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Ad exchanges are emerging Internet markets where advertisers may purchase display ad placements, in
real time and based on specific viewer information, directly from publishers via a simple auction mechanism.

Advertisers join these markets with a prespecified budget and participate in multiple second-price auctions over
the length of a campaign. This paper studies the competitive landscape that arises in ad exchanges and the
implications for publishers’ decisions. The presence of budgets introduces dynamic interactions among advertisers
that need to be taken into account when attempting to characterize the bidding landscape or the impact of changes
in the auction design. To this end, we introduce the notion of a fluid mean-field equilibrium (FMFE) that is
behaviorally appealing and computationally tractable, and in some important cases, it yields a closed-form
characterization. We establish that an FMFE approximates well the rational behavior of advertisers in these
markets. We then show how this framework may be used to provide sharp prescriptions for key auction design
decisions that publishers face in these markets. In particular, we show that ignoring budgets, a common practice in
this literature, can result in significant profit losses for the publisher when setting the reserve price.
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1. Introduction
The market for display ads on the Internet, consisting
of graphical content such as banners and videos on
Web pages, has grown significantly in the last decade,
generating about $11 billion in the United States in
2012 (Internet Advertising Bureau 2013). This growth
has been accompanied by the emergence of alternative
channels for the purchase of display ads. Whereas
traditionally, advertisers would purchase display ad
placements by negotiating long-term contracts directly
with publishers (Web page owners), spot markets for
ad slots, called ad exchanges, have emerged, and the
ad spending through these continues to grow (Vranica
2013). Google’s DoubleClick, OpenX, and Yahoo!’s
Right Media are examples of such exchanges.

An ad exchange is a platform that operates as an
intermediary between online publishers and advertis-
ers. When a user visits a Web page (e.g., the New York
Times online), the publisher may post an ad slot in the
exchange potentially together with some user infor-
mation known to her, such as the user’s geographical
location and her cookies. Based on this latter informa-
tion, and in conjunction with their targeting criteria,
interested advertisers (or bidders) post bids. Then, an

auction is run to determine the winner and the ad to
be shown to the user. The latter process happens in
milliseconds, between the time a user requests a page
and the time the page is displayed. As viewers visit
her website, the publisher repeatedly offers slots to
display advertisements; typically, a given publisher
runs millions of these auctions per day. For their part,
advertisers participate in the exchange with the objec-
tive of fulfilling marketing campaigns. In practice, such
campaigns are commonly based on a predetermined
budget and extend for a fixed amount of time over
which advertisers participate in a large volume of
auctions. Given the large number opportunities and
the time scale on which decisions are made, bidding is
fully automated. See Muthukrishnan (2009) for a more
detailed description of ad exchanges.

The prevalence of advertisers’ budget constraints in
these markets links the different auctions over time,
and therefore, traditional equilibrium and revenue opti-
mization analysis for static auctions do not apply in this
setting. Thus motivated, this paper introduces a new
approach to study the key auction design decisions that
publishers face while considering the strategic response
of budget-constrained advertisers. In particular, the
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framework captures some key characteristics of an
exchange and allows us to start quantifying some
central trade-offs faced by publishers and advertisers
in this new channel.

1.1. Main Contributions
Advertisers participate in repeated auctions subject
to budget constraints, and therefore they typically
require dynamic bidding strategies to optimize the
allocation of budget to incoming impressions in order
to maximize cumulated profits over the length of the
campaign. In many cases, advertisers may have similar
targeting criteria and bid for the same inventory of
ads. Thus, the dynamic bidding strategy an advertiser
adopts impacts the competitive landscape for other
advertisers in the market. Moreover, the publisher’s
auction design decisions, such as the reserve price,
also impact these interactions. Thus motivated, we
formulate our ad exchange model as a game among
advertisers and the publisher.1 First, the publisher
defines the parameters of a second-price auction that
become common knowledge. Then, given the auction
format, advertisers compete in a dynamic game. To
quantify the impact of auction design parameters, the
first question pertains to the competitive landscape
that emerges for fixed auction decisions.

An important challenge in our analysis is solving for
the equilibrium of the dynamic game among adver-
tisers induced by the auction rules. At one extreme
of agent sophistication, one may consider traditional
game-theoretic notions of equilibrium such as perfect
Bayesian equilibrium (PBE), in which advertisers main-
tain priors on the states of all other bidders and update
them accordingly using Bayes’ rule. Such an approach
presents two main drawbacks. First, the analysis of
the resulting game is, in most cases, intractable from
both analytical and computational standpoints. Second,
such sophistication and informational requirements on
the part of agents is highly unrealistic.

1.1.1. Fluid Mean-Field Equilibrium. The main
contribution of this paper is the introduction of an
equilibrium notion that is tractable and provides a
good approximation to the strategic interactions among
budget-constrained bidders in an ad exchange. Our
notion of equilibrium combines in a novel way two
different approximations to address the limitations in
PBE. First, we consider a mean-field approximation to
relax the informational requirements of agents. The
motivation behind the latter is that, when the number
of players is large, there is little value in tracking the
specific actions of all agents, and one may rely on some

1 In practice, ad exchanges may be operated by third parties; for
simplification, in this paper we assume that the publisher and the
party running the exchange constitute a single entity.

aggregate and stationary representation of the com-
petitors’ bids. The mean-field approximation assumes
that, even when the overall number of advertisers in
the market is large, only a small fraction participates
in every auction, which closely reflects the existing
competitive landscape in today’s ad exchanges. This
type of approximation has appeared in other auc-
tion and industrial organization applications (see, e.g.,
Adlakha et al. 2015, Iyer et al. 2014, Weintraub et al.
2008). Second, borrowing techniques from the revenue
management literature (see, e.g., Gallego and van Ryzin
1994), we consider a stochastic fluid approximation
to handle the complex dynamics of the advertisers’
control problem. Such approximations are suitable
when the number of opportunities is large and the
payment per opportunity is small compared with the
budget; hence, these are well motivated in the context
of ad exchanges (see, e.g., Netmining 2011).

Using the two approximations above, we define the
notion of a fluid mean-field equilibrium (FMFE).2 We
show that FMFE provides a good approximation to
the rational behavior of agents as markets become
large, yielding theoretical support for the use of FMFE
as an equilibrium concept in this setting. Moreover,
we show through a combination of theoretical and
numerical results that the FMFE strategy is typically
close to being a best response among a large class of
strategies that keep track of all available information in
the market, even in small markets with few advertisers
(e.g., 5 to 10), providing further practical support to
the concept. Specifically, in small markets a bidder may
have incentives to overbid and deplete competitors’
budgets to decrease competition in the future. We show,
however, that the incentives to exercise such strategic
behavior are low relative to playing FMFE even in
small markets.

From a structural perspective, when a second-price
auction is conducted, remarkably, the resulting FMFE
strategy has a simple yet appealing form: an adver-
tiser needs to shade her values by a constant factor.
Furthermore, in equilibrium, advertisers will deplete
their budget at an essentially constant rate, a typical
practical requirement known as smooth budget depletion.
Intuitively, when budgets are tight, advertisers shade
their bids because there is an option value for future
good opportunities. In addition, we show that an FMFE
always exists and provide a set of sufficient condi-
tions that guarantee its uniqueness. We also provide
a characterization for FMFE that suggests a simple
and efficient algorithm for its computation. Finally,
we derive a closed-form characterization of FMFE
in the case of homogeneous bidders. These succinct
characterizations of equilibria are remarkably rare, and

2 In §1.2 we compare and contrast FMFE with related notions of
equilibria introduced in previous work.
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one may significantly leverage them when studying
the publisher’s problem.

1.1.2. Auction Design. We show how a publisher
that maximizes expected profits can use FMFE as a tool
for backtesting different auction designs while account-
ing for the strategic response of budget-constrained
advertisers. In particular, we focus on optimally setting
the reserve price. When solving her optimization prob-
lem, the publisher trades off the revenues extracted
from the auction with the opportunity cost of sell-
ing the impressions through an alternative channel.
In addition, she needs to consider that changing the
auction parameters may change the FMFE strategies
played by advertisers. In particular, we show through
a combination of theoretical and numerical results that
ignoring budgets typically results in reserve prices that
are lower than optimal and may result in significant
profit losses for the publisher. We believe these results
are particularly relevant because budgets are typically
ignored in the literature when setting optimal reserve
prices in ad exchanges, despite their prevalence in
practice (see the related literature below). We further
highlight that other levers may be optimized through
the proposed framework, such as the allocation of
impressions to the exchange or the extent of user
information to disclose to the advertisers.

Overall, this paper is among the first in the literature
(with the exception of Gummadi et al. 2011, which
we discuss below) to provide a framework for profit
optimization in repeated auctions, considering the
strategic response of budget-constrained bidders. As
such, we believe this work can have a practical impact
on the design of ad exchange auctions. More broadly,
we expect that FMFE may have additional applications
beyond the one presented in this paper.

1.2. Related Work
This work contributes to various streams of literature.
By accounting for advertisers’ budget constraints and
the resulting intertemporal dependencies and dynamic
bidding strategies they induce, we contribute to the
Internet advertising literature in particular and, more
generally, to the literature on auction design in dynamic
settings. To gain tractability, some papers have also
used mean-field approximations in these settings. In
this vein, Iyer et al. (2014) study repeated auctions
in which bidders learn about their private value over
time. Our mean-field approximation builds on theirs.
However, in our setting dynamics are driven by budget
constraints as opposed to learning, resulting in a dif-
ferent model. Moreover, in addition to the mean-field
approximation, we impose a fluid approximation on
the bidders’ control problem. Relative to Iyer et al., this
yields a more succinct characterization of equilibria
based on shading factors that (1) brings computational
advantages, (2) provides closed-form solutions in some

settings even for the optimal auction decisions, and
(3) allows using univalence theorems to provide broad
sets of conditions under which FMFE is unique. Fur-
thermore, for special cases, we provide approximation
results under a sharper scaling, more in line with the
typical scales observed in practice. In summary, the com-
bination of the two approximations yields results that
are extremely rare in the analysis of dynamic games,
even after imposing (only) a mean-field approximation.

Closest to our paper is the study of Gummadi et al.
(2011), who, in simultaneous and independent work,
also study budget-constrained bidders in repeated
auctions and introduce a similar equilibrium concept to
FMFE. However, the studies differ along several impor-
tant dimensions. Gummadi et al. study a more general
class of online budgeting problems in an asymptotic
regime in which the spending per interaction is small
relative to the budget; a particular case of this general
formulation is repeated second-price auctions with
budget constraints. The present paper, in contrast,
focuses on second-price auctions and provides the
following sharper results for them that are not present
in Gummadi et al. First, we rigorously justify FMFE as
a solution concept through an asymptotic result for
large markets and numerical results for finite markets,
and we provide sufficient conditions for uniqueness of
FMFE. Furthermore, we also study various auction
design decisions of the publisher, providing important
insights on, e.g., reserve price optimization.

More broadly, our work contributes to the growing
literature on display advertising and, in particular,
on that with ad exchanges. From the publisher’s per-
spective, various studies analyze display ad allocation
with both guaranteed contracts and spot markets; see,
e.g., Alaei et al. (2009), Ghosh et al. (2009a), Yang
et al. (2012), and Balseiro et al. (2014). These papers,
however, take the actions of the advertisers as exoge-
nous in the auction design. Chen (2011) employs a
mechanism design approach to characterize the optimal
dynamic auction for the publisher in the presence of
guaranteed contract constraints. In this work, how-
ever, the publisher faces short-lived advertisers and
budget constraints are also ignored. Vulcano et al.
(2002) consider a related problem in the context of a
single-leg revenue management problem. Celis et al.
(2014) introduce a new randomized auction mechanism
that experimentally performs better than an optimized
second-price auction in markets that become thin as a
result of targeting. They consider, however, a one-shot
auction and do not take into account the dynamics
introduced by budget constraints. Arnon and Mansour
(2011) consider an abstraction of a repeated budgeted
second-price auction in which the repeated interactions
are collapsed into a single-shot auction with multiple
identical copies of the same item and study the pure
Nash equilibrium of this game. They do not provide,
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however, a rigorous justification of the solution concept.
From the advertiser’s perspective, Ghosh et al. (2009b)
study the design of a bidding agent for a campaign in
the presence of an exogenous market.

There is some body of literature on display advertis-
ing from a revenue management angle that focuses
exclusively on guaranteed contracts (see, e.g., Ara-
man and Fridgeirsdottir 2011, Najafi-Asadolahi and
Fridgeirsdottir 2014, Roels and Fridgeirsdottir 2009,
Turner 2012). In the related area of TV broadcasting,
Araman and Popescu (2010) study the allocation of
advertising space between forward contracts and the
spot market when the planner faces supply uncer-
tainty. From a methodological standpoint, our work
also relates to a stream of work in revenue manage-
ment. The single-agent fluid approximation we use and
some of the intuition underlying it is related to that of,
e.g., Gallego and van Ryzin (1994). Building on the
latter and focusing on price competition, Gallego and
Hu (2014) use a related notion of fluid, or open-loop,
equilibrium. Other papers studying dynamic games in
revenue management (all focusing on price competi-
tion) include Dudey (1992), Farias et al. (2011), and
Martínez-de-Albéniz and Talluri (2011).

Our work is related to various streams of literature
in auctions. First, previous work has studied auctions
with financially constrained bidders in static one-shot
settings (see, e.g., Che and Gale 1998, 2000; Laffont
and Robert 1996; Maskin 2000; Pai and Vohra 2014).
In §5 we show that in our dynamic model we obtain
drastically different results to some of the main results
in that stream. In addition, whereas our focus is on the
impact of budget constraints on second-price auctions,
our work is somewhat related to the recent literature in
optimal dynamic mechanism design. (See Bergemann
and Said 2010 for a survey.) Finally, our work relates
to previous papers in repeated auctions, such as Jofre-
Bonet and Pesendorfer (2003), in which, similarly to
our model, bidders shade their bids to incorporate the
option value of future auctions. However, in contrast
with our work, the latter paper assumes Markov perfect
equilibrium behavior in an empirical setting.

2. Model Description
We study a continuous-time infinite horizon setting in
which users arrive to an online publisher’s Web page
according to a Poisson process 8N 4t59t≥0 with intensity �.
We index the sequence of arriving users by n≥ 1, and
we denote the sequence of arrival times by 8tn9n≥1.
When a user requests the Web page, the publisher may
display one advertisement; this event is referred to as
an impression. The publisher may decide to send the
impression to an ad exchange, where an auction among
potentially interested advertisers is run to decide which
ad to show to the user. The exchange determines the

winning bid via a second-price auction with a reserve
price and returns a payment to the publisher. The
rules of the auction and the characteristics of the users’
arrival process are common knowledge.

2.1. Advertisers
Advertisers arrive to the exchange according to a
Poisson process 8K4t59t≥0 with intensity �. We index the
sequence of arriving advertisers by k≥ 1 and denote
the arrival times by 8�k9k≥1.3

Advertiser k is characterized by a type vector �k =

4bk1 sk1�k1�k5 ∈�4. The first component of the type,
bk, denotes the budget, and the second component, sk,
denotes the campaign length. That is, the kth adver-
tiser’s campaign takes place over the time horizon
6�k1 �k + sk5, and her total expenditure cannot exceed bk.
Once the advertiser leaves the exchange, she never
comes back.

When the publisher contacts the exchange, she sub-
mits some partial information about the user visiting
the website that, for example, could include cookies. This
information, in turn, may heterogeneously affect the
targeting criteria and the value an advertiser perceives
for the impression, which are captured by �k and �k, as
we now explain. When the nth user arrives, the adver-
tisers in the exchange observe the user information
disclosed by the publisher and determine whether they
will participate or not in the auction based on their
targeting criteria. We assume that the kth advertiser
matches a user with probability �k independently and
at random (across both impressions and advertisers).
Conditional on a match, advertisers have independent
private values for an impression. In particular, all
values for advertiser k are independent and identically
distributed random variables with a continuous cumu-
lative distribution Fv4·3�k5, parameterized by �k ∈�.
The distributions have compact support 6V 1 SV 7⊂�+

and continuously differentiable density.4

At the moment of arrival, an advertiser’s type is
drawn independently from a common knowledge dis-
tribution with support ä, a finite subset of the strictly
positive orthant �4

++
. This distribution characterizes

the heterogeneity among advertisers in the market.

3 We note that our approach does not rely in the assumption of
Poisson arrivals. In fact, our framework is general, and as shown in
§6, it also applies, for example, to the case of synchronous campaigns,
when all campaigns start and end at the same time (e.g., weekly or
monthly campaigns). In reality, arrivals may lie in a middle ground
with a combination of some campaigns repeating over time through
a regular schedule, a random inflow of new advertisers (launching,
for example, a one-off campaign), and exits of existing advertisers.
Our framework could be applied to this setting as well.
4 By assuming private values, we will ignore the effects of adverse
selection and cherry-picking in common value auctions when some
advertisers have superior information. See Levin and Milgrom (2010)
and Abraham et al. (2013) for work that discusses and analyzes this
setting.
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Advertisers have a quasilinear utility function given
by the difference between the sum of the valuations
generated by the impressions won minus the expendi-
tures corresponding to the second-price rule over all
auctions in which they participate during the length of
their campaign. The objective of each advertiser is to
maximize her expected utility subject to her budget
constraint.

2.2. Publisher
On the supply side, the publisher has an opportunity
cost for selling her inventory of impressions in the
exchange; that is, the publisher obtains some fixed
amount c > 0 for each impression not won by some
advertiser in the exchange. The publisher’s payoff is
given by the long-run average profit rate generated
by the auctions, where the profit is measured as the
difference between the payment from the auction and
the lost opportunity cost c when the impression is
won by an advertiser in the exchange. The publisher’s
objective is to maximize her payoff by adjusting the
reserve price r to set for the auctions.

Notation. Given a random variable X, we denote a
realization x with lowercase, its sample space X with
bold capitals, the cumulative distribution function by
Fx4 · 5, and the law by �x8 · 9.5

3. Equilibrium Concept
Given the auction design decisions of the publisher,
the advertisers participate in a game of incomplete
information. Moreover, because the budget constraints
couple advertisers’ decisions across periods, the game
is dynamic and does not reduce to a sequence of static
auctions.

A standard solution concept used for dynamic games
of incomplete information is that of weak perfect
Bayesian equilibrium (WPBE) (Mas-Colell et al. 1995).
Roughly speaking, in such a game, a pure strategy for
advertiser k is a mapping from histories to bids, where
the histories represent past observations. A strategy
specifies, given a history and assuming the advertiser
participates in an auction at time t, an amount to
bid. A strategy profile in conjunction with a belief
system constitutes a WPBE if the following holds. First,
given a belief system and the competitors’ strategies,
an advertiser’s bidding strategy maximizes expected
future payoffs. Second, beliefs must be consistent with
the equilibrium strategies and Bayes’ rule whenever
possible.

WPBE and commonly used refinements, such as per-
fect Bayesian equilibrium and sequential equilibrium,

5 For space considerations, only selected proofs are presented in the
main appendix. All other proofs are presented in a supplementary
appendix (available as supplemental material at http://dx.doi.org/
10.1287/mnsc.2014.2022).

require advertisers to hold beliefs about the entire
future dynamics of the market, including the future
market states. With more than a few competitors in the
market, this imposes a very strong rationality assump-
tion over advertisers because these belief distributions
are high-dimensional. Moreover, to find a best response,
advertisers need to solve a dynamic programming prob-
lem that optimizes over history-dependent strategies.
This optimization problem can be highly dimensional
and intractable both analytically and computationally.
Hence, solving for WPBE for most markets of interest
is not possible. More importantly, WPBE imposes infor-
mational requirements and a level of sophistication on
the part of agents that seems unrealistic. This motivates
the introduction of alternative equilibrium concepts.
After some background in §3.1, we introduce such an
alternative in §3.2.

3.1. Mean-Field and Fluid Approximation
When selecting an amount to bid, an advertiser needs
to form some expectation of the distribution of bids she
will compete against. There are various possible bases
for such an expectation as a function of the sophisti-
cation of the advertiser and the type of information
she would have access to. In practice, the number of
advertisers in an exchange is often large, on the order
of hundreds or even thousands. The first approxima-
tion we make is based on the premise that, given a
large number of advertisers in the market, the distribu-
tion of competitors’ bids is stationary and that these
random quantities are uncorrelated among periods.
Moreover, the bids of any particular advertiser do not
affect this distribution. In these markets, it is common
that auctioneers provide a “bid landscape” based on
aggregated historical data that inherently assumes
stationarity, at least for some significant time horizon.
This information is commonly used by advertisers to
set their bids, and therefore, our assumption about
the distribution of competitors’ bids may naturally
arise in practice (Ghosh et al. 2009b, Iyer et al. 2014).
In the present paper, although our approximation is
predicated on the overall number of advertisers in the
market being large, the average number of bidders
per auction need not be large. For this reason, running
auctions remains useful in this regime; a small number
of bidders with heterogeneous valuations participate in
each one of them.

To win an auction, an advertiser competes against
all other bidders and against the reserve price r . We
denote by D the steady-state maximum of the competi-
tors’ bids, where we assume that the publisher is a
competitor that submits a bid equal to r . Assume for
a moment that D is independent and identically dis-
tributed (i.i.d.) across different auctions and distributed
according to a cumulative distribution function Fd4 · 5.
(Note that Fd4 · 5 will be endogenously determined in
equilibrium in §3.2.)
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In this setting, the advertiser’s dynamic bidding prob-
lem in the repeated auctions can be cast as a revenue-
management-type stochastic dynamic programming
problem in which bidding decisions across periods
are coupled through the budget constraint. However,
the resulting Hamilton-Jacobi-Bellman equation is a
partial differential equation that, in general, does not
have a closed-form solution. To get a better handle
on the bidder’s dynamic optimization problem, we
introduce a second level of approximation motivated
by the fact that a given advertiser has a large num-
ber of bidding opportunities. (Campaigns span for
weeks or months, and thousands of impressions arrive
per day.) In such an environment, the advertiser’s
stochastic dynamic programming problem can be well
approximated through a stochastic fluid model. In
particular, the approximation we focus on is predicated
on the assumption that bidders solve a control problem
in which the budget constraint need only be satisfied in
expectation. Under the latter assumption, it is possible
to show that one can restrict attention to stationary
bidding strategies that ignore the individual state and
are only dependent on the actual realization of the
bidder’s value without loss of optimality. We empha-
size here that the budget constraint is imposed almost
surely when we conduct performance analysis in §6.
The main point is that the stationary bidding strategies
derived above can be shown to provide advertisers
with provably good policies in the real system (with
constraints imposed almost surely) when the number
of impressions and budgets are large, so the number of
bidding opportunities over the campaign length also
grows large.

Now, the control problem, for a bidder of type
� = 4b1 s1�1�5, is one of finding a fluid-based bidding
strategy �F

�4v3 Fd5 that bids depending solely on her
value v for the impression. A bidder with total cam-
paign length s observes, in expectation, a total number
of ��s impressions during her stay in the exchange. By
conditioning on the impressions’ arrival process, and
using our assumption of the stationarity of the maxi-
mum bids and the valuations, the bidder’s optimization
problem is given by

J F
� 4Fd5= max

w4 · 5
��s Ɛ618D ≤w4V 594V −D57 (1a)

s.t. ��s Ɛ618D ≤w4V 59D7≤ b1 (1b)

where the expectation is taken over both the maximum
bids D and the valuations V , which are independently
distributed according to Fd4 · 5 and Fv4·3�5, respectively.
Note that the payments in the bidders’ problem are con-
sistent with a second-price rule. The bidder optimizes
over a bidding strategy that maps its own valuation
to a bid; hence, the resulting problem is an infinite-
dimensional optimization problem. The next result
provides, however, a succinct characterization of an
optimal fluid-based bidding strategy.

Proposition 3.1. Suppose that Ɛ6D7 <�. Let �∗
� be an

optimal solution of the dual problem inf�≥0 ë�4�3 Fd5, with
ë�4�3 Fd5= ��s Ɛ6V − 41 +�5D7+ +�b. Then, an optimal
bidding strategy that solves (1) for type � is given by

�F
�4v3 Fd5=

v

1 +�∗
�

0

The optimal bidding strategy has a simple form:
an advertiser of type � needs to shade her values by
the constant factor 1 +�∗

�, and this factor guarantees
that the advertiser’s expenditure does not exceed the
budget. In the previous expression, �∗

� is the optimal
dual multiplier of the budget constraint and gives
the marginal utility in the advertiser’s campaign of
one extra unit of budget. Intuitively, when budgets
are tight, advertisers shade their bids because there is
an option value for future good opportunities. When
budgets are not tight, the optimal dual multiplier is
equal to zero, and advertisers bid truthfully as in a
static second-price auction. The proof of the result relies
on an analysis of the dual of problem (1). Although the
latter is not a convex program, the proof establishes
from first principles that no duality gap exists in the
present case.

3.2. Fluid Mean-Field Equilibrium
We now define the dynamics of the market as a prelude
to introducing the equilibrium concept we focus on. At
any point in time, there can be an arbitrary number of
advertisers in the exchange, and these dynamics are
governed by the patterns of arrivals and departures. In
particular, the number of advertisers in the exchange
behaves as an M/G/� queue. We denote by Q4t5 the set
of indices of the advertisers in the exchange at time t
and by Q4t5= �Q4t5� the total number of advertisers in
the system. The market state at time t is given by the set
of bidders in the exchange, together with their individ-
ual states and types, ì4t5= 8Q4t51 8bk4t51 sk4t51 �k9k∈Q4t59,
where we denote by bk4t5 and sk4t5 the kth advertiser
remaining budget and residual time in the market
by time t, respectively. When advertisers implement
fluid-based strategies, the market state encodes all the
information relevant to determine the evolution of the
market, and the process ì= 8ì4t59t≥0 is Markov.

In our equilibrium concept, we will require the
consistency of the distribution of the maximum bid
that bidders conjecture they compete against with
the bidding strategies they use. A difficulty with this
consistency check is that the number of active bidders,
those that match the target criteria and have remaining
budgets, depends on the market dynamics. In particu-
lar, the budget dynamics depend on who wins and
how much the winner pays in each auction. Hence, in
principle, characterizing the resulting steady-state dis-
tribution of the maximum bid of the active competitors
(that have remaining budgets) is complex. However,
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it is reasonable to conjecture that, when the number
of opportunities during the campaign length is large,
rational advertisers would deplete their budgets close
to the end of their campaign with high probability. For
analytical tractability we impose that, in our equilib-
rium concept, any bidder currently in the exchange
that matches the targeting criteria, without regard of
her budget, gets to bid. Under this assumption, the
number of bidders in an auction equals the number of
advertisers matching the targeting criteria, denoted by
M4t5, which is just an independent sampling from the
process Q4t5.6 In the proof of Theorem 6.1 and in the
technical report by Balseiro et al. (2012), we show this
layer of approximation is in fact asymptotically cor-
rect. Indeed, the performance analysis in §6 takes into
account that, when advertisers implement the FMFE
strategies, stochastic fluctuations in their expenditure
may actually induce them to run out of their budgets
before the end of the campaign, at which point they
cannot continue to participate in any auction.

Because arrival and departures of advertisers are gov-
erned by an M/G/� queue and campaign lengths are
bounded, it is not hard to show that under fluid-based
strategies, the market process ì is Harris recurrent, so
it is ergodic and admits a unique invariant steady-state
distribution (see, e.g., Asmussen 2003, p. 203). Let
4M̂1 8ä̂k9

M̂
k=15 be a random vector that describes the

number of matching bidders, together with their respec-
tive types when sampling a market state according
to the invariant distribution. Notice that advertisers
with longer campaign lengths and higher matching
probability are more likely to participate in an auction,
and thus the law of a type sampled from the invariant
distribution does not coincide with the law of the types
in the population. Indeed, by exploiting the fact that
arrival-time and service-time pairs constitute a Poisson
random measure on the plane (see, e.g., Eick et al.
1993), one can show that M̂ is Poisson with parameter
Ɛ6�ä�sä7 and that each component of the vector of
types is independently and identically distributed as
�ä̂8�9= 4��s�/Ɛ6�äsä75�ä8�9 for each type � ∈ä and
independent of M̂ .7

For a fluid-based strategy profile Â= 8��4 · 52 � ∈ä9
with ��2 6V 1 SV 7→�, we denote by Fd4Â5 the distribu-
tion of the following random variable:

max
(

8�ä̂k
4Vä̂k

59M̂k=11 r
)

1 (2)

6 We note that an important difference between our FMFE and
the related equilibrium concept proposed in parallel by Gummadi
et al. (2011) is that they do not impose this additional layer of
approximation. This plays a key role to obtain tractability in our
analysis.
7 For a type � ∈ ä, we denote, with some abuse of notation, the
corresponding budget by b� , the campaign length by s� , the matching
probability by �� , and the valuation parameter by �� . Additionally,
we denote by ä a random variable distributed according to the law
of types in the population.

which represents the steady-state maximum bid. Note
that, here, V� are independent valuations sampled
according to Fv4·3��5. We are now in a position to
formally define the notion of an FMFE.

Definition 3.1 (Fluid Mean-Field Equilibrium).
A fluid-based strategy profile Â constitutes an FMFE if
for every advertiser’s type � ∈ä, the bidding function
�� is optimal for problem (1) given that the distribution
of the maximum bid of other advertisers is given by
Fd4Â5 (Equation (2)).

In essence, an FMFE is a set of bidding strategies
such that (i) these strategies induce a given competitive
landscape as represented by the steady-state distribu-
tion of the maximum bid, and (ii) given this landscape,
advertisers’ optimal fluid-based bidding strategies
coincide with the initial ones. We focus on symmetric
equilibria in the sense that all bidders of a given type
adopt the same strategy. Note that in the FMFE, upon
arrival to the system, an advertiser is assumed to
compete against the market steady-state maximum
bid D.8

3.2.1. Remarks. We introduced the FMFE by heuris-
tically arguing that it should be a sensible equilibrium
concept for large markets when the number of bidding
opportunities per advertiser are also large. In Theo-
rem 6.1, we show that when all advertisers implement
the FMFE strategy, the relative profit increase of any
unilateral deviation to a strategy that keeps track of
all information available to the advertiser becomes
negligible as the scale of the market increases. This
provides a theoretical justification for using the FMFE
as an approximation of advertisers’ behavior.

In the asymptotic regime described above, the match-
ing probabilities are decreased so that the number of
bidders per auction remains constant, and therefore, the
probability that two advertisers participate repeatedly
in the same auctions becomes negligible. In real-world
markets, it might be the case that similar advertisers
compete repeatedly in the same auctions to advertise to
the same users. Nonetheless, in §6.2 we show through
a combination of theoretical and numerical results that
even with a moderate number of advertisers (e.g., 5
to 10) FMFE strategies are typically close to being a best
response. Naturally, in these markets two advertisers
may interact repeatedly over time, and our results
show that the FMFE provides a good approximation to
the rational behavior of agents even in these cases.

4. FMEE Characterization
In this section we prove the existence of an FMFE,
provide conditions for uniqueness, and characterize the

8 Note that by the Poisson arrivals see time averages (PASTA)
property of a Poisson arrival process this assumption is in fact
correct.
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FMFE. Proposition 3.1 will significantly simplify our
analysis because it allows one to formulate the equi-
librium conditions in terms of a vector of multipliers
instead of bidding functions. By doing so, the problem
of finding the equilibrium strategy function for a given
type will be reduced to finding a single multiplier.

4.1. Equilibrium Existence and
Sufficient Conditions for Uniqueness

We first prove the existence of an FMFE for a fixed
reserve price. Recall from Proposition 3.1 that, in an
optimal fluid bidding strategy, advertisers of type �
shade their bids using a fixed multiplier ��. In the
following, we denote by Ì= 8��9�∈ä a vector of multi-
pliers in ��ä�

+ for the different advertisers’ types. Given
a postulated profile of multipliers Ì, let Fd4Ì5 denote
the steady-state distribution of the maximum bid and
let ë�4�3Ì5

4

=ë�4�3Fd4Ì55 be the dual objective for
one �-type advertiser (as defined in Proposition 3.1)
when all other bidders adopt a strategy given by the
vector Ì (including those of the same type). In the
dual formulation, a vector of multipliers Ì∗ constitutes
an FMFE if and only if it satisfies the best-response
condition

�∗

� ∈ arg min
�≥0

ë�4�3Ì
∗51 for all types � ∈ä. (3)

One may establish that the system of equations (3)
always admits a solution to obtain the following.

Theorem 4.1. There always exists an FMFE.

The proof shows that the dual strategy space can be
reduced to a compact set and that the dual objective
function is jointly continuous in its arguments and
convex in the first argument. Then, a standard result
that relies on Kakutani’s fixed-point theorem implies
the existence of an FMFE.

We now turn to sufficient conditions for uniqueness.
Let G2 ��ä�

+ ×�+ →��ä�

+ be a vector-valued function
that maps a profile of multipliers and a reserve price to
the steady-state expected expenditures per auction of
each type. The expected expenditure of a �-type bidder
in a second-price auction when advertisers imple-
ment a profile of multipliers Ì is given by G�4Ì1 r5

4

=

Ɛ61841 +��5D ≤ V 9D7, where the maximum competing
bid is given by D = max44Vä̂/41 +�ä̂5512 M̂1 r5.

9 In the
next assumption, we say that a matrix is a P -matrix if
all its principal minors are positive (Horn and Johnson
1991, p. 120).

Assumption 4.1 (P-Matrix). The Jacobian of −G with
respect to Ì is a P -matrix for all Ì in ��ä�

+ .

9 Note that, consistent with the FMFE assumption and the PASTA
property, the bidder competes against the market steady-state maxi-
mum bid.

Assumption 4.1 can be shown to hold for various
cases of interest. For example, it is easy to see that it
always holds for the case of homogeneous advertisers,
i.e., when the space of types ä is a singleton. In §2 of
the supplementary appendix, we provide an important
class of settings with two types of bidders in which it
also holds. The P -matrix condition can be interpreted as
a monotonicity condition on the expected expenditures.
Namely, if a group of types increases its multipliers
simultaneously, then the expenditures cannot increase
for every type in the group. The next theorem shows
that the equilibrium is unique under the P -matrix
assumption.

Theorem 4.2. Suppose Assumption 4.1 holds. Then,
there is a unique FMFE of the form ��4v5= v/41 +��5,
� in ä.

We prove the result by formulating the FMFE condi-
tions as a nonlinear complementarity problem (NCP),
as presented in Corollary 4.1 below, and employing a
univalence theorem to show that the expected expendi-
ture mapping is injective (Facchinei and Pang 2003a).
We note that results regarding the uniqueness of equi-
libria in dynamic games are extremely rare (Doraszelski
and Pakes 2007).

Providing conditions for which Assumption 4.1 holds
is challenging for more than two types of bidders. In
our numerical experiments, we use a myopic best-
response algorithm, presented in detail in §5.2.1, that
could naturally describe how agents learn to play the
game and reach an FMFE. It is reassuring that in our
computational experience, for a given model instance
with two or more types, this algorithm always found
the same FMFE even when starting from different
initial points.

We finish this subsection by noting that, under further
mild regularity conditions, one can establish that any
set of continuous increasing bidding functions that
constitute an FMFE necessarily yields the same outcome
(in terms of auctions’ allocations and payments) as that
of the FMFE in Theorem 4.2. In the rest of the paper,
we focus on the simple and intuitive FMFE strategies
that can be described by a vector of dual multipliers.

4.2. Equilibrium Characterization
A direct corollary of the earlier results and their proofs
yields the following succinct characterization.

Corollary 4.1. Any FMFE characterized by a vector
of multipliers Ì∗, such that ��4v5 = v/41 + �∗

�5 for all
v ∈ 6V 1 SV 7 and � ∈ä, solves

�∗

� ≥ 0 ⊥ ���s�G�4Ì
∗1 r5≤ b� ∀� ∈ä1

where ⊥ indicates a complementarity condition between
the multiplier and the expenditure—that is, at least one
condition should be met with equality.
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The expected expenditure for a bidder of type � over
its campaign when bidders use a vector of multipliers
Ì is given by ���s�G�4Ì1 r5 because, on average, she
faces �s� auctions and participates in a fraction �� of
them. Intuitively, the result states that, in equilibrium,
advertisers of a given type may only shade their
bids if their total expenditure over the course of the
campaign (in expectation) is equal to their budget. If,
in expectation, advertisers have excess budget at the
end of a campaign, then their multiplier is equal to
zero and they should bid truthfully. This equilibrium
characterization lends itself to tractable algorithms to
compute FMFE because the strategy of each advertiser
type is determined by a single number that satisfies the
complementary conditions above. See, for example,
Chapter 9 of Facchinei and Pang (2003b) for a discussion
of numerical algorithms for this kind of NCP.

We conclude this subsection by refining the result
for the case of homogeneous bidders, in which one
can provide a quasi-closed form characterization for
FMFE. Suppose that ä is a singleton. Let G04r5 =

G�401 r5 denote the steady-state unconstrained expected
expenditure per auction of a single bidder for a second-
price auction with reserve price r when all advertisers
(including the bidder herself) bid their own values.
Note that the expected expenditure for a bidder over
its campaign when all bidders are truthful is given by
��sG04r5. This quantity plays a key role in the FMFE
characterization.

Proposition 4.1. Suppose ä is a singleton. Then an
FMEE exists and is unique. In addition, the equilibrium
may be characterized as follows: ��4v5 = v/41 +�∗5 for
all v ∈ 6V 1 SV 7, where �∗ = 0 if ��sG04r5 < b, and �∗

is the unique solution to ��sG04r41 +�55= b41 +�5 if
��sG04r5≥ b.

The result provides a complete characterization of
the unique FMFE. In particular, it states that if bud-
gets are large (i.e., ��sG04r5 < b), then, in equilibrium,
advertisers will bid truthfully. However, if budgets are
tight (i.e., ��sG04r5≥ b), then advertisers will shade
their bids, in equilibrium, considering the option value
of future opportunities. We also further note here that
in the case in which the reserve price is equal to zero
(r = 0), the equilibrium multiplier may be characterized
in closed form by �∗ = 4��sG0405/b− 15+.

5. Auction Design: Reserve
Price Optimization

In this section, we study the publisher’s profit maxi-
mization problem. First, we use the framework devel-
oped in the previous sections to formulate the problem.
Then, we study the resulting optimization problem
and derive insights into how to account for budgets
when setting the reserve price.

We model the grand game played between the
publisher and advertisers as a Stackelberg game in
which the publisher is the leader and the advertisers are
the followers. In particular, the publisher first selects the
reserve price in the second-price auction r , and then
the advertisers react and play the induced dynamic
game among them. In our analysis, we assume that
the solution concept for the game played between
advertisers is that of an FMFE. The publisher’s objective
is to maximize her long-run average profit rate from
the auctions while considering the opportunity cost c
of the alternative channel.

To mathematically formulate the problem, we define
I4Ì1 r5= 1 − Fd4r3Ì5 as the probability that the impres-
sion is won by some advertiser in the exchange when
advertisers shade according to the profile Ì and the
publisher sets a reserve price r . Using the characteri-
zation of an FMFE in Corollary 4.1, we can write the
publisher’s problem in terms of multipliers and obtain
the following mathematical program with equilibrium
constraints (MPEC):

max
r

�
∑

�∈ä

{

p����s�G�4Ì1 r5
}

−�cI4Ì1 r5

s.t. �� ≥ 0 ⊥ ���s�G�4Ì1 r5≤ b� ∀� ∈ä1

(4)

where p�
4

= �ä8�9 is the probability that an arriving
advertiser is of type �. We denote by ç4Ì1 r5 the
objective function of the MPEC. The first term in the
objective is the publisher’s revenue rate obtained from
all bidders’ types in the auctions, which is equal to the
average expenditure of the advertisers. Note that the
revenue rate obtained from a given type is equal to
the bidders’ average expenditure over their campaign
times the arrival rate of the bidders. The second term is
the opportunity cost by unit of time, which is incurred
whenever an impression is won by some advertiser
in the exchange and, therefore, cannot be sold in the
alternative channel.

Note that the MPEC above considers that, when the
publisher changes the reserve price, bidders react by
playing a corresponding FMFE. By Theorem 4.1, we
know that such an FMFE always exist. Furthermore,
when Assumption 4.1 holds, the FMFE is unique. In
cases for which we do not know whether the assump-
tion holds, we will assume that advertisers play the
FMFE computed by our best-response algorithm.10

10 Assuming that the equilibrium being played is the one selected
by a specific algorithm is a prevalent approach in the analysis of
dynamic games for which uniqueness results are extremely rare. For
example, Iyer et al. (2014) use this approach in a repeated auction
setting, and many of the references in Doraszelski and Pakes (2007)
use it in other industrial organization games.
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5.1. Reserve Price: Homogeneous Advertisers
We first consider the case in which ä is a single-
ton; i.e., all advertisers have a fixed budget b, stay in
the market for a deterministic time s, and share the
same matching probability � and valuation parame-
ter �. By Proposition 4.1, we know that in this case,
a unique FMFE exists, and we can characterize it in
quasi-closed form. We leverage this result to study
the publisher’s decisions. Throughout this section,
we drop the dependence on �. In the following, we
denote by hv4x5 = fv4x5/F̄v4x5 the failure rate of the
advertisers’ values (who have a common distribution)
and by �v4x5= xhv4x5 the generalized failure rate of the
values. We assume that values possess strictly increas-
ing generalized failure rates (IGFRs). This assumption
is common in the pricing and auction theory literature,
and many distributions satisfy this condition (see, e.g.,
Lariviere 2006, Myerson 1981).11

In the absence of budgets, the auctions are not
coupled, and each auction is equivalent to a one-shot
second-price auction with opportunity cost c > 0 and
symmetric bidders with private values. In such a
setting, it is well known that the optimal reserve price,
which we denote by r∗

c , is independent of the number
of bidders and is given by the unique solution of
1/hv4x5= x− c (see, e.g., Laffont and Maskin 1980). The
next result establishes a counterpart for the present
case with budget constraints.

Theorem 5.1 (Optimal Reserve Price). If ��sG04r
∗
c 5

< b, then r∗
c is the unique optimal reserve price. If

��sG04r
∗
c 5 ≥ b, then the unique optimal reserve price is

r̄ = supR∗, where R∗ = 8r2 ��sG04r5≥ b9. Furthermore, in
the FMFE induced by the optimal reserve price, advertisers
bid truthfully.

The optimal reserve price admits a closed-form
expression that highlights how it balances various
effects. The expected expenditure for a bidder over
its campaign when all bidders are truthful evaluated
at r∗

c , ��sG04r
∗
c 51 plays a key role in the result. In fact,

when the budget is large in the sense that advertisers
do not deplete their budget in expectation when the
reserve price is r∗

c (��sG04r
∗
c 5≤ b), it is expected that

r∗
c should still be optimal in our setting. Intuitively, if

the budget does not bind, the auctions decouple into
independent second-price auctions. However, when
��sG04r

∗
c 5 > b, advertisers shade their values when the

reserve price is r∗
c . In the proof, we show that in this

case, the optimal reserve price must be in R∗—that
is, it must induce bidders to deplete their budgets in
expectations. For all such reserve prices, the revenue
rate for the publisher is given by �b, and this is the
maximum revenue rate she can extract from advertisers.

11 For instance, the uniform, exponential, triangular, truncated normal,
gamma, Weibull, and log-normal distribution have IGFRs.

Hence, recalling the objective value (4) of the publisher,
the optimal reserve price must be the value r ∈ R∗

that minimizes the probability of selling an impression
in the exchange and, therefore, the opportunity cost.
Increasing the reserve price has two effects on this
probability: (1) a direct effect, where, assuming the
advertiser’s strategies do not change, an increase of
the reserve price decreases the probability of selling
an impression in the exchange; and (2) an indirect
effect, where a change in the reserve price also alters
the strategies of the advertisers through the induced
FMFE. In the proof, we show that the direct effect is
dominant, implying that r̄ = supR∗ is optimal because
it minimizes the opportunity cost within R∗.

We emphasize that the optimal reserve price with
budget constraints is larger than or equal to r∗

c , the
static reserve price that does not account for budgets.
In fact, the optimal reserve price is max8r̄1 r∗

c 9 because
one can show that r̄ ≥ r∗

c if and only if ��sG04r
∗
c 5≥ b.

Theorem 5.1 highlights that ignoring budgets can
result in a suboptimal decision. In the next section, we
numerically evaluate the extent of the suboptimality in
markets with heterogeneous bidders. Before, we note
that when advertisers are highly budget constrained,
the reserve price r̄ tends to be high, and therefore it is
unlikely that two advertisers will bid higher than r̄ .
In this case, the advantage of running a second-price
auction becomes limited, and its performance is similar
to that of a fixed posted-price mechanism.

We finish this subsection by comparing the result
above with the studies pertaining to one-shot auctions
with budget constraints. In the case of a common
budget for all bidders, authors have typically found
that budget constraints decrease the optimal reserve
price relative to the setting without budget constraints
(see Laffont and Robert 1996, Maskin 2000). The reason
is that with budget constraints, the reserve price is less
effective in extracting rents of higher valuation types;
hence, when trading off higher revenues conditional on
a sale taking place with an increase in the probability
of a sale, the latter has more weight than in the absence
of budgets. In our case, instead, the optimal reserve
price with budget constraints is larger than or equal
to r∗

c . The difference with the one-shot auction is that
the budget constraint is imposed over a large set of
auctions as opposed to having a constraint per auction,
leading to a different trade-off for the publisher. Indeed,
when the budget constraint binds, the reserve price
does not affect expected revenues, and the publisher
is already extracting all budgets from the bidders.
Therefore, the only role of the reserve price becomes
one of reducing the opportunity cost by decreasing the
probability of a sale. As we saw, this is achieved by
increasing the reserve price while still extracting the
maximum amount of revenue.
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5.2. Reserve Price: Heterogeneous Advertisers
Although it was possible to obtain essentially a closed-
form solution for the publisher’s optimal reserve price
in the case of homogeneous advertisers, it is not gen-
erally possible to derive such a result for the case of
heterogeneous advertisers. However, one may always
numerically analyze the impact of the publisher’s deci-
sions on the advertisers’ equilibrium outcome under
different scenarios by solving for the FMFE using the
characterization in Corollary 4.1 for different auction
parameters. We provide such a study in this section and
start by describing an algorithm to compute the FMFE.

5.2.1. Algorithm to Compute the FMFE. For each
model instance, we solve for the FMFE using the
following myopic best-response algorithm over the
space of dual multipliers. The algorithm starts from an
arbitrary vector of multipliers Ì.

Algorithm 1 (Best-Response Algorithm for an FMFE)
1. �0

� 2=��1 ∀� ∈ä; i 2= 0
2. repeat
3. �i+1

� 2= arg min�′≥0 ë�4�
′3Ìi51 ∀� ∈ä

4. ã 2= �Ìi+1 −Ìi��; i 2= i+ 1
5. until ã< �.

If the termination condition is satisfied with � = 0,
we have an FMFE (see Equation (3)). Small values of �
allow for small errors associated with limitations of
numerical precision. Although we cannot prove the
convergence of the algorithm, in practice, it converged
in a small number of iterations. In fact, for fixed auction
parameters, solving for the FMFE takes a few seconds
on a laptop computer.

5.2.2. Measuring the Impact of Budgets on the
Optimal Reserve Price. The analysis with homoge-
neous bidders highlighted that ignoring budgets can
lead to suboptimal reserve prices. In this section, we
measure the extent of the suboptimality in markets
with heterogeneous bidders. We believe this exercise
is particularly relevant because several papers that
study online advertising ignore budgets when setting
optimal reserve prices in the ad exchange (see, e.g.,
Balseiro et al. 2014, Celis et al. 2014, Chen 2011, Ghosh
et al. 2009a).

The setup for our numerical experiments is as fol-
lows. We consider randomly generated instances with a
heterogeneous population of advertisers with five types.
Budgets for each type are sampled from a discrete
uniform distribution with support 81121 0 0 0 1109. Addi-
tionally, we experiment with the proportion of these
types by choosing the probabilities p� of an arriving
advertiser being of type � uniformly from the probabil-
ity simplex. Throughout the experiments, we fix the
matching probability �= 001 and the campaign length
to s = 10, but we select the arrival rate � uniformly in

Figure 1 (Color online) Histogram of the Relative Profit Loss of Ignoring
Budget Constraints for Randomly Generated Instances
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Notes. The relative profit loss is given by ç4Ì4r ∗

c 51 r
∗

c 5/ç4Ì4r
∗51 r ∗5 − 1,

where Ì4r 5 denotes the FMFE multipliers at reserve price r . The histogram is
restricted to those instances in which the mean advertiser’ truthful expenditure
at r ∗

c exceeds the mean budget; i.e.,
∑

� p�G�401 r ∗

c 5≥
∑

� p�b� .

61157 so that the average number of matching bidders
in an auction ��s varies from one to five. Advertis-
ers have the same distribution of values, which is
drawn uniformly from the set Exp4�5, N4�115, and
Unif6012�7, with � uniformly sampled from 61157 (the
supports of valuations are truncated to 601107). From
the perspective of the publisher, we study scenarios
with different opportunity costs c for the alternative
channel by choosing the cost uniformly from 61157.
Additionally, we consider 10 levels for the impressions
allocated to the exchange, as given by �.12 In total, we
examine 920 different scenarios.

For each model instance, we compute two reserve
prices. First, we compute the optimal static reserve
price r∗

c as given in §5.1, which assumes advertisers
always bid truthfully and therefore ignores budget
constraints. Second, the reserve price r∗ that solves
optimization problem (4), and therefore considers the
rational response of budget-constrained advertisers via
an FMFE, is computed.

From the numerical experiments, we obtain two
conclusions that are robust across all model instances.
First, consistent with the results from the homogeneous
case, the reserve price r∗ is larger than r∗

c . Second,
the extent of suboptimality associated with ignoring
budgets and selecting r∗

c instead of r∗ can be significant
with profit losses up to 40%. A histogram of the relative
profit loss across the generated instances is shown
in Figure 1. Overall, our results show that ignoring the

12 In particular, we consider 10 uniformly spaced points in the
interval 6011025 max� �̄�7, where �̄� is the least rate of impressions
guaranteeing that a population of type � bidders in isolation is
budget constrained when the reserve is r∗

c .
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rational response of budget-constrained advertisers can
yield significant profit losses for the publisher.

5.2.3. Structure of the Optimal Reserve Price. In
this section, we study in more detail the structure of the
optimal reserve price r∗ in markets with heterogeneous
bidders to illustrate the trade-offs the publisher faces
in these settings. For this purpose, it is useful to depict
the optimal reserve price and the resulting shading
multipliers as a function of the allocation of impressions
to the exchange �. Figure 2 shows such dependence for
a given set of parameters with two types. Notice that,
when the publisher prices optimally, the high-budget
type always bids truthfully. However, in contrast with
the homogeneous case, this is not necessarily true
for the low-budget type: for some levels of supply,
low-type advertisers will shade their bids under the
optimal reserve price.

Focusing on the optimal reserve price, we observe
that advertisers do not have a chance to deplete their
budgets for low levels of supply. In this case, advertisers
bid truthfully and r∗

c is the optimal reserve price. As the
rate of impressions increases, the expenditures increase
up to the point at which the low-type becomes budget
constrained. From then on, the publisher needs to
balance two effects. On the one hand, because the low
type is now shading her bids, the publisher has an
incentive to increase the reserve price so as to minimize
the number of impressions won and the opportunity
cost. The latter is achieved by r̄14�5, the optimal reserve
price if all advertisers shared the same budget b1 (the
top dashed line). On the other hand, the publisher
has an incentive to price close to r∗

c to extract the
surplus from the high-type advertisers, who are not
depleting their budgets. The trade-off is such that,
initially, the weight of the low-budget type bidders
is higher and it is optimal for the publisher to price
close to r̄14�5, thus increasing the reserve price with
the allocation of impressions. At this price, however,
the expenditure of the high-budget type is well below
its budget, and the publisher may be leaving money
on the table. When enough impressions are allocated
to the exchange, this effect becomes dominant and the
publisher tries to extract this surplus by pricing closer
to r∗

c ; thus the sudden kink and decrease in the optimal
reserve price. If the publisher keeps increasing the
allocation of impressions, eventually both types become
budget constrained. Similar to the homogeneous case,
the publisher is now better off pricing in such a way
that both types deplete their budgets, but with the
high-type bidding truthfully so that the number of
impressions won by the advertisers is minimized. For
this reason, at some point the optimal reserve price
starts increasing again.

In our numerical experiments, a similar structure and
trade-off appears when there are more than two types
of advertisers with different budgets in the population,

with one new kink in the optimal reserve price for
each additional type.

6. FMFE as a Near-Optimal
Best Response

In this section, we aim to provide further support for
the concept of FMFE introduced in §3.2 along two
dimensions. First, we rigorously justify that playing
an FMFE strategy when all other advertisers play
the FMFE strategy is a near-optimal best response in
large-sized markets, i.e., when both the number of
advertisers and the number of auctions are appropri-
ately large. Second, we aim to illustrate theoretically

Figure 2 (Color online) Equilibrium Multipliers and Optimal Reserve
Price as a Function of the Rate of Impressions for an Instance
with �= 001, �= 1, s= 40, Unif60127 Valuation Distribution,
c =

2
3 , b = 41185, and p = 4 1

5 1
4
5 5

�

�

�

 

 

 

 

Notes. For illustration purposes, we only consider two types and different
parameters than above. In panel (a), equilibrium multipliers serve as a function
of the allocation of impressions. In panel (b), the solid line corresponds to
optimal reserve price, and the dashed lines denote the optimal prices one
would set for a homogeneous population with budget b1 (low type) or b2 (high
type). The reserve price r ∗

c is equal to 4
3 .
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and numerically the main trade-offs faced by adver-
tisers and why FMFE strategies are potentially near
optimal even when the number of advertisers is small,
lending further practical support to the concept.

Preliminaries. To achieve the above goals, we focus
on a simplified version of the problem, the case of
synchronous campaigns—that is, when all campaigns
start at the same time and finish simultaneously. This
simpler model corresponds, for example, to the case
when advertisers have periodic (daily or weekly) bud-
gets. It captures some of the key characteristics of the
market and allows us to highlight the main issues at
play in a relatively transparent fashion. The general
case of asynchronous campaigns introduces a significant
additional layer of complexity, and we provide an
asymptotic approximation result pertaining to the latter
in Balseiro et al. (2012).13

We next describe the synchronous model and adapt
the FMFE to this setting. There is a fixed number
of agents in the market, which we denote by K. All
campaigns start at time 0 and finish at a common time s,
and neither arrivals nor departures are allowed during
the time horizon 601 s7. Agents are indexed by k =

11 0 0 0 1K. Similar to before, the kth agent is characterized
by a type vector, �k = 4bk1�k1�k5 ∈�3. Types are publicly
known and revealed at the beginning of the horizon.
Although this assumption is not necessary for our
analysis, we make it to simplify some arguments and
notation.

Now, the expected expenditure function of the
kth advertiser of a single auction when advertisers
shade their bids according to a vector of multipliers
Ì ∈ �K

+
, denoted by Gk4Ì3 r5, is given as in §4 but

with the maximum competing bid given by D−k =

maxi 6=k1Mi=18Vi/41 +�i59∨ r , where we let Mk = 1 indi-
cate that the kth agent participates in the auction and
we ignored the index n to simplify the notation. A
similar analysis to the one performed in the case of
asynchronous campaigns yields that the vector of multi-
pliers in the FMFE can be characterized as the solution
of the following NCP:

�k ≥ 0 ⊥ �k�sGk4Ì3 r5≤ bk1 ∀k = 11 0 0 0 1K0 (5)

Moreover, similar results about the existence and
uniqueness of the FMFE also apply to this setting.

13 Because of the asynchronous nature of the market, for this result
we extend the propagation of chaos argument of Graham and
Méléard (1994) and Iyer et al. (2014) to accommodate the additional
fluid approximation and the queuing dynamics of the number of
advertisers in the market, which leads to a more restrictive scaling
than our result below for synchronous campaigns. An interesting
technical avenue for future research is to show whether the scaling
under which we obtain our asymptotic approximation result for
synchronous campaigns holds in broader settings. This generalization
is likely to have other applications in mean-field models beyond the
one presented in this paper.

6.1. Asymptotic Analysis for Large Markets
We consider a sequence of markets indexed by the
number of advertisers K. For each market size K,
bidders’ types are given by 8�

4K5
k = 4b

4K5
k 1�

4K5
k 1�

4K5
k 59Kk=1,

where we use superscript 4K5 to denote quantities
associated to market size K. Similarly, we denote �4K5 as
the intensity of the arrival process of users in market K.
We will prove an approximation result by considering
a sequence of markets that satisfy the following set of
assumptions on the primitives.

Assumption 6.1. There exists positive bounded con-
stants g, ḡ, z, and ā, such that for all market sizes K,

(i) For any advertiser k, b4K5k /4�
4K5
k �4K5s5 ∈ 6 g1 ḡ7.

(ii) For every pair of advertisers k 6= i, �4K5
k /�

4K5
i ≤ ā.

(iii) For any advertiser k, G4K5
k 403 r5≥ z.

The first assumption states that the ratio of budget
to number of matching auctions is uniformly bounded
from above and below across advertisers, and the
second one states that the ratio of matching proba-
bilities of any two advertisers is uniformly bounded
across advertisers. These assumptions guarantee that
no advertiser has an excessive market influence by
limiting budgets and the number of matching auctions
in which they participate. The third assumption ensures
that, in equilibrium, all advertisers have a positive
expected expenditure per auction so that no advertiser
is systematically outbid in equilibrium. Thus, these
assumptions simply guarantee that, for every market
along the sequence considered, there is no dominant or
irrelevant advertiser. These assumptions do not impose
further heterogeneity restrictions across advertisers.

We denote the kth advertiser history up to time t
by hk4t5. The history encapsulates all available infor-
mation up to time t, including the advertisers’ types,
the realizations of her values up to that time, her bids,
the budgets of all advertisers, and the result of every
past auction. We define a pure strategy � for adver-
tiser k as a mapping from histories to bids, and we
denote by �4K5 the space of strategies that are nonan-
ticipating and adaptive to the history in market K.
We study the expected payoff of advertiser k when
she implements a strategy �4K5 ∈ �4K5, and all other
advertisers follow FMFE strategies ÂF1 4K5 for market
size K. The latter amounts to shading bids according
to the multipliers that solve the NCP (5) while bid-
ders have remaining budgets. This expected payoff is
denoted by J

4K5
k 4�4K51Â

F1 4K5
−k 5, where the expectation is

taken over the actual market process. In this notation,
J
4K5
k 4�

F1 4K5
k 1Â

F1 4K5
−k 5 measures the actual expected payoff

of the FMFE strategy for the advertiser in the exchange,
which takes into account that advertisers may run out
of budget before the end of the horizon. It is obvious
that J 4K5k 4�

F1 4K5
k 1Â

F1 4K5
−k 5≤ sup�∈�4K5 J

4K5
k 4�1Â

F1 4K5
−k 5. We will

analyze the gap sup�∈�4K5 Jk4�1Â
F1 4K5
−k 5−J

4K5
k 4�

F1 4K5
k 1Â

F1 4K5
−k 5
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to bound the suboptimality of FMFE relative to unilat-
erally deviating to a best-response strategy. In what
follows, O4 · 5 stands for Landau’s big O notation as K
goes to infinity.

Theorem 6.1. Suppose that Assumption 6.1 holds. Con-
sider a sequence of markets indexed by K in which all
bidders, except the kth bidder, follow FMFE strategies ÂF1 4K5

in market K. Suppose that the kth advertiser unilaterally
deviates and implements a nonanticipating and adaptive
strategy �4K5 ∈ �4K5 in market K. The expected payoff of
these deviations compared with the FMFE strategy satisfies

1

�
4K5
k �4K5s

(

J
4K5
k 4�4K51Â

F1 4K5
−k 5− J

4K5
k 4�

F1 4K5
k 1Â

F1 4K5
−k 5

)

=O
(

�
4K5
k + 4�

4K5
k �4K5s5−1/2K1/2

)

0

The bound in Theorem 6.1 states that

1 −
J
4K5
k 4�

F1 4K5
k 1Â

F1 4K5
−k 5

sup�∈�4K5 J
4K5
k 4�1Â

F1 4K5
−k 5

converges to zero as K grows to infinity when (1) the
matching probabilities �

4K5
k converge to zero and (2) K =

o4�
4K5
k �4K5s5—that is, the expected number of auctions a

bidder participates in grows at a faster rate than the
number of advertisers. In addition, the assumption
imposes that the expected number of auctions a bidder
participates in and the budget b4K5k grow at the same
rate. Typically, the scaling will also impose that the
expected number of advertisers per auction remains
constant (even though the overall number of advertisers
grows large). These conditions naturally represent
many ad exchange markets in which the number of
auctions a bidder participates in is typically much
larger than the number of competitors, the expected
expenditure per auction is typically small compared
with the budget, and the number of competitors per
auction is small.

The key idea of the proof of Theorem 6.1 is to bound,
in some appropriate way, the impact that the kth
advertiser may have on the competitors and, based on
that, bound the value that may be obtained by deviating
from the FMFE strategy. To do so, we first exploit the
fundamental observation that, independently of the
kth advertiser’s strategy, the competing advertisers
bid exactly as prescribed by the FMFE while they
have budgets remaining. Second, we exploit the fact
that not all advertisers match the same impressions,
and as a result, the impact of a single advertiser on
any other specific advertiser (in terms of running out
of budget) is limited. In particular, we establish that
all advertisers will run out of budget close to the
end of their campaigns no matter which strategy the
deviant advertiser implements. Hence, the competitive
landscape coincides with that predicted by the FMFE

for most of the campaign. Based on this, we bound
the performance of an arbitrary strategy by that of
a strategy with the benefit of hindsight (which has
complete knowledge of the future realizations of bids
and values). This yields the result.

Finally, it is worthwhile to put this result in perspec-
tive with regard to typical revenue management heuris-
tic fluid-based prescriptions. In most such settings, the
bounds obtained (see, e.g., Talluri and van Ryzin 1998)
are on the order of n−1/2, where n is a proxy for the
number of opportunities (akin to the number of auc-
tions one participates in our setting). In the present
context, this term is present as 4�

4K5
k �4K5s5−1/2, but it is

multiplied by K1/2 to control for the fact that there are K
bidders that could potentially run out of budget before
the length of the campaign. Moreover, the term �

4K5
k in

the bound controls for the potential impact bidder k
may have on any competitor, which is bounded by the
expected fraction of auctions in which they compete
together.

6.2. Analysis for Small Markets
Recall that the FMFE concept involves two approx-
imations: (1) a fluid one motivated by the fact that
advertisers participate in a large number of auctions
during the course of their campaigns and (2) a mean-
field approximation motivated by the fact that, in the
presence of many advertisers, it may not be neces-
sary to track the state of each individual competitor.
The first approximation is natural in the setting of
ad exchanges where advertisers participate in many
repeated auctions and spend a small fraction of the
budget in each one of them. In addition, whereas in
some ad exchange markets the number of advertisers
may be large, it is also useful to study the validity of
the second approximation when this is not the case
and the same set of advertisers meet repeatedly in
common auctions. For this reason, we next isolate the
impact of the mean-field approximation and analyze
it numerically for markets with a small number of
advertisers.

To do so, we propose studying the best response to
other advertisers playing the FMFE in a fluid model in
which there is a continuous flow of arriving impres-
sions at rate �, auctions occur continuously in time,
payments are infinitesimal, and budgets are depleted
deterministically. The fluid model can be understood
as an appropriately normalized market obtained in the
limit as budgets and the number of impressions are
simultaneously scaled to infinity while the number of
players is fixed.

6.2.1. Fluid Model. We introduce a fluid model in
which impressions arrive continuously at a rate � = 1,
the time horizon has a length s, and there are K adver-
tisers in the market running synchronous campaigns.
We denote by x4t5 ∈�K

+
the vector of budgets remaining
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of the advertisers at time t as the state vector of the mar-
ket and by b the vector of initial budgets. At each point
in time, an advertiser determines an action in the space
of bidding strategies B 4

= 6V 1 SV 7→�, which maps a
valuation to a bid. A control policy �2 �+ ×�K

+
→ B

maps a point in time and state vector to an action.
The dynamics are given by the following. Let the

functional uk2 B
K →� denote the instantaneous rate

of expected utility obtained by the advertiser k when
competing advertisers bid according to a given strategy
profile. When the profile is w ∈BK , we have that

uk4w5= �k Ɛ
[

18D−k ≤wk4Vk594Vk −D−k5
]

1

with the expectation taken over the valuation random
variable and the maximum competing bid, which is
given by D−k = maxi 6=k1Mi=18wi4Vi59∨ r , where we let
Mi = 1 indicate that the ith agent participates in the
auction. Similarly, we let the functional gk2 B

K →�
denote the instantaneous rate of expected expenditure
incurred by the advertiser k when advertisers bid
according to a given strategy profile, which is given by

gk4w5= �k Ɛ
[

18D−k ≤wk4Vk59D−k

]

0

Best-Response Problem. We study the benefit of a
unilateral deviation to a strategy that keeps track of
the full market state when competitors implement
FMFE strategies. In this setting, the FMFE strategies
are given by �F

i 4t1x54v5= v/41 +�i518xi > 09, where the
multipliers Ì solve the NCP given in (5). The problem
faced by advertiser k of determining the optimal payoff
of a unilateral deviation when competitors implement
the FMFE strategies is given by

max
�k4t1x5

∫ s

0
uk

(

�k4t1x4t551�F
−k4t1x4t55

)

dt

s.t.
dx4t5

dt
=−g

(

�k4t1x4t551�F
−k4t1x4t55

)

1 t≥01

x405=b1 x4s5≥00 (6)

To simplify our arguments, for the rest of this section,
we assume that the reserve price r = 0. Moreover,
we assume the following tie-breaking rule: when the
advertiser under focus and her competitors have run
out of budget, the focal advertiser may still bid zero
and win the remaining auctions.14

14 This is without loss of generality because by not bidding in a small
fraction of the campaign, the advertiser under focus can guarantee
that the competitors deplete first, and by saving an infinitesimal
budget, she can win all the auctions with no competition for the
remaining of the campaign.

6.2.2. Best-Response Analysis. We consider the
case when advertisers have equal budgets, distribution
of values, and matching probabilities. We do allow,
however, for advertiser k to have a different budget
than its competitors. Because competitors are symmetric
and the dynamics in the fluid model are deterministic,
the budgets of the competitors deplete at the same rate.
Thus, one can simplify the state by keeping track of
the budget of only one competitor.

Some definitions are in order. Let 4�k1�−k5 denote
the multipliers associated with an FMFE. Let V FMFE

k

denote the total utility obtained by advertiser k when
implementing the FMFE strategy �F

k4t1x5.
Next, we define an alternative strategy. Let H2 B×

�2 →� be a functional given by

H4w1p5=uk4w1wF
−k5−pkgk4w1wF

−k5−p−kg−k4w1wF
−k51

where w ∈B is a bidding strategy, wF
i 4v5= v/41 +�i5

are the FMFE bidding strategies, g−k4 · 5 denotes the
instantaneous rate of expected expenditure incurred
by one of the competitors of firm k, and pk1p−k ∈�.
Consider the following problem:

V D
k

4

= inf
pk≥01 p−k

{

�s ƐV + pkbk + p−kb−k

}

(7a)

s.t. sup
w∈B

H4w1p5≤ �ƐV 1 (7b)

which is a convex optimization problem since the set
P= 8p ∈�22 supw∈BH4w1p5≤ �ƐV 9 is convex. The
latter follows because the lower-level set of a convex
function is convex, and the pointwise supremum of
linear functions is a convex function (see, e.g., Boyd
and Vandenberghe 2009). Additionally, let V D

k denote
the value of (7), with the convention that it is −� if it is
unbounded; when it is bounded, let p∗

k and p∗

−k denote
a corresponding optimal solution. Assuming it is well
defined, let w̄ ∈ arg maxw∈BH4w1p∗5 be the bidding
strategy that verifies the supremum in constraint (7b).

Theorem 6.2 (Best-Response Strategy). Suppose
that bidders’ values possess increasing failure rates and
have bounded support and that the reserve price is zero.
Suppose that all competing advertisers use FMFE strategies.
Then,

(i) If V D
k ≤ V FMFE

k , the FMFE strategy is the optimal
control for advertiser k in problem (6).

(ii) If V D
k >V FMFE

k , w̄ is well defined, and the optimal
strategy for advertiser k in problem (6) is to bid according
to w̄4 · 5 until competitors deplete their budgets and zero
afterwards. Furthermore, this strategy yields exactly V D

k .

In other words, the result states that the value of
the deviant advertiser’s control is the maximum of
V D

k and V FMFE
k . Furthermore, the result provides a

crisp characterization of an optimal policy: one would
only need to compute two candidate strategies, the
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Figure 3 FMFE vs. Best Response

.

.

.

Note. Advertisers are homogeneous with arrival rate � = 1, campaign length s= 16, competitors’ budgets b4K5 = 4/K , matching probabilities �4K5 = 2/K , and
uniform valuations with support 60127.

FMFE strategy and w̄4 · 5, to determine a best response
and the associated payoff. We show in the proof that,
when V D

k >V FMFE
k , the competitors will deplete their

budgets before the end of the horizon under w̄, allowing
advertiser k to take advantage of the time during which
she operates alone in the market. This result highlights
the only type of profitable deviation that one may
witness compared with FMFE: use a stationary strategy
to deplete competitors faster than what the FMFE
strategy does. The strategy involves bidding above
one’s value in some auctions and carefully balances
the lower expected net utility in the first part of the
campaign with the benefit of facing no competition at
the end of the campaign.15

Quite remarkably, one may establish that, in some
special cases of interest, the strategy w̄ admits a very
simple structure: in the cases of uniform and exponen-
tial distributions, one may restrict attention to affine
bidding functions when searching for a best response
(see Corollary 3.1 in §3 of the supplementary appendix).
Furthermore, one may establish that in this fluid model
the losses of playing FMFE relative to a best response
are at most of order O4�k5, a behavior we illustrate
numerically next.

6.2.3. Numerical Experiments: FMFE Suboptimal-
ity Gap. Intuitively, when there are multiple players
in the market, depleting the budgets of the competi-
tors becomes more costly, and as a result, the benefit
introduced from deviating from the FMFE strategies
becomes negligible. To investigate this, we compare the
campaign utility of an advertiser in the fluid model

15 Lu et al. (2015) also identify similar strategies in which one
advertiser tries to deplete the budget of its competitor in a styl-
ized sponsored search auction duopoly model under complete
information.

under the FMFE strategy with that of the best response
as the number of competitors increases for many prob-
lem instances with different parameters. We present
the results of a representative instance in Figure 3.16

Budgets and matching probabilities decrease with the
number of competitors so that the average number of
matching advertisers per auction remains invariant,
equal to 2. We plot the relative suboptimality gap as
a function of the number of advertisers. For a given
number of advertisers, we analyze the gap when all
competitors have the same budget, but we allow the
budget of the advertiser under analysis to change and
be 75%, 100%, or 150% of the individual budgets of
competitors. This allows us to study the gap when
the deviant advertiser has varying degrees of market
influence.

We observe that as the number of players increases,
the suboptimality of playing the FMFE decreases fast.
As a matter of fact, for the case of identical advertisers
(b4K51 = b

4K5
2 = · · · = b

4K5
k ), the FMFE strategy yields utility

within 2.5% of that obtained by a best response as soon
as there are more than six advertisers in the market.
In addition, when the deviant firm has a smaller budget,
the advertiser’s ability to deplete the firm’s competitors
decreases.

In Figure 4, we analyze the same setting as earlier
except that now we fix the matching probability to
�= 1. In other words, all advertisers participate in all
auctions. In some settings, it is possible to imagine that
a small number of advertisers would focus on the same
viewer types and hence would compete more intensely.
In such a setting, the suboptimality gap of the FMFE
decreases fast as the number of competitors increases,
dropping below 5% when there are more than five

16 All results can be obtained from the authors upon request.
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Figure 4 FMFE vs. Best Response

.

.

.

Note. Advertisers are homogeneous with arrival rate � = 1, campaign length
s= 16, budgets b4K5 = 4/K , matching probabilities �4K5 = 1, and uniform
valuations with support 60127.

players in the market and getting around 2% when
there are eight. We highlight here that the suboptimality
gap we estimate in these examples is conservative in
that the benchmark policy has unrealistic informational
requirements; in practice, bidders would not be able to
perfectly monitor competitors’ budgets. Hence, their
ability to strategize to deplete competitors’ budgets
would be even more limited.

The fluid analysis and our numerical results above
suggest that the value of tracking the market state is
small even in the presence of few competitors. In other
words, a given bidder has a limited ability to strategize
and impact the market when all other competitors
play an FMFE strategy. This provides further practical
support to use FMFE as a solution concept to study
competition in ad exchanges.

7. Conclusions
7.1. A Framework for the Analysis of the Impact of

Different Levers
In this paper, the analysis has focused on optimally
setting the reserve price. However, the proposed frame-
work based on FMFE is general and may be used to
study other important auction design decisions for
the publisher. In fact, it is possible to show that the
framework proposed allows us to quantify the impact
of increasing the allocation of impressions sent to the
exchange vis-à-vis collecting the opportunity cost up
front on the bidding behavior of advertisers and to
optimize this allocation while accounting for budgets.

We also show how one may optimize other dimen-
sions that may be under the control of the publisher
such as the extent of user information to disclose to
the advertisers. On the one hand, more information
enables advertisers to improve targeting, which results
in higher bids conditional on participating in an auction.
On the other hand, as more information is provided,
fewer advertisers match with each user, resulting in
thinner markets, which could decrease the publisher’s

profit.17 We show that given any mapping from user
information to advertiser valuation distribution, one
may apply our framework to quantify the impact of
budgets on the key trade-offs at play. In particular,
we demonstrate this through a stylized model for
information disclosure with homogeneous bidders.

These results, available in §4 of the supplementary
appendix, complement the ones in the paper and
reinforce the importance of reserve price optimization.
In particular, we show that proper adjustment of the
reserve price is key in (1) making it profitable for
the publisher to try selling all impressions in the
exchange before utilizing the alternative channel and
(2) compensating for the thinner markets created by
greater disclosure of viewers’ information.

7.2. Building on the Framework
Overall, our results provide a new approach to study
ad exchange markets and the publishers’ decisions.
The techniques developed build on two fairly dis-
tinct streams of literature, revenue management and
mean-field models, and are likely to have additional
applications. The sharp results regarding the pub-
lisher’s decisions could inform how these markets are
designed in practice. At the same time, our frame-
work opens up the door to study a range of other
relevant issues in this space. For example, one inter-
esting avenue for future work may be to study the
impact of ad networks, which aggregate bids from
different advertisers and bid on their behalf, on the
resulting competitive landscape and auction design
decisions. Similarly, another interesting direction to
pursue is to incorporate common advertisers’ values
and analyze the impact of cherry-picking and adverse
selection. Finally, our framework and its potential
extensions can provide a possible structural model for
bidding behavior in exchanges and open the door to
pursue an econometric study using transactional data
in exchanges.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2014.2022.
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Appendix. Selected Proofs

A.1. Proof of Proposition 3.1
We prove the result in three steps. First, we derive the dual
of the primal problem by introducing a Lagrange multiplier
for the budget constraint. Second, we determine the optimal
dual solution through first-order conditions. Third, we show
that complementary slackness holds and that there is no
duality gap. To simplify notation, we drop the dependence
on Fd when clear from the context.

Step 1. We introduce a Lagrange multiplier �≥ 0 for the
budget constraint and let

L�4w1�5= ��s Ɛ
[

18D ≤w4V 594V − 41 +�5D5
]

+�b

denote the Lagrangian for type �. (For simplicity, we omit
the subindex � for other quantities.) The dual problem is
given by

inf
�≥0

sup
w4 · 5

L�4w1�5

= inf
�≥0

{

��s sup
w4 · 5

{

Ɛ618D ≤w4V 594V − 41 +�5D57
}

+�b
}

= inf
�≥0

{

��s Ɛ61841 +�5D ≤ V 94V − 41 +�5D57+�b
}

= inf
�≥0

{

��s Ɛ6V − 41 +�5D7+ +�b
}

1

where the second equality follows from observing that the
inner optimization problem is similar to the problem faced by
a bidder with value v/41+�5 seeking to maximize its expected
utility in a second-price auction, in which case it is optimal to
bid truthfully. Let ë�4�5= ��s Ɛ6V − 41 +�5D7+ +�b. Notice
that the term within the expectation is convex in �; given that
expectation preserves convexity, the dual problem is convex.
As a consequence of the previous analysis one obtains for any
given multiplier �≥ 0, the policy w4v5= v/41 +�5 maximizes
the Lagrangian.

Step 2. To characterize the optimal multiplier, we shall ana-
lyze the first-order conditions of the dual problem. Consider
the function l4x5= Ɛ6V − x7+ =

∫ �

x F̄v4y5dy. The function l is
bounded by ƐV and continuously differentiable by assump-
tion. Because valuations are independent and conditioning
on the maximum bid, we may write the dual objective as
ë�4�5=��s Ɛ6l441 +�5D57+�b. The integrability of D and
the differentiability of l, in conjunction with the dominated
convergence theorem, yield that ë� is differentiable with
respect to � (and thus continuous). The derivative is given
by 4d/d�5ë� = b−��s Ɛ618D ≤ V /41+�59D7, which is equal to
the expected remaining budget by the end of the campaign
when the optimal bid function is employed.

Suppose ��s Ɛ618D ≤ V 9D7≤ b—i.e., ë� admits a nonneg-
ative derivative at �= 0. Since ë� is convex, the optimal

multiplier is �∗ = 0. Suppose now ��s Ɛ618D ≤ V 9D7 > b. The
derivative of ë� is continuous and converges to b as �→ �

by another application of the dominated convergence theorem.
We deduce that the equation ��s Ɛ618D ≤V/41+�59D7= b
admits a solution and the optimal multiplier �∗ solves the
latter.

Step 3. Combining both cases, one obtains that the optimal
multiplier �∗ and the corresponding bid function �F

�4v5=

v/41 +�∗5 satisfy �∗4b−��s Ɛ618D ≤ �F
�4V 59D75= 0, and thus

the complementary slackness conditions hold. Additionally,
from the first-order conditions of the dual, we get that the bid
function �F

�4 · 5 is primal feasible. We conclude by showing
that the primal objective of the proposed bid function attains
the dual objective. That is,

��s Ɛ
[

18D ≤ �F
�4V 594V −D5

]

=L�4�
F
�1�

∗5+�∗
(

b−��s Ɛ618D ≤ �F
�4V 59D7

)

=L�4�
F
�1�

∗5=ë�4�
∗51

where the second equality follows from the complementary
slackness conditions and the last from the fact that ë�4�

∗5=

supw4 · 5L�4w1�∗5, and the fact �F
� is the optimal bid function.

A.2. Proof of Theorem 6.1
We prove the result in two steps. First, we lower bound
the expected performance of the kth advertiser when all
advertisers (including herself) implement the FMFE strategy
in terms of the objective value of the fluid problem (1).
Second, we upper bound the expected payoff of any strategy
the kth advertiser may implement when the remaining
implement the FMFE strategies via a hindsight bound.

Proposition A.1 (Lower Bound). Suppose that Assump-
tion 6.1 holds and all advertisers implement FMFE strategies ÂF.
The expected payoff of the kth advertiser is lower bounded by

1
�k�s

Jk
(

�F
k1Â

F
−k

)

≥ J̄ F
k −O

(

4�k�s5
−1/2K1/2)1

where J̄ F
k

4
= J F

k /4�k�s5 is the normalized objective value of the
problem (1).

The performance metric Jk4�
F
k1Â

F
−k5 may differ from the

FMFE value function, given by the objective value of the
approximation problem J F

k , since the former takes into account
that bidders may run out of budget before the end of their
campaigns. The proof is based on the fundamental observa-
tion that advertisers bid exactly as prescribed by the FMFE
while they have budgets remaining. This allows one to con-
sider an alternate system where advertisers are allowed to
bid (i) when they have no budget and (ii) after the end of
their campaigns. Thus, in the alternate system the expected
performance exactly coincides with that of the approximation
problem J F

k . Using a coupling argument, the proof shows
that the expected performance in the original and alternate
systems coincide until the first time some advertiser runs out
of budget, which in turn is shown to be close to the end of
the horizon via a martingale argument.

Proposition A.2 (Upper Bound). Suppose that Assump-
tion 6.1 holds and all advertisers implement FMFE strategies ÂF

and the kth advertiser implements an alternative strategy � ∈�.
The expected payoff of the kth advertiser is bounded from above by

1
�k�s

Jk4�1Â
F
−k5≤ J̄ F

k +O
(

�k + 4�k�s5
−1/2K1/2)0
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To prove the result, we first upper bound the performance
of an arbitrary strategy by that of a strategy with the benefit
of hindsight (which has complete knowledge of the future
realizations of bids and values). This is akin to what is
typically done in revenue management settings (see, e.g.,
Talluri and van Ryzin 1998), with the exception that here, the
competitive environment (which is the counterpart of the
demand environment in revenue management settings) is
endogenous and determined through the FMFE consistency
requirement. As a result, the optimal hindsight policy may
force competitors to run out of budget so as to reduce compe-
tition. To facilitate the analysis of the expected performance
of the hindsight policy, the proof considers the same alternate
system in which competitors bid regardless of the budget,
in which the hindsight policy can be analyzed simply via
linear programming duality theory. Because the original and
alternate systems coincide until some advertiser runs out
of budget, we are left again with the problem of showing
that advertisers run out of budget close to the end of the
campaign.

The proof concludes by showing that the kth advertiser has
a limited impact on the system, in the sense that competitors
run out of budget—in expectation—close to the end of
their campaigns no matter which strategy the advertiser
implements. To this end, the proof exploits that any two
advertisers compete a limited number of times during their
campaigns to bound the potential impact the kth advertiser
may have on her competitors. This result relies heavily on
the matching probability decreasing with the scaling.

A.3. Proof of Proposition A.1
Consider an alternate system in which advertisers are allowed
to bid (i) when they have no budget and (ii) after the end of
their campaigns. The argument revolves around the fact that
the performance of the advertiser in consideration (referred
to as advertiser k) in the real and alternate coincide until the
first time some advertiser runs out of budget. This follows
from the fact that advertisers bid exactly as prescribed by the
FMFE while they have budgets remaining.

To study the performance on the alternate system, we shall
consider the sequence 84Zn1k1Un1k59n≥1 of realized expendi-
tures and utilities of advertiser k in the alternate system. In
view of our mean-field assumption, this sequence is i.i.d.
and independent of the impressions’ interarrival times. The
kth advertiser’s expenditure in the nth auction is Zn1k =

Mn1k18Dn1−k ≤ �F
k4Vk59Dn1−k, and her corresponding utility is

Un1k =Mn1k18Dn1−k ≤ �F
k4Vn1k594Vn1k −Dn1−k5. Additionally, let

b′
k4t5= bk −

∑N4t5
n=1 Zn1k be the evolution of the kth advertiser’s

budget in this alternate system, where N4t5 is the number of
impressions arrived by time t.

The following stopping time will play a key role in the
proof. Let Ñk be the first auction in which advertiser k
runs out of budget—that is, Ñk = inf8n≥ 12 b′

k4tn5 < 09. This
stopping time is relative to all auctions in the market and
not restricted to the auctions in which the kth advertiser
participates. Similarly, let Ñ denote the first auction in which
some advertiser runs out of budget—that is, Ñ = minK

i=1 Ñi.
Next, we estimate from below the performance of the

kth advertiser. Denoting by Ik the number of auctions in
which advertiser k participates during his campaign (that is,
Ik =

∑N4s5
n=1 Mn1k) and by Ĩk the number of auctions in which

advertiser k participates until some agent runs out of budget
(that is, Ĩk =

∑Ñ
n=1 Mn1k), one obtains by using a coupling

argument that the performance of both systems coincides
until time Ñ , and as a result,

Jk4�
F1ÂF

−k5 ≥ Ɛ

[Ñ∧N4s5
∑

n=1

Un1k

]

≥ Ɛ

[N4s5
∑

n=1

Un1k

]

− SV Ɛ

[N4s5
∑

n=1

Mn1k−

Ñ
∑

n=1

Mn1k

]+

= Ɛ

[N4s5
∑

n=1

Un1k

]

− SV Ɛ6Ik− Ĩk7
+

≥ Ɛ

[N4s5
∑

n=1

Un1k

]

− SV Ɛ6Ik−�k�s7
+
−Ɛ6�k�s− Ĩk7

+1

where the first inequality follows from discarding all auctions
after the time some advertiser runs out of budget, the second
from the fact that 0 ≤ Un1k ≤ Mn1k

SV , and the third from
the fact that for every a1b1 c ∈ � we have that 4a− c5+ ≤

4a− b5+ + 4b− c5+. In the remainder of the proof, we address
one term at a time.

Term 1. Notice that in the alternate system the number of
matching impressions in the campaign is independent of the
utility, and thus we have that

Ɛ

[N4s5
∑

n=1

Un1k

]

=�k�sƐ6U11k7=ëk4�k3Fd5+�k4Gk4Ì5−�k5= J F
k 1

where the second equality follows from the fact that �F
k4x5=

x/41 +�k5 and Un1k = 4Vn1k − 41 +�k5Dn1k5
+ +�kZn1k, and

the last follows from complementarity slackness and the
optimality of the FMFE multipliers.

Term 2. Note that, for any random variable X and con-
stant x, we have that Ɛ4X − x5+ ≤ 4ƐX − x5+ +

√

Var4X5/2 by
the upper bound on the maximum of random variables given
in Aven (1985). Because the agent participates in each auction
with probability �k, we have that Ik is a Poisson random
variable with mean �k�s, and one obtains that

1
�k�s

Ɛ6Ik −�k�s7
+

≤ 42�k�s5
−1/2

=O
(

4�k�s5
−1/2)0

Term 3. Define Ĩk1 i as the number of auctions that adver-
tiser k participates until agent ith runs out of budget—that is,
Ĩk1 i =

∑Ñi
n=1 Mn1k. Using this notation, we obtain that the

number of auctions the kth advertiser participates in until
someone runs out of budget can be alternatively written as
Ĩk =

∑mini Ñi
n=1 Mn1k = mini

∑Ñi
n=1 Mn1k = mini Ĩk1 i0 Using this

identity, we obtain that

Ɛ6�k�s− Ĩk7
+

= Ɛ
[

�k�s−min
i

Ĩk1i

]+

=Ɛ
[

max
i

8�k�s− Ĩk1i9
+

]

≤ max
i

{

�k�s−Ɛ Ĩk1i
}+

+

√

∑

i

Var6Ĩk1i71

where the inequality follows from the upper bound on the
maximum of random variables given in Aven (1985). That is,
for any sequence of random variables 8Xi9

n
i=1, we have that

Ɛ6maxi Xi7≤ maxi ƐXi +
√

44n− 15/n5
∑

i Var4Xi5. Dividing by
the expected number of impressions in the horizon and using
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the bounds on the mean and variance of the stopping times
of Lemma 1.3 of the supplementary appendix, we get

1
�k�s

Ɛ6�k�s − Ĩk7
+

≤ max
i

{

1 −
bi

�i�sGi4Ì5

}+

+
1

�k�s

√

K
∑

i=1

O4bi5

=O
(

4�k�s5
−1K1/2b̄1/2)

=O
(

4�k�s5
−1/2K1/2)1

where the second inequality follows from the fact that the
expected expenditure in the FMFE never exceeds the budget—
that is, �i�sGi4Ì5≤ bi)—and by setting b̄ = maxi bi, and the
last follows because �k�s =O4b̄5 from Assumption 6.1.
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