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Establishing how collective behaviour emerges is central to our understand-

ing of animal societies. Previous research has highlighted how universal

interaction rules shape collective behaviour, and that individual differences

can drive group functioning. Groups themselves may also differ consider-

ably in their collective behaviour, but little is known about the consistency

of such group variation, especially across different ecological contexts that

may alter individuals’ behavioural responses. Here, we test if randomly

composed groups of sticklebacks differ consistently from one another in

both their structure and movement dynamics across an open environment,

an environment with food, and an environment with food and shelter.

Based on high-resolution tracking data of the free-swimming shoals, we

found large context-associated changes in the average behaviour of the

groups. But despite these changes and limited social familiarity among

group members, substantial and predictable behavioural differences

between the groups persisted both within and across the different contexts

(group-level repeatability): some groups moved consistently faster, more

cohesively, showed stronger alignment and/or clearer leadership than other

groups. These results suggest that among-group heterogeneity could be a

widespread feature in animal societies. Future work that considers group-

level variation in collective behaviour may help understand the selective

pressures that shape how animal collectives form and function.
1. Introduction
A fundamental goal in biology is to understand how animal collectives and

societies form and function [1]. Considerable computational [1–3] and exper-

imental work [4–6] has shown that the seemingly complex collective

behaviour of animal groups can often be explained by relatively simple inter-

action rules [3,5,6]. By predominantly focusing on average group-level patterns

and assuming animal groups to be homogeneous (but see, e.g. [2,7]), this research

has proved invaluable in revealing the general principles of collective behaviour

[1]. However, recent studies have started to increasingly consider the role of het-

erogeneity within groups, showing that even small individual differences can

have large consequences for collective behaviour [2,8–10]. Besides individual

differences in state (e.g. body size or energy levels), consistent behavioural vari-

ation among animals (‘animal personalities’, [11,12]) has been shown to play a

fundamental role in many collective processes, such as leadership [10,13–16],
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social network dynamics [17,18], group exploration [19] and

group functioning [10,20–22].

Despite increased attention for within-group heterogen-

eity, little is still known about among-group heterogeneity

and whether groups themselves may differ consistently

from each other, a phenomenon sometimes referred to as ‘col-

lective personalities’ [23–25]. The few studies on this topic

have mostly considered species living in highly structured

and stable groups of related individuals, such as colonies of

social insects and spiders [24]. For example, Wray et al. [23]

and Pruitt et al. [26] demonstrate that consistent differences

exist in the collective defensiveness and foraging behaviour

of colonies of honeybees and social spiders. Social arthropods

are unique among grouping animals by showing high relat-

edness, often coupled with high behavioural specialization

and extreme fidelity to their group [24,27]. However, many

social animals experience far more fluid social structures

where group membership changes frequently over time and

individuals are less related to each other. If group-level be-

havioural patterns can emerge from the characteristics of

individuals within groups, as predicted by theory [2,28,29]

and shown mechanistically by recent experimental and

observational work [7,10], consistent behavioural differences

between groups should emerge even without high related-

ness or extensive social experience among group members,

as in the case of animal fission–fusion societies.

The behaviour and structure of animal groups may fluctu-

ate considerably even when the individuals in that group use

identical interaction rules [30]. In particular, collective behav-

iour may change considerably depending on the context. For

example, groups of animals may become more cohesive with

increasing predation risk but scatter when foraging [31,32].

Many animal species live in spatially complex environments

where the appearance and persistence of food, shelter and

predators can be patchy [33,34]. This raises the question of

whether consistent behavioural differences between groups

would persist across different ecological contexts that may

potentially result in considerable changes in average group

behaviour. Such cross-context behavioural consistency be-

tween groups may have large effects on their functioning

and performance, such as the ability to locate food or avoid

predators, and thereby affect the fitness of individuals within

those groups [8,10]. Most studies on collective behaviour

have focused on a single biological context [30], and exper-

imental tests of how the environmental context may result

in group-level changes in behaviour have been limited (e.g.

[35,36]). Whether animal groups exhibit repeatable behav-

ioural differences across ecological contexts thus remains an

open question.

Here, we studied the fine-scale movements and structure

of freely moving groups of wild-caught sticklebacks (Gasteros-
teus aculeatus) to investigate the possibility that consistent and

predictable group differences emerge and are maintained

across different contexts. We exposed shoals to three ecologi-

cally relevant environments: a large, open tank without food

or cover (open context), an open tank with patches of food

(foraging context) and an open tank containing food patches

and plant cover (cover context). To limit social experience

among group members, which could potentially drive con-

sistent differences among groups (e.g. [36]), we assigned

individuals to groups randomly and allowed fish to interact

with their group mates only during the experimental trials.

We filmed the groups from above and used custom-tracking
software to acquire high-resolution movement data for

each fish which we used to compute key characteristics of

animal groups that may affect group functioning in terms

of anti-predator, foraging and locomotor benefits: group

speed, cohesion, alignment and leadership structure

[1,33,34]. We then adapted the mixed-modelling approach

from the personality literature [37,38] to test whether and

how (i) these group behaviours changed, on average, across

the different ecological contexts and (ii) behavioural differ-

ences among groups were maintained within and across

these contexts.
2. Material and methods
(a) Subjects
We collected three-spined sticklebacks (G. aculeatus) with dip

nets from a stream near Cambridge, England, and transferred

them immediately to our fish facilities at the University of Cam-

bridge (temperature: 14+18C; light/dark: 12 /12 h). Fish were

housed socially in large glass tanks (120 cm length � 60 cm

width � 60 cm height) that contained artificial plants and shel-

ters. We fed fish defrosted bloodworms (Chironomid larvae) ad
libitum once daily. After six months, we haphazardly selected

125 individuals (controlling for body size: 40.6+ 0.6 mm) from

the social housing tanks. As it is impossible to accurately sex

sticklebacks non-invasively, our test subjects were assumed to

be of mixed sex. As we kept sticklebacks’ controlled light and

temperature conditions corresponding to the non-breeding

season, during which both sexes are non-territorial and actively

shoal together, sex differences in behaviour are assumed

unlikely to play a prominent role.

(b) Experimental procedure
At the start of the experimental period, fish were moved to exper-

imental housing tanks (80 cm � 20 cm � 18.5 cm) and allocated

to individual compartments to minimize potential social modu-

lation and acclimatization effects [39]. Each experimental

housing tank consisted of eight individual holding compart-

ments (9.5 � 20 � 18.5 cm) that each contained a gravel

substrate and an artificial plant. To reduce the potential stress

of social isolation, compartments were separated by perforated

transparent partitions that allowed the transfer of visual and

chemical cues between fish. We haphazardly allocated fish to

25 groups of five while ensuring that individuals assigned to

the same group were never housed in the same experimental

holding tank. Before the group assays, fish were tested individu-

ally in classic boldness and sociability assays of which the data

are explored in detail in another paper [10]. To enable individual

identification of the fish, 2 days before the start of the collective

behaviour experiments, we tagged all fish on their middle

dorsal spine with a coloured disc-shaped tag (5 mm diameter)

made from electrical tape. These tags have no major influence

on the activity and shoaling behaviour of three-spined

stickleback [40].

(c) Group assays
We repeatedly exposed each of the 25 groups to three ecolo-

gically relevant contexts: an open-field environment (open

context) where the tank contained no food or shelter [30], a fora-

ging environment where the tank contained several patches of

food (foraging context) and an environment that included food

patches as well as a refuge in the form of artificial plants

(cover context). We used two white, circular Perspex tanks

(80 cm diameter, 20 cm height; 7 cm water depth; figure 1)



food patch*

cover area*

10 cm

Figure 1. Schematic of the tank in which the groups of fish were tested across three different contexts: (i) the open context, an environment without food or plant
cover, (ii) the foraging context, an environment with three patches of food* and (iii) the cover context, an environment with food patches* as well as plant cover*.
Tracking segments are shown for one randomly selected group.
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positioned inside a large white light tent (200 � 100 � 160 cm) to

reduce potential external disturbances while facilitating consist-

ent diffuse lighting by halogen lamps outside the tent. At the

start of a trial, fish were transferred from their individual

compartment to black plastic cups and allowed to acclimatize

for 30 s. Subsequently, all five fish in a group were simul-

taneously placed in a transparent Perspex cylinder (10 cm

diameter) in the centre of the tank. After 30 s, the cylinder was

raised remotely and the trial was started and at the end of the

trial, fish were put back in their individual holding compart-

ments. Fish thus only experienced their group mates during

the experimental trials. All groups were tested in water that

was used previously for other groups. Each trial we made sure

to remove any excrement and uneaten food items from the test

tank and thoroughly mixed the tank’s water to diffuse any

remaining chemical cues.

We first exposed groups to the open context, where the tank

contained no food or refuge. This is the classic test environment

for studying free-schooling dynamics [30]. Groups were tested in

this context for 30 min once as we were interested in group

exploration of a novel environment. After the trial in the open

context, and thus having had time to become familiar with the

testing environment, we exposed the groups over the next 2

days to the foraging context. We added three food patches, a

white opaque plastic lattice of 5 � 5 � 1 cm containing 16

squares, to the circular testing environment in roughly equilateral

triangular formation. Each food patch contained five blood-

worms and was noticeable by the fish from a distance of

approximately 10–15 cm. Each group received four 5-min trials

in this context: one trial in the morning and one in the afternoon

on 2 consecutive days. To have data of comparable length to the

open context trials, we only looked at the first 5 min of the data in

that context. Finally, we exposed the groups to the cover context.

Here, in addition to the three food patches, we also provided arti-

ficial plants (15 cm diameter) in the centre of the test tank. Each

group received two 10-min trials in the morning on 2 consecutive

days in this cover context. Groups received multiple trials in the

two foraging contexts to acquire sufficient foraging data

(explored in [10]) and trials in the cover context were run for

longer as the availability of cover resulted in fish spending con-

siderably less time exploring the tank. We tested the groups in

a randomized order within each context to reduce the potential

of time-of-day effects. We used a fixed testing order of contexts
such that all groups experienced the open context first, followed

by the foraging context, and finally the cover context. The ration-

ale of this testing order was to first test the fish in a novel open

environment (open context) and to only add new features after

the fish were familiar with the environment, and sequentially

(i.e. first food, then cover) to avoid fish searching for them

following their removal. At the end of each day, fish were fed

three bloodworms in their individual home compartments.
(d) Data collection
We recorded all trials with Raspberry Pi 2 Model B computers

(RS Components Ltd) and associated cameras (Camera Module

V1, RS Components Ltd) positioned above the test tanks. From

the videos, we automatically identified fish based on their differ-

ently coloured tags and acquired highly detailed individual-

based movement data using custom-written tracking software

(AnimTrack by J.W.J.). Positional coordinates were converted

from pixels to millimetres and subsequently smoothed using a

Savitzky and Sgolay smoothing filter with a window of 15

frames. After tracking, all trajectory data were checked visually

and, in case of missing data or tracking errors, manually cor-

rected. Using the tracking data from the individuals in each

group, we determined the group centroid and calculated several

key characteristics of individual behaviour within groups: indi-

vidual swim speed, individual distance to the group centre

(cohesion) and proportion of time individuals spent in front of

the group centroid (leadership). We focused on these individual

measures as how fast individuals swim as a group, how closely

they stick together and their positions within the group should

strongly influence the overall behaviour and function of the

group, including their ability to find novel foraging areas, the

ability to detect and escape from predators, as well as the trans-

fer of social information [10,33,34,41]. We additionally computed

two characteristics of the emergent group behaviour as a whole:

polarization, which is a measure of the alignment of the fish in

the group relative to each other that ranges from 0 (complete

non-alignment) to 1 (complete alignment) [3] and variance in

the proportion of time fish spent in front of the group centre (lea-

dership structure). Details of the computation of these

behavioural measures can be found in the electronic

supplementary material.
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(e) Data analysis
Our main goal was to investigate cross-context consistency in

group behaviours as we expect such group-level consistency to

have broadest ecological and evolutionary ramifications. How-

ever, before addressing this, we first ascertained that the

groups exhibited consistent behavioural differences within each

of the contexts in which they were repeatedly tested (foraging

and cover contexts). Therefore, we ran separate linear mixed

models for each of the individually measured behaviours (indi-

viduals’ median speed, mean distance to the group centre and

mean proportion of time in front of the group centroid), and in

each context (foraging and cover) with trial added as a fixed

factor, and Group ID and Individual ID added as random fac-

tors. In the foraging context, we only focused on behaviour

that occurred before the food was depleted. As the open context

only contained one trial, we could not investigate within-context

repeatability for this context.

Next, we investigated across-context repeatability in group

behaviour. We focused our analyses on the first trial in each con-

text as we were particularly interested in the groups’ behaviour

upon initial exposure to the environment, thereby also avoiding

potential acclimatization and satiation effects. We included

context as a fixed factor, where we divided the foraging context

into the time before and after food depletion, giving a four-level

factor for test context. We ran separate models with indivi-

duals’ median speed, mean distance to the group centre and

mean proportion of time in front of the group centroid fitted as

response variables, and Group ID and Individual ID added as

random factors. In addition, we ran models with median group

polarization and group variance in the proportion of time fish

spent in front of the group centre (i.e. variance in leadership)

as group-level response variables, context as a fixed factor and

group ID as a random effect. Running the models including all

trials in all contexts, rather than the first trial only, did result in

qualitatively similar results (electronic supplementary material,

table S1).
We used general linear mixed models with Gaussian error

distributions and Markov chain Monte Carlo (MCMC) estimation

for all analyses using the MCMCglmm package in R [42], which

returns 95% credibility intervals (CIs) of the parameter estimates

for fixed effects and variance estimates for random effects. If the

95% CIs of two parameter estimates did not overlap, we inter-

preted this as evidence that the estimates were significantly

different from each other; if the 95% CI of a random effect did

not reach zero, this was interpreted as evidence for significant

repeatability. From the models we calculated within- and

across-context group and individual repeatability (‘consistency

repeatability’ RC, [38]) based on the proportion of variance

explained by respectively group and individual identity relative

to the total variance. Throughout, we used non-informative

proper priors. Preliminary analyses indicated that our results

were not sensitive to changes in prior settings (results not

shown). We compared the posterior distributions and auto-

correlation plots of five independent chains with 500 000

iterations with a burn-in period of 5000 and a thinning interval

of 100 to ensure convergence and adequate chain mixing (see

[42] for details). For analyses of the cover context trials, we con-

ducted analyses both on data from the entire trial and on only

the time during which all five fish of the group were out of

cover. There was no qualitative difference in the patterns of

across-group repeatability with the subsetted dataset (electronic

supplementary material, table S2).
3. Results
(a) Context effects on collective behaviour
On average, the groups changed their behaviour considerably

across the different contexts (see figures 2 and 3). In the open

context, the shoals swam at a moderate speed (median:

3.25 cm s21, 95% confidence interval: [2.84–3.66]), were
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highly cohesive (mean distance to centre: 4.47 [4.01–4.93] cm),

were strongly aligned (median polarization: 0.90 [0.87–0.93])

and showed a clear leadership structure (variance in proportion

of time fish spent in front of the group: 3.0 [1.9–4.2] � 1022),

i.e. some groups had clearer differences in leader–follower

positioning among its members than other groups.

Compared with the open context, in the foraging context

before the food was depleted (figure 3), groups moved at a sig-

nificantly lower speed (median: 1.99 [1.58–2.40] cm s21), were

less cohesive (mean distance to centre: 6.14 [5.67–6.60] mm)

and showed lower alignment (median polarization: 0.70

[0.67–0.73]). After the food was depleted, groups increased

their speed considerably (median: 4.62 [4.21–5.03] cm s21)

and further decreased their cohesion (mean: 7.41 cm [6.94–

7.88]). Furthermore, the alignment of the group increased

considerably (median polarization: 0.86 [0.83–0.89]) and

became as high as in the open context. Leadership structure

(variance in the proportion of time spent in front of the group)

was not significantly affected by the presence (2.6 [1.5–3.8] �
1022) or subsequent depletion of food (4.0 [2.9–5.2]� 1022).

Finally, the availability of shelter in the environment

resulted in fish forming smaller shoals and groups to often

split. On average, 2.58 fish (range: 1.04–4.37) were out of

cover together at any one time, while all fish were out

of cover simultaneously only 30.0% of the time (range:

0–73.2%). The speed (median: 2.54 [2.13–2.96] cm s21), cohe-

sion (mean distance to centre: 5.27 [4.79–5.74] cm) and

alignment (median polarization: 0.81 [0.78–0.85]) were at

an intermediate level between the open and foraging con-

texts. When all fish were out of cover simultaneously, they

moved at a significantly higher speed (median: 3.41 [3.14–

3.98] cm s21) and were less cohesive (mean individual
centre distance: 66.4 [61.6–71.2] mm) compared with when

only a few fish were out. Leadership structure was similar

compared with the open context (3.0 [1.9–4.2] � 1022).

(b) Within-context group repeatability in collective
behaviour

The shoals of randomly grouped, unfamiliar sticklebacks

exhibited significant repeatable differences in behaviour

within the foraging and cover contexts, with group behaviour

being significantly repeatable in terms of swimming speed

(foraging context: RC ¼ 0.55; cover context: RC ¼ 0.45), cohe-

sion (RC ¼ 0.42; RC ¼ 0.47), alignment (RC ¼ 0.32; RC ¼ 0.24)

and leadership structure (RC ¼ 0.42; RC ¼ 0.40) (see the elec-

tronic supplementary material, tables S3 and S4 for details).

No within-context repeatability could be measured for the

open context as fish were only tested only for their response

to the novel (open) environment.

(c) Across-context group repeatability in collective
behaviour

Despite the large context-associated changes in the average

behaviour of the groups, behavioural differences among

groups were maintained across the three different contexts

(table 1 and figure 3): group behaviour was significantly

repeatable in terms of swimming speed (RC ¼ 0.49), cohesion

(RC ¼ 0.21), alignment (RC ¼ 0.29) and leadership structure

(RC ¼ 0.29). Also within the groups, there were repeatable

differences between the individual fish in terms of their

average distance from the group centre (RC ¼ 0.19) and the

proportion of time they spent in the front of the group



Table 1. Variance and repeatability in group (gr) and individual (id) behaviour across the contexts. Data show values with 95% creditability intervals (CI) from
the MCMC glmm models. If the 95% CIs of the random effect did not overlap with zero, this was interpreted as evidence for significant repeatability.

Var group level Var individual level Var residual RC group RC individual

gr speed 0.85 [0.49 – 1.64] 0.00 [0.00 – 0.00] 0.87 [0.77 – 1.00] 0.49 [0.39 – 0.62] 0.00 [0.00 – 0.00]

gr centre distance 0.75 [0.33 – 1.65] 0.67 [0.36 – 1.10] 2.12 [1.84 – 2.47] 0.21 [0.13 – 0.32] 0.19 [0.14 – 0.21]

gr polarization 1.70 [0.62 – 4.10] � 1023 — 4.18 [3.05– 5.90] � 1023 0.29 [0.17 – 0.41] —

gr leadership structure 2.32 [1.20 – 4.92] � 1024 — 5.78 [4.31– 7.99] � 1024 0.29 [0.22 – 0.38] —

id leadership — 0.62 [0.36 – 0.96] � 1022 2.00 [1.73 – 2.32] � 1022 — 0.24 [0.17 – 0.29]
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(RC ¼ 0.24). However, fish strongly conformed in their speed

within a group. As a result, there was very low variance in

speed among them relative to the large differences in speed

between groups and, consequently, in a lack of individual

repeatability in speed.
629
4. Discussion
Using detailed individual-based tracking of free-swimming

stickleback shoals, we found that groups changed their behav-

iour considerably depending on the environment. In an open

context without food or cover, groups tended to move at a

moderate speed, had high alignment and were relatively cohe-

sive. The addition of food led groups to move more slowly

while becoming less cohesive and less aligned. Finally, an

environment with both food and plant cover resulted in often

only subsets of fish to emerge that were generally more cohe-

sive and well aligned. However, adapting the statistical

framework used in the animal personality literature [37,38] to

investigate consistent behavioural differences at the level of

the group, we demonstrate that groups had consistent behav-

ioural differences that persisted not only within but also

across different contexts: some groups were consistently

faster, more cohesive, more aligned and/or exhibited clearer

leadership structure than other groups. These differences

arose despite individuals being randomly allocated to groups

and only experienced each other during the experimental trials.

Our results show that consistent group-level differences

can exist even in species that do not exhibit the high related-

ness and strong social structures of social insects [23–26].

Here, we tested randomly composed groups of which the

group members had no social contact in the weeks preceding

the experiments and could only interact during the test trials.

Furthermore, all fish were of similar size, received the same

amount of food, came from the same wild population and

were pseudo-randomly (controlling for size) selected from a

sample of approximately 500 fish housed in large social hous-

ing tanks. It is therefore unlikely that the large and consistent

group differences we observed are the result of either high

social familiarity or relatedness between the individuals

within the groups. Although the composition of the groups

remained the same throughout the experiment, group mem-

bers only had very limited time to interact with each other.

Repeated social interactions are therefore also unlikely to be

an important explanatory factor. Rather, our results suggest

that social feedback arising from the interactions among indi-

viduals can be very rapid (see also [14,43]) and important in

driving collective behavioural patterns and differences
among groups. Indeed, in a complementary paper on the

same dataset in which we investigated the behavioural ten-

dencies of the fish, we found that heterogeneity in terms of

those differences among the groups explained their emergent

collective behaviour within each of the contexts [10]. These

results together highlight that group differences in collective

behaviour can emerge rapidly from the characteristics of indi-

viduals within groups and that such group-level differences

remain consistent even across different contexts that elicit

considerable changes in average group behaviour.

Little is still known about the formation and stability of

animal groups in wild populations of many social species,

especially non-terrestrial mammals. Wild stickleback shoals

are relatively fluid and individuals interact with lots of differ-

ent partners, but nevertheless tend to associate repeatedly

with certain conspecifics [44]. Furthermore, behavioural differ-

ences have been observed among wild stickleback groups [45].

In the case that groups behave differently from one another in a

consistent manner, as we show in this paper, this may have

large effects on their relative performance, such as their ability

to locate food or avoid predators, and thereby affect the fitness

of individuals within those groups [8,10]. In turn, such group-

dependent performance may, along with passive assortment

effects [3], influence how individuals associate with one

another in populations and determine the formation of

animal groups [8,46]. Hence, integrating heterogeneity within

and among groups in both field studies and laboratory exper-

iments on the composition and stability of animal groups may

help to understand the selective pressures that have shaped

social behaviours. Such an understanding may potentially

also provide insights into the collective functioning and per-

formance of human social groups, a topic of considerable

interest in the human literature [47,48].

Beyond consistent behavioural differences between the

groups, we found that, on average, all groups changed their

behaviour considerably depending on the ecological context.

Most work on collective behaviour has been conducted on ani-

mals in a single biological context (but see, e.g. [34,49]), in

particular in a large open, homogeneous environment [30].

Here, we show that in the presence of food, groups slowed

down and became less cohesive but that after food was

depleted groups increased their speed even beyond that

observed in the non-foraging context and became more

spread out. This is largely consistent with previous research,

which shows that in the presence of food, fish move faster

and form looser schools [31,32,50,51], with fish slowing

down when they are actually feeding. In a foraging context,

fish may swim in looser shoals as competition may be higher

and because fish may forage less efficiently when in tight
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shoals [50]. Although changes in group cohesion are closely

linked with, and can emerge from, differences in speed [10],

our current results show that the cohesion between individuals

is also affected directly by the availability of food. Enhanced

familiarity with the environment due to repeated testing may

have resulted in some further increases in speed when the

food was depleted. When plant cover was available, individ-

uals spent considerable time hiding under cover and often

only a subset of individuals emerged (on average half the

group). This is likely linked to the small group size used, as

hiding under cover is a more effective means of predator avoid-

ance than grouping when there are few conspecifics [52]. When

fish were out of cover, thus often with only few individuals,

they grouped more closely together and showed more synchro-

nized movements than in the foraging context without cover.

This finding could potentially be explained by individuals in

small groups perceiving a relatively higher risk of predation,

experiencing lower competition and having higher foraging

efficiency than when in larger groups, which thereby increases

the relative benefits of group cohesion and alignment. Indeed,

Ioannou et al. [53] showed that highly coordinated groups of

simulated prey were less at risk than their counterparts in

unpolarized groups. Furthermore, Schaerf et al. [32] found

that groups of fish slowed down and contracted when they

experienced predator cues. These results together highlight

how animals trade-off the opposing forces of grouping and

how that depends on the context, with on the one hand protec-

tion from predation and facilitation in finding food and on

the other hand increased competition and decreased foraging

efficiency [33,50].

The last two decades have seen a shift from understanding

general patterns in animal behaviour to behavioural dif-

ferences between individuals, resulting in a well-established

literature that shows consistent behavioural differences are

ubiquitous [11], have major ecological and evolutionary
implications [54,55] and, increasingly, play a fundamental

role in the functioning of animal groups [10,13–22,56].

Here, we show that stable differences also exist between

groups even without long-term associations among group

members and that these group differences can be maintained

across different ecological contexts that considerably change

average group behaviour. Ultimately, such consistent differ-

ences between groups could potentially affect the survival

and reproductive success of the individuals within them

and likely influence how individuals associate with one

another. Hence, an increased consideration of the causes

and consequences of heterogeneity not only within but also

between groups may further our understanding of the selec-

tive pressures that have shaped social behaviours. Ultimately,

this may help build a more complete picture of how animal

collectives form and function.
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