. 13. Cost of errors in manual AvgP and predicting with combination of Category-Match for

m = 450, 600, and 850.

Table IV. Filtering Conclusions from Small Manual MRR with Title-Match

Manual MRR Filtered
Manual MRR with Title-Match

False alarms Misses False alarms Misses
m nman Mean Max Mean Max Mean Max Mean Max

250 300 2.15/3.85 6/8 0.30/2 2/2 0.95/2.65 4/6 0.30/2 2/2

300 350 3.10/5.80 5/8 0.30/3 1/3 1.75/3.70 5/7 1.05/3 2/3

350 400 3.30/6.55 8/12 0.75/4 2/4 1.35/3.90 4/7 1.45/4 2/4

400 450 3.55/7.80 7/11 0.75/5 2/5 1.80/5.30 4/8 1.50/5 3/5

450 500 1.30/8.60 4/14 2.70/10 5/10 0.10/5.35 2/9 4.75/10 7/10

500 550 2.05/10.30 6/15 1.75/10 6/10 0.10/5.90 1/6 4.20/10 8/10

550 600 1.10/11.50 3/14 1.60/12 3/12 0.15/7.35 1/8 4.80/12 6/12

600 650 1.15/13.00 3/15 1.15/13 4/13 0.20/8.75 1/10 4.45/13 5/13

conclusions for small sample sizes such as 300, is better achieved with very few
manual judgments than with the semiautomatic technique, due to the large
number of false alarms (see Appendix A.2).

4.3.2 Results of Filtering Conclusions from Small Manual Samples. Next,
we evaluate the utility of the filtering procedure described in Section 4.2.2 as
opposed to simply using the manually evaluated queries alone. The intent here
is to reduce the number of false alarms from sample sizes too small to ensure
reliability (as per Section 3.3). We seek to determine the range of manually
evaluated queries nman for which the semiautomatic technique is beneficial.
As in our analysis of prediction, we create 20 distinct query samples, Q ′

man,
of size nman = m + 50, and compare the set of conclusions from each to that
of bootstrapping our entire pilot sample of 896 into sets of size m. We begin
with an examination of the navigational evaluation, using the best page MRR
manual evaluation and the Title-Match automatic approach (see Table IV).
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Fig. 14. Cost of errors in manual MRR and filtered with Title-Match.

Using the same metrics as in the previous section, it is clear from
Table IV that semiautomatic filtering reduces false alarms by approximately
half throughout the experiments, while not substantially increasing misses,
especially the maximum number of them. At nman = 500 there is a dramatic
decrease in the number of false alarms. Interestingly, this correlates with the
smallest size at which reproducibility probability estimates begin to become
reliable across all metrics in Table II.

To compare the semiautomatic method to the manual, with a single met-
ric, we again use the TDT cost function defined in Equation 3. In contrast to
predicting conclusions, filtering increases reliability of candidate conclusions,
so we set the cost of false alarms to be twice that of misses. With the costs set
equal, the manual approach is preferred for some sample sizes. In Figure 14, we
show the cost of the manual and semiautomatic methods at increasing sample
sizes. Here, the steep drop in false alarms causes the corresponding total cost
to drop dramatically with samples of size 500 and above. By 600, the costs are
roughly equivalent, but filtering can still be useful to ensure the reliability of
a conclusion to a stricter standard, as evidenced by the raw counts in Table IV.

The results for the informational search task and Category-Match automatic
judgments are similar. Unlike the navigational evaluation, however, the num-
ber of false alarm and miss errors for the semiautomatic technique increases
consistently with sample size. However, it still cuts the average number of false
alarms by approximately half. Like the navigational evaluation, there is a drop
in cost (see Figure 15) with samples of size 500 and above, but unlike it, the
utility of filtering is also immediately diminished at that same point.

5. CONCLUSIONS

Dynamic environments such as the World Wide Web demand frequent repeti-
tion of costly search effectiveness evaluations. We have detailed a semiauto-
matic framework that combines automatic evaluation with manual judgments
to make this feasible. We employ methods for comparing conclusions of one
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Fig. 15. Cost of errors in manual AvgP and filtered with Category-Match.

evaluation to another that go beyond simple correlation of engine rankings.
Compared to small numbers of manually judged queries alone, semiautomatic
prediction often reduces the number of missed correct conclusions by half, and
semiautomatic filtering reduces the number of errant conclusions by half. This
provides evaluators with insight into conclusions before naively evaluating ev-
ery engine over the requisite number of queries for a reliable evaluation.

To validate this framework, we leveraged reproducibility probability to deter-
mine which conclusions generalize to the query population as a whole. Applying
this method to our own precision-oriented manual Web search evaluation over
896 queries shows that the query sample sizes required to ensure reliability in
such evaluations are often much larger than those previously studied (650 in
our environment). Because precision-oriented evaluations are performed with-
out system pooling, they do not depend on the number of engines being judged,
enabling evaluation strategies that reduce effort by discarding poorly perform-
ing engines early. However, semiautomatic methods such as those proposed, are
needed to exploit this by building query samples of sufficient size before man-
ually evaluating each one. In a conservative example from our navigational
evaluation, a combination of semiautomatic filtering and prediction using only
300 manually judged queries would enable us to reliably conclude that E6 and
E9 are indeed the worst performing engines. Removing them from the evalua-
tion would reduce the size of the result pools in the following 350 queries left
to evaluate by 19% based on overlap analysis in Jensen [2006].

There is a great deal of future work in this area. Using this framework,
we will evaluate and refine other automatic evaluation techniques, especially
implicit preferences such as clickthrough data, to determine which (or what
combination) best enables semiautomatic methods to determine the correct
conclusions with fewer manual judgments. We will also further investigate
manual judgment techniques for those that optimize the effort required to reach
a desired level of reliability, such as judgments with varying levels of relevance
beyond binary. In addition, each automatic evaluation technique has its own
spamming issues that need to be investigated.
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Table V. Automatic Mean Scores Using the 2004 DMOZ

Title-Match Category-Match

Ranking MRR1 Ranking AvgP
E2 0.605 E10 0.194

E5 0.602 E1 0.192

E4 0.601 E2 0.191

E7 0.582 E5 0.191

E1 0.573 E4 0.188

E3 0.569 E7 0.182

E8 0.548 E3 0.181

E10 0.523 E8 0.160

E6 0.476 E6 0.137

E9 0.428 E9 0.120

APPENDIX

A.1 Automatic Evaluation Statistics

We applied the techniques overviewed in Section 4.1 by matching the Web query
log described in Section 3.1 to DMOZ data downloaded on 12/8/2004 contain-
ing 4,162,714 distinct URLs with a title entry. Effort was taken to mine the
directories in the same timeframe as we crawled the engines results for both
manual and automatic evaluation, to reduce the effect of changing content on
our evaluations. For Title-Match, we paired documents whose DMOZ title ex-
actly matched a query (ignoring only case) with that query. Human editors
enter titles for the sites listed which, therefore, do not necessarily correspond
to, and likely are more consistently accurate than, the titles of the pages them-
selves. In the 79% of DMOZ query-document pairs from 2003 that had URLs we
were capable of crawling, only 18% had edited titles in the taxonomy that ex-
actly matched (ignoring case) those of their corresponding pages [Beitzel et al.
2003a]. We filtered the initial set of matching query-document pairs such that
we only kept pairs whose resulting URLs have at least one path component,
not just a hostname, and for which the query does not appear verbatim in
the URL. These constraints were intended to remove trivial matches such as
the query “AOL” matching “http://www.aol.com” and limit bias that might be
introduced if some engines use heuristics for matching URL text. Often, mul-
tiple documents in the taxonomies matched a given query, creating a set of
alternate query-document pairs for that query. We treat each of these matches
as a pseudo-relevant document. On the 172,111 queries we matched, there are
an average of 1.32 pages matched per query. Average scores for a random sam-
ple of over 15,000 of these on the same ten engines as in our manual evaluation
are provided in Table V.

For Category-Match, we paired documents in categories whose names ex-
actly matched a query (ignoring only case). For efficiency reasons, we used a
random subset of the queries that had matched titles using Title-Match as we
hypothesized that these are more likely to match category names. We filtered
out the “Adult,” “World,” “Netscape,” and “Kids & Teens” subtrees of the DMOZ
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Fig. 16. Comparison of benchmark AvgP manual conclusions (left) to automatic Category-Match

AvgP engine ranking (right) with 99% reproducibility probability at m = 850.

data because their editing policies differ from those of the rest of the direc-
tory. This left 356,537 distinct categories with at least one entry in them. Over
the 12,911 queries we matched, there are an average of 70 relevant pages per
query. Average scores over these matches are provided in Table V. Using these
matched queries as our pilot sample, bootstrapping found the high reproducibil-
ity probability conclusions seen in Figure 16. Comparing these with those of the
manual evaluation in Figure 5 (duplicated here for convenience), we see that
the automatic technique is ranking E5 and E10 relatively higher, and is overly
certain that E6 and E9 are the worst.

A.2 Complete Semiautomatic Evaluation Results

Fig. 17. Cost of errors in manual AvgP and predicting with combination of Category-Match for

m = 300.
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Table VI. Predicting Conclusions from Combined Small Manual MRR and Title-Match

Predicting with Combined
Manual MRR Manual MRR and Title-Match

False alarms Misses False alarms Misses
m E(m∗

man) Mean Max Mean Max Mean Max Mean Max
300 0 N/A N/A N/A N/A 14/16 14/16 1/3 1/3

300 50 0.00/0.10 0/1 2.90/3 3/3 11.85/13.85 14/16 1.00/3 1/3

300 100 0.05/0.75 1/3 2.30/3 3/3 8.55/10.55 11/13 1.00/3 1/3

300 150 0.45/1.45 4/6 2.00/3 3/3 6.70/8.80 12/14 0.90/3 1/3

300 200 1.30/3.15 6/8 1.15/3 3/3 4.45/6.70 8/10 0.75/3 1/3

450 200 0.50/3.15 3/7 7.35/10 10/10 6.15/13.60 10/18 2.55/10 4/10

450 250 0.30/3.85 2/5 6.44/10 10/10 4.55/11.80 8/16 2.75/10 4/10

450 300 0.75/5.80 4/7 4.95/10 8/10 4.25/11.70 8/16 2.55/10 4/10

600 200 0.15/3.15 2/7 10.00/13 13/13 9.90/18.35 14/24 4.55/13 5/13

600 250 0.10/3.85 1/5 9.25/13 13/13 8.70/17.35 11/20 4.35/13 5/13

600 300 0.20/5.80 3/7 7.40/13 11/13 6.70/15.50 9/16 4.20/13 6/13

600 350 0.40/6.55 3/11 6.85/13 11/13 5.90/15.45 10/20 3.45/13 6/13

600 400 0.50/7.80 2/8 5.70/13 9/13 4.60/14.55 9/20 3.05/13 4/13

850 200 0.05/3.15 1/7 12.90/16 16/16 13.85/24.25 16/26 5.60/16 6/16

850 250 0.05/3.85 1/5 12.20/16 16/16 12.15/22.85 15/27 5.30/16 7/16

850 300 0.10/5.80 1/7 10.30/16 14/16 11.05/21.90 13/24 5.15/16 7/16

850 350 0.25/6.55 2/11 9.70/16 14/16 9.80/21.00 12/23 4.80/16 7/16

850 400 0.35/7.80 2/8 8.55/16 12/16 9.50/20.90 11/21 4.60/16 6/16

850 450 0.15/8.60 2/11 7.55/16 11/16 8.85/20.50 11/23 4.35/16 6/16

850 500 0.25/10.30 2/13 5.95/16 12/16 7.70/19.35 11/22 4.35/16 6/16

850 550 0.30/11.50 2/14 4.80/16 7/16 6.00/17.85 11/23 4.15/16 6/16

Table VII. Predicting Conclusions from Combined Small Manual AvgP and Category-Match

Predicting with Combined
Manual AvgP Manual AvgP and Category-Match

False alarms Misses False alarms Misses
m E(m∗

man) Mean Max Mean Max Mean Max Mean Max
300 0 N/A N/A N/A N/A 15/19 15/19 2/6 2/6

300 50 0.00/0.00 0/0 6.00/6 6/6 13.00/15.10 13/15 3.90/6 4/6

300 100 0.20/0.70 2/5 5.35/6 6/6 12.25/14.25 13/15 4.00/6 4/6

300 150 0.20/1.40 2/6 4.60/6 6/6 11.45/13.45 12/14 4.00/6 4/6

300 200 0.55/2.80 3/9 3.65/6 6/6 8.30/10.25 9/11 4.05/6 5/6

450 200 0.00/2.80 0/0 9.00/12 12/12 10.85/15.05 11/15 7.80/12 8/12

450 250 0.25/3.90 2/7 7.75/12 11/12 10.30/14.55 11/15 7.75/12 8/12

450 300 0.50/6.50 1/12 5.70/12 9/12 9.30/13.45 10/14 7.85/12 8/12

600 200 0.00/2.80 0/0 13.00/16 16/16 11.00/20.10 11/20 6.90/16 7/16

600 250 0.10/3.90 1/7 11.60/16 15/16 10.90/19.45 11/19 7.45/16 8/16

600 300 0.05/6.50 1/12 9.25/16 13/16 10.55/18.55 11/19 8.00/16 9/16

600 350 0.05/7.40 1/11 8.35/16 14/16 9.75/15.15 10/15 10.55/16 11/16

600 400 0.35/9.40 3/16 6.65/16 11/16 9.30/14.65 10/15 10.65/16 11/16

850 200 0.00/2.80 0/0 16.80/20 20/20 11.80/23.85 13/25 7.95/20 8/20

850 250 0.05/3.90 1/7 14.95/20 19/20 10.40/22.40 12/24 8.00/20 8/20

850 300 0.00/6.50 0/12 12.90/20 17/20 10.00/22.10 10/22 7.90/20 8/20

850 350 0.00/7.40 0/13 12.00/20 18/20 9.25/21.25 10/22 8.00/20 8/20

850 400 0.20/9.40 1/9 10.20/20 15/20 8.90/21.05 9/21 7.85/20 8/20

850 450 0.10/11.30 1/14 7.60/20 13/20 9.00/20.30 9/20 8.70/20 9/20

850 500 0.30/13.85 2/14 6.25/20 10/20 8.90/19.65 9/19 9.25/20 10/20

850 550 0.45/15.20 2/12 4.85/20 10/20 8.75/18.65 9/19 10.10/20 11/20
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Table VIII. Filtering Conclusions from Small Manual AvgP with Category-Match

Manual AvgP Filtered
Manual AvgP with Category-Match

False alarms Misses False alarms Misses
m nman Mean Max Mean Max Mean Max Mean Max

250 300 1.95/3.90 6/7 0.75/3 2/3 0.60/1.35 3/3 1.95/3 3/3

300 350 2.20/6.50 6/12 1.55/6 4/6 0.85/4.15 3/7 2.55/6 4/6

350 400 1.90/7.40 6/13 1.35/7 5/7 0.60/4.60 2/7 2.85/7 5/7

400 450 3.60/9.40 9/16 1.05/7 3/7 1.25/5.45 5/10 2.65/7 5/7

450 500 2.00/11.30 4/16 2.10/12 5/12 0.85/7.65 3/11 4.60/12 7/12

500 550 3.45/13.85 7/17 1.50/12 4/12 1.60/8.85 4/12 4.65/12 6/12

550 600 2.70/15.20 6/20 1.30/14 5/14 1.30/9.55 5/14 5.55/14 9/14

600 650 2.30/16.35 5/20 1.85/16 4/16 1.05/10.30 3/13 6.65/16 8/16
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