Discrete Comput Geom 3:73-75 (1988)

Repeated Angles in E_4

George Purdy

Mathematics Department, Texas A & M University, College Station, TX 77843, USA

Abstract. Let there be given *n* points in four-dimensional euclidean space E_4 . We show that the number of occurrences of the angle α is $o(n^3)$ if α is not a right angle and $\Omega(n^3)$ otherwise.

For a configuration \mathscr{C} of *n* points in *d*-dimensional euclidean space E_d , let $f_d(n, \alpha, \mathscr{C})$ denote the number of angles $A\hat{B}C$ that are equal to α , where $0 < \alpha < \pi$ radians and *A*, *B*, and *C* are points of \mathscr{C} . Let $f_d(n, \alpha)$ be the supremum of $f_d(n, \alpha, \mathscr{C})$ taken over all configurations \mathscr{C} of *n* points. The function $f_d(n, \alpha)$ is integer valued and $0 \le f_d(n, \alpha) \le N = [n(n-1)(n-2)]/2$ so that the supremum is in fact a maximum.

Conway *et al.* [1] established the growth estimate $f_3(n, \alpha) = o(n^3)$ as $n \to \infty$ which they needed to establish the properties of certain angle-counting functions. P. Erdös asked me for which k and $\alpha f_k(n, \alpha) = o(n^3)$. The modified "Lenz" construction:

$$\begin{aligned} X_i &= (\lambda \mathcal{U}_i, \lambda \mathcal{U}_i, 0, 0, 0, 0), \qquad 1 \leq i \leq m, \\ Y_j &= (0, 0, \mu \mathcal{U}_j, \mu \mathcal{U}_j, 0, 0), \qquad 1 \leq j \leq m, \\ Z_k &= (0, 0, 0, 0, \nu \mathcal{U}_k, \nu \mathcal{U}_k), \qquad 1 \leq k \leq m, \end{aligned}$$

where $\mathcal{U}_i^2 + \mathcal{V}_i^2 = 1$, $1 \le i \le m$, and λ , μ , $\nu > 0$ shows that $f_6(n, \alpha) \ge [n/3]^3$ for $0 < \alpha < \pi/2$.

In this note we show the following:

Theorem. If $\alpha \neq \pi/2$, then $f_4(n, \alpha) = o(n^3)$, but $f_4(n, \pi/2) \ge [n/3]^3$.

Proof if $\alpha = \pi/2$. Let $m = \lfloor n/3 \rfloor$ and let \mathcal{U}_i , \mathcal{V}_i be *m* solutions of $\mathcal{U}^2 + \mathcal{V}^2 = 1$. Let

$$\begin{aligned} X_i &= (\mathcal{U}_i, \mathcal{V}_i, 0, 0), \qquad 1 \leq i \leq m, \\ Y_j &= (1, 0, j, 0), \qquad 1 \leq j \leq m, \end{aligned}$$

and

 $Z_k = (-1, 0, 0, k), \quad 1 \le k \le m.$

Then $(Y_j - X_i) \cdot (Z_k - X_i) = \mathcal{U}_i^2 - 1 + \mathcal{V}_i^2 = 0$ and the m^3 angles $Y_j \hat{X}_i Z_k$ are all right angles.

Proof for $\alpha \neq \pi/2$. We shall assume $\alpha \neq \pi/2$ from now on, and we shall prove the stronger result $f_4(n, \alpha) = o(n^{3-\epsilon})$, where $\epsilon = \frac{1}{25}$. Suppose not. Then by the following combinatorial lemma of Erdös [2] there are 15 points X_i , Y_j , Z_k such that the 125 angles $Y_j \hat{X}_i Z_k$ all equal α , $1 \le i, j, k \le 5$.

Combinatorial Lemma. Let $H \subseteq A \times A \times A$, where |A| = n and $|H| \ge n^{3-\epsilon}$. Then there are subsets $A_i \subseteq A$, $1 \le i \le 3$, such that $|A_i| \ge k$ and $A_1 \times A_2 \times A_3 \subseteq H$, provided $k^2 \le 1/\epsilon$. We use this lemma with k = 5 and $\epsilon = \frac{1}{25}$.

We need two additional lemmas.

Lemma 1. The points X_1, X_2, \ldots, X_5 are not collinear.

Lemma 2. No three Y_i are collinear and no three Z_k are collinear.

Proof of Lemma 1. The X_i are solutions to the vector equation

$$\{(X - Y_1) \cdot (X - Z_1)\}^2 = \cos^2 \alpha \{(X - Y_1) \cdot (X - Y_1)\}\{(X - Z_1) \cdot (X - Z_1)\}.$$

Suppose that the X, lie on the line $X = C + t\mathcal{U}$. Substituting into the above equation, we obtain an equation in the scalar t of the fourth degree, since $\cos^2 \alpha \neq 1$. Such an equation cannot have five solutions.

Proof of Lemma 2. We shall show that no three Z_k are collinear, and the proof for the Y_j is similar. Suppose, without loss of generality, that Z_1 , Z_2 , and Z_3 lie on the line *l*. For a fixed X_i , the points X_i , Y_1 and the line *l* fit into an E_3 , in which the locus of points *Z* such that $Y_1\hat{X}_iZ = \alpha$ is a cone with apex X_i . A line such as *l* that intersects the cone in three points must pass through the apex X_i . Hence the five points X_i all lie on *l*, contrary to the previous lemma.

Proof of the Theorem. Let $X_1 = 0$ be the origin of coordinates and let \hat{Y}_j denote a unit vector in the direction of Y_j and similarly for \hat{Z}_k . The points \hat{Y}_j span an affine hull B which does not necessarily pass through $X_1 = 0$. The \hat{Y}_j are not necessarily distinct, but no three can be the same, by Lemma 2, so there are at least three different ones. This forces B to have dimension two or more, since the \hat{Y}_j lie on a unit sphere, and no three of them can be collinear.

Let $1 \le j$, $k, r \le 5$. Then $\hat{Y}_j \cdot \hat{Z}_k = \cos \alpha = \hat{Y}_r \cdot \hat{Z}_k$, so that $(\hat{Y}_j - \hat{Y}_r) \cdot \hat{Z}_k = 0$, and therefore $(\hat{Y}_j - \hat{Y}_r) \cdot Z_k = 0$. Thus *B* is orthogonal to the subspace *H* spanned by $X_1 = 0$ and the five points Z_k . If the dimension of *H* is three or more, then we

have the absurdity of an orthogonal E_2 and E_3 in E_4 . We also know by Lemma 2 that H is not a line. Hence H is a plane which together with Y_1 fits into three space. The cone, with apex $X_1 = 0$, which is the locus of points Z such that $Y_1 \hat{X}_1 Z = \alpha$, cuts the plane H in a pair of (possibly coincident) lines, one of which must consequently contain three of the points Z_k , contrary to Lemma 2.

References

- 1. J. H. Conway, H. T. Croft, P. Erdös and M. J. T. Guy, On the distribution of values of angles determined by coplanar points, J. London Math. Soc. (2) 19 (1979), 137-143.
- 2. P. Erdös, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190.

Received April 14, 1986, and in revised form August 25, 1986.