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Abstract. Let there be given n points in four-dimensional euclidean space E4. We 
show that the number of occurrences of the angle a is o(n 3) if a is not a right angle 
and ~(n 3) otherwise. 

For  a conf igura t ion  ~ of  n points  in d -d imens iona l  euc l idean  space Ed, let 
fd(n, a, (8) denote  the number  of  angles ABC that  are equal  to a,  where 0 <  a < n- 
rad ians  and A, B, and  C are points  of  ~. Let fd(n, ~) be the sup remum of  
fd(n, a, ~) taken  over all configurat ions  %~ of  n points.  The funct ion fd(n, a) is 
integer  va lued  and O<--fd(n, a) <- N = [ n ( n - 1 ) ( n - 2 ) ] / 2  so that the supremum 
is in fact a max imum.  

Conway  et al. [1] es tab l i shed  the growth es t imate  f~(n, a )= o(n 3) as n-~oo 
which they needed  to es tabl ish  the proper t ies  of  certain angle-count ing  functions.  
P. Erd6s  asked me for which k and a fk(n, a ) =  o(n3). The modif ied  "Lenz"  
cons t ruc t ion:  

X, = (A °//,, A°?/,, O, O, O, 0), l<-i<-m, 

Yj = (0, 0,/.t°//, , /x~j, 0, 0), l<-j<-m, 

Zk = (0, 0 , 0 , 0 ,  v~llk, v°llk), l<-k<-m, 

where ~ 2 + ° U 2 = 1 ,  l<-i<_m, and A, /x, v > O  shows that  f6(n, ct)>-[n/3] 3 for 
0 < a  < ¢ r / 2 .  

In this note  we show the fol lowing:  

Theorem. l f  a ~ 7r/2, then f4(n, c~) = o(n3),  but f4(n, ¢r/2)>-[n/3] 3. 

Proofifc~ = ¢r/2. Let m = [ n / 3 ]  and  let o//,, ~V, be m solut ions  of  ~ 2 +  ~V 2 = 1. Let 

X, = (°//,, °U,, 0, 0), l<-i<-m, 

Yj = (1, 0 , j ,  0), l<-j<-m, 
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and 

Zk = ( - 1 , 0 , 0 ,  k), l<-k<-m. 

°Ri - 1 + °F~ = 0 and the angles Yj.~,Zk are all right T h e n ( Y j - X i ) . ( Z k - X ~ ) =  2 2 m 3 
angles. [] 

Proof for a # 7r/2. We shall assume a # rr/2 from now on, and we shall prove 
the stronger result f4(n, a)=o(n3-~) ,  where e =~5. Suppose not. Then by the 
following combinatorial lemma of Erd6s [2] there are 15 points X,, Y~, Zk such 
that the 125 angles Y~f(,Zk all equal a, 1 ~ i, j, k -< 5. [] 

Combinatorial Lemma. Let H ~ A x A x A, where IAI = n and [H I >- n3-q Then 
there are subsets A, c A, 1 <- i <- 3, such that lAd >- k and A~ x A2 x A3 c_ H, provided 
k 2<- 1/e. We use this lemma with k = 5  and e = ~ .  

We need two additional lemmas. 

Lemma 1. The points X~, X2, . . . ,  X5 are not collinear. 

Lemma 2. No three Y~ are collinear and no three Zk are collinear. 

Proof of  Lemma 1. The Xi are solutions to the vector equation 

{ (X -  Y,). (X-Z,)}2=cos 2 a{(X- Y,). (X -  Y,)}{(X-Z,). (X-Z,)} .  

Suppose that the X, lie on the line X = C + t~//. Substituting into the above 
equation, we obtain an equation in the scalar t of the fourth degree, since 
cos2a # 1. Such an equation cannot have five solutions. [] 

Proof of  Lemma 2. We shall show that no three Zk are collinear, and the proof  
for the Yj is similar. Suppose, without loss of  generality, that Z~, Z2, and Z3 lie 
on the line I. For a fixed X~, the points X2, Y~ and the line l fit into an E3, in 
which the locus of  points Z such that Y~X~Z = a is a cone with apex X,. A line 
such as l that intersects the cone in three points must pass through the apex X~. 
Hence the five points Xi all lie on l, contrary to the previous lemma. [] 

Proof of  the Theorem. Let X~ = 0 be the origin of  coordinates and let Yj denote  
A 

a unit vector in the direction of Yj and similarly for Zk. The points  Yj span 
an affine hull B which does not necessarily pass through X~ = 0. The Y~ are not 
necessarily distinct, but no three can be the same, by Lemma 2, so there are at 
least three different ones. This forces B to have dimension two or more, since 
the ~ lie on a unit sphere, and no three of  them can be collinear. 

Let 1-<j,k,  r ~ 5 .  Then Yj-Zk = cos a = l~'r" Zk, SO that ( ~ -  I?r)" Z'k =0 ,  and 
therefore ( Y j -  Y,) • Zk = 0. Thus B is orthogonal to the subspace H spanned by 
X, = 0 and the five points Zk. If  the dimension of H is three or more, then we 
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have the absurdity of  an orthogonal E2 and E3 in E4. We also know by Lemma 
2 that H is not a line. Hence H is a plane which together with Y~ fits into 
three space. The cone, with apex X~ = 0, which is the locus of  points Z such 
that Y ~ f ~ Z  = a, cuts the plane H in a pair of  (possibly coincident) lines, 
one of which must consequently contain three of the points Zk, contrary to 
Lemma 2. 73 
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