Repeated Angles in $\boldsymbol{E}_{\mathbf{4}}$

George Purdy

Mathematics Department, Texas A \& M University, College Station, TX 77843, USA

Abstract

Let there be given n points in four-dimensional euclidean space E_{4}. We show that the number of occurrences of the angle α is $o\left(n^{3}\right)$ if α is not a right angle and $\Omega\left(n^{3}\right)$ otherwise.

For a configuration \mathscr{C} of n points in d-dimensional euclidean space E_{d}, let $f_{d}(n, \alpha, \mathscr{C})$ denote the number of angles $A \hat{B} C$ that are equal to α, where $0<\alpha<\pi$ radians and A, B, and C are points of \mathscr{C}. Let $f_{d}(n, \alpha)$ be the supremum of $f_{d}(n, \alpha, \mathscr{C})$ taken over all configurations \mathscr{C} of n points. The function $f_{d}(n, \alpha)$ is integer valued and $0 \leq f_{d}(n, \alpha) \leq N=[n(n-1)(n-2)] / 2$ so that the supremum is in fact a maximum.

Conway et al. [1] established the growth estimate $f_{3}(n, \alpha)=o\left(n^{3}\right)$ as $n \rightarrow \infty$ which they needed to establish the properties of certain angle-counting functions. P. Erdös asked me for which k and $\alpha f_{k}(n, \alpha)=o\left(n^{3}\right)$. The modified "Lenz" construction:

$$
\begin{aligned}
X_{2} & =\left(\lambda U_{i}, \lambda U_{i}, 0,0,0,0\right), & & 1 \leq i \leq m, \\
Y_{J} & =\left(0,0, \mu U_{J}, \mu U_{j}, 0,0\right), & & 1 \leq j \leq m, \\
Z_{k} & =\left(0,0,0,0, \nu U_{k}, \nu U_{k}\right), & & 1 \leq k \leq m,
\end{aligned}
$$

where $U_{1}^{2}+\mathscr{V}_{1}^{2}=1,1 \leq i \leq m$, and $\lambda, \mu, \nu>0$ shows that $f_{6}(n, \alpha) \geq[n / 3]^{3}$ for $0<\alpha<\pi / 2$.

In this note we show the following:
Theorem. If $\alpha \neq \pi / 2$, then $f_{4}(n, \alpha)=o\left(n^{3}\right)$, but $f_{4}(n, \pi / 2) \geq[n / 3]^{3}$.
Proof if $\alpha=\pi / 2$. Let $m=[n / 3]$ and let $\mathscr{U}_{t}, \mathscr{V}_{1}$ be m solutions of $\mathscr{U}^{2}+\mathscr{V}^{2}=1$. Let

$$
\begin{aligned}
X_{1} & =\left(U_{1}, \mathscr{V}_{1}, 0,0\right), & & 1 \leq i \leq m, \\
Y_{1} & =(1,0, j, 0), & & 1 \leq j \leq m,
\end{aligned}
$$

and

$$
Z_{k}=(-1,0,0, k), \quad 1 \leq k \leq m
$$

Then $\left(Y_{j}-X_{i}\right) \cdot\left(Z_{k}-X_{i}\right)=\mathscr{U}_{i}^{2}-1+\mathscr{V}_{i}^{2}=0$ and the m^{3} angles $Y_{j} \hat{X} Z_{k}$ are all right angles.

Proof for $\alpha \neq \pi / 2$. We shall assume $\alpha \neq \pi / 2$ from now on, and we shall prove the stronger result $f_{4}(n, \alpha)=o\left(n^{3-\varepsilon}\right)$, where $\varepsilon=\frac{1}{25}$. Suppose not. Then by the following combinatorial lemma of Erdös [2] there are 15 points $X_{i}, Y_{,}, Z_{k}$ such that the 125 angles $Y_{j} \hat{X}_{i} Z_{k}$ all equal $\alpha, 1 \leq i, j, k \leq 5$.

Combinatorial Lemma. Let $H \subseteq A \times A \times A$, where $|A|=n$ and $|H| \geq n^{3-\xi}$. Then there are subsets $A_{t} \subseteq A, 1 \leq i \leq 3$, such that $\left|A_{i}\right| \geq k$ and $A_{1} \times A_{2} \times A_{3} \subseteq H$, provided $k^{2} \leq 1 / \varepsilon$. We use this lemma with $k=5$ and $\varepsilon=\frac{1}{25}$.

We need two additional lemmas.
Lemma 1. The points $X_{1}, X_{2}, \ldots, X_{5}$ are not collinear.
Lemma 2. No three Y_{j} are collinear and no three Z_{k} are collinear.
Proof of Lemma 1. The X_{i} are solutions to the vector equation

$$
\left\{\left(X-Y_{1}\right) \cdot\left(X-Z_{1}\right)\right\}^{2}=\cos ^{2} \alpha\left\{\left(X-Y_{1}\right) \cdot\left(X-Y_{1}\right)\right\}\left\{\left(X-Z_{1}\right) \cdot\left(X-Z_{1}\right)\right\} .
$$

Suppose that the X, lie on the line $X=C+t \mathscr{U}$. Substituting into the above equation, we obtain an equation in the scalar t of the fourth degree, since $\cos ^{2} \alpha \neq 1$. Such an equation cannot have five solutions.

Proof of Lemma 2. We shall show that no three Z_{k} are collinear, and the proof for the Y_{j} is similar. Suppose, without loss of generality, that Z_{1}, Z_{2}, and Z_{3} lie on the line l. For a fixed X_{i}, the points X_{i}, Y_{1} and the line l fit into an E_{3}, in which the locus of points Z such that $Y_{1} \hat{X}_{i} Z=\alpha$ is a cone with apex X_{i}. A line such as l that intersects the cone in three points must pass through the apex X_{i}. Hence the five points X_{i} all lie on l, contrary to the previous lemma.

Proof of the Theorem. Let $X_{1}=0$ be the origin of coordinates and let \hat{Y}_{j} denote a unit vector in the direction of Y_{j} and similarly for \hat{Z}_{k}. The points \hat{Y}_{j} span an affine hull B which does not necessarily pass through $X_{1}=0$. The \hat{Y}_{j} are not necessarily distinct, but no three can be the same, by Lemma 2, so there are at least three different ones. This forces B to have dimension two or more, since the \hat{Y} lie on a unit sphere, and no three of them can be collinear.

Let $1 \leq j, k, r \leq 5$. Then $\hat{Y}_{j} \cdot \hat{Z}_{k}=\cos \alpha=\hat{Y}_{r} \cdot \hat{Z}_{k}$, so that $\left(\hat{Y}_{j}-\hat{Y}_{r}\right) \cdot \hat{Z}_{k}=0$, and therefore $\left(\hat{Y}_{j}-\hat{Y}_{r}\right) \cdot Z_{k}=0$. Thus B is orthogonal to the subspace H spanned by $X_{1}=0$ and the five points Z_{k}. If the dimension of H is three or more, then we
have the absurdity of an orthogonal E_{2} and E_{3} in E_{4}. We also know by Lemma 2 that H is not a line. Hence H is a plane which together with Y_{1} fits into three space. The cone, with apex $X_{1}=0$, which is the locus of points Z such that $Y_{1} \hat{X}_{1} Z=\alpha$, cuts the plane H in a pair of (possibly coincident) lines, one of which must consequently contain three of the points Z_{k}, contrary to Lemma 2.

References

1. J. H. Conway, H. T. Croft, P. Erdös and M. J. T. Guy, On the distribution of values of angles determined by coplanar points, J. London Math. Soc. (2) 19 (1979), 137-143.
2. P. Erdös, On extremal problems of graphs and generalized graphs, Israel J. Math. 2(1964), 183-190.
