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Abstract. Let there be given n points in four-dimensional euclidean space E,. We
show that the number of occurrences of the angle a is o(n®) if « is not a right angle
and Q(n*) otherwise.

For a configuration € of n points in d-dimensional euclidean space E,, let
Ja(n, a, €) denote the number of angles ABC that are equalto a, where0<a <=w
radians and A, B, and C are points of 6. Let f;(n, @) be the supremum of
Ja(n, &, €) taken over all configurations € of n points. The function fy(n, a) is
integer valued and 0= f;(n,a)= N=[n(n—-1)(n—2)]/2 so that the supremum
is in fact a maximum.

Conway et al. [1] established the growth estimate fy(n, a)=o0(n?) as n>©
which they needed to establish the properties of certain angle-counting functions.
P. Erdds asked me for which k and a fi(n, a)=o(n’). The modified “Lenz”
construction:

Xlz(Aoul, I\UZl',O’ O, 0’ 0), lsism’
Y, =(0,0, u U, pU,0,0), 1=<j=m,
Zk=(0, O, 0’ 0, Vouky Vouk)9 lsksma
where U+ ¥7=1, 1<i<m, and A, u, v>0 shows that fy(n, a)=[n/37’ for

0<a<m/2
In this note we show the following:

Theorem. If o # 7/2, then fi(n, a) = o{n?), but fy(n, w/2)=[n/37.

Proofifa =/2. Letm=[n/3]andlet %, ¥, be m solutions of U*+ ¥*=1. Let
X, =(%,7,0,0), 1si=m,
Y, =(1,0,j,0), | I=j=m,
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and

=(-1,0,0, k), I=k=m

Then (Y;— X,) - (Z,— X;)= U - 1+ ¥] =0 and the m’ angles ij(,Zk are all right
angles. 0O

Proof for a # w/2. We shall assume a # /2 from now on, and we shall prove
the stronger result f;(n, a)=o0(n*"), where & =3s. Suppose not. Then by the
following combinatorial lemma of Erdos {2] there are 15 points X,, Y,, Z, such
that the 125 angles Y,X,Z, all equal a, 15, j, k<5. m]

Combinatorial Lemma. Ler H< AX Ax A, where |Al=n and |H|=z n*"*. Then
there are subsets A, < A, 1 <i=3, such that |A]|= kand A, x A, x A;< H, provided
k< 1/e. We use this lemma with k=35 and € = 3.

We need two additional lemmas.
Lemma 1. The points X, X5, ..., X;s are not collinear.
Lemma 2. No three Y; are collinear and no three Z, are collinear.
Proof of Lemma 1. The X, are solutions to the vector equation
{(X=Y) (X=Z)F =cos’ a{(X - Y)) - (X~ YDH(X - Z) - (X - Z})}.

Suppose that the X, lie on the line X = C +(%U. Substituting into the above
equation, we obtain an equation in the scalar t of the fourth degree, since
cos’a # 1. Such an equation cannot have five solutions. O

Proof of Lemma 2. We shall show that no three Z, are collinear, and the proof
for the Y is similar. Suppose, without loss of generality, that Z,, Z,, and Z, lie
on the Ime I For a fixed X;, the points X Y, and the line [ fit into an E;, in
which the locus of points Z such that Y,X Z « is a cone with apex X,. A line
such as I that intersects the cone in three points must pass through the apex X,.

Hence the five points X all lie on [, contrary to the previous lemma. O

Proof of the Theorem. Let X, =0 be the origin of coordinates and let Y denote
a unit vector in the direction of Y; and similarly for Zk The pomts Y- span
an affine hull B which does not necessanly pass through X, =0. The Y are not
necessarily distinct, but no three can be the same, by Lemma 2, so there are at
least three different ones. This forces B to have dimension two or more, since
the Y lie on a unit sphere, and no three of them can be collinear.

Let 1=j, k, r=5. Then Y Zk—cosam Y, Zk, so that (Y Y) Z, =0, and
therefore (Y Y) Z, =0 Thus B is orthogonal to the subspace H spanned by
X, =0 and the five points Z,. If the dimension of H is three or more, then we
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have the absurdity of an orthogonal E, and E; in E,. We also know by Lemma
2 that H is not a line. Hence H is a plane which together with Y, fits into
three space. The cone, with apex X, =0, which is the locus of points Z such
that Y,X,Z =«, cuts the plane H in a pair of (possibly coincident) lines,
one of which must consequently contain three of the points Z,, contrary to
Lemma 2. O
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