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ABSTRACT 

 

When using repeated measures linear regression models to make causal inference in laboratory, clinical 

and environmental research, it is often assumed that the Within Subject association of differences (or 

changes) in predictor value across replicates is the same as the Between Subject association of differences 

in those predictor values.  But this is often false, for example with body weight as the predictor and blood 

cholesterol the outcome i) a 10 pound weight increase in the same adult more greatly a higher increase in 

cholesterol in that adult than does ii) one adult weighing 10 pounds more than a second reflect increased 

cholesterol levels in the first adult as the weigh difference in i)  more closely tracks higher body fat while 

that in ii) is also influenced by heavier adults being taller.  Hence to make causal inferences, different 

Within and Between subject slopes should be separately modeled.  A related misconception commonly 

made using generalized estimation equations (GEE) and mixed models (MM) on repeated measures (i.e. 

for fitting Cross Sectional Regression) is that the working correlation structure used only influences 

variance of model parameter estimates.  But only independence working correlation guarantees the 

modeled parameters have any interpretability. We illustrate this with an example where changing working 

correlation from independence to equicorrelation qualitatively biases parameters of GEE models and 

show this happens because Between and Within Subject slopes for the predictor variables differ.  We then 

describe several common mechanisms that cause Within and Between Subject slopes to differ as; change 

effects, lag/reverse lag and spillover causality, shared within subject measurement bias or confounding, 

and predictor variable measurement error.  The misconceptions noted here should be better publicized in 

laboratory, clinical and environmental research.  Repeated measures analyses should compare Within and 

Between subject slopes of predictors and when they differ, investigate the reasons this has happened.  

 

KEY WORDS –  Between/Within Subject Associations , Repeated Measures, Cross Sectional 

Regression, Generalized Estimating Equations, Mixed Models, Working Correlation 

 

HIGHLIGHTS  – When using repeated measures with time varying predictors variables in 

laboratory, clinical and environmental research: 

• Cross sectional regressions with any working correlation structure other than 

independence often give non-meaningful results 

• Between/Within subject decomposition of slopes should be undertaken when making 

causal inferences 

• Investigators should investigate the reasons Between and Within Subject slopes differ if 

this occurs 
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ABBREVIATIONS 

 

AR(1)       –  Autoregressive Order 1 

BS             –  Between Subject 

BUN          –  Blood Urine Nitrogen 

Co-DOSE  – Conditionally Dependent On Sibling Exposure 

CS             –  Cross Sectional 

E                –  Equicorrelation   

EGFR         –  Estimated Glomerular Filtration Rate 

GEE            – Generalize Estimation Equations 

IND            –  Independent  

MA(2)        –  Moving Average Order 2 

MM            –  Mixed Models 

WIHS         –  Women’s Interagency HIV Study 

WS             –  Within Subject  
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1. Introduction  

Two common misconceptions made in laboratory, clinical and environmental research fitting 

repeated measures regression with Generalized Estimating Equations (GEE) and Mixed Models 

(MM) are: Misconception-A: The association between the predictor variable and outcome across 

different measures from the same Subject (Within Subject) is the same as the association of that 

variable with the outcome between measures from different subjects (Between Subject).  In fact 

these associations can differ which should be considered when making causal inference.  For 

example with weight as the predictor and cholesterol the outcome, i) a 10 lb. increase within the 

same person more likely indicates greater difference in serum cholesterol than does ii) one 

person being 10 lbs. heavier than another as i) more likely reflects body fat gain while ii) also 

can indicate that the heavier person is taller.  Misconception-B: The working correlation 

structure used in GEE and MM models is only a nuisance factor that impacts precision of model 

parameter estimates.  As Table 1 in the next paragraph illustrates and Section 2 explains, a wrong 

choice for working correlation biases parameter estimates.  Both of these misconceptions are 

related to each other, but the analytical details are complicated.   So we begin with a direct 

illustration of Misconception -B that we later show relates to Misconception -A. 

 

Table 1 presents parameter estimates from repeated measures linear regression using a 

clinical/laboratory measure glomerular filtration rate (EGFR) from the MDRD Formula[1] as the 

outcome Y and three laboratory predictor variables (X1, X2, X3)=(HIV infection, serum albumin, 

blood urea nitrogen (BUN))  fit to 10,782 semiannual measures of 584 women at the Bronx-site 

of the Women’s Interagency HIV Study (WIHS)[2].  Higher EGFR values indicate better renal 

function.  The models fit in this Table assume that the Between and Within Subject associations 

of the predictor variables are the same; we later show this assumption is incorrect.  The 

parameter estimates of Table 1 were calculated using GEE[3] with both independence (GEE-

IND) in columns 2-4 and equicorrelation  (GEE-E) columns 5-7 for the working correlation of 

model residuals of repeated measures in the same person.  (The row notation used in this Table 

for the slope parameters; βCS,,HIV  βCS,,ALB  and βCS,,BUN ) is explained later in the paper).  

INSERT TABLE 1 HERE 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/374124doi: bioRxiv preprint 

https://doi.org/10.1101/374124


	

	

	

5	

 Most of today’s literature providing guidance on fitting repeated measures linear regression 

(i.e. [4-12]) qualitatively describes working correlation as a “nuisance factor” that does not alter 

model parameters and states the working correlation that minimizes variance of parameter 

estimates should be chosen.    However, in Table 1, the parameter estimate for BUN (per g/dL), 

from GEE-E, of -1.22; 95% confidence interval (CI) (-1.46, -0.99) is both qualitatively and 

statistically higher than the corresponding GEE-IND estimate of -1.87; 95% CI (-2.12 -1.62).  

For HIV, the parameter estimate of -3.86, p= 0.0081 from GEE-E is qualitatively lower than that 

from GEE-IND -2.04 and p=0.19.  Clearly, changing the working correlation from independence 

to equicorrelation changes the parameters; thus correlation structure is not merely a nuisance 

factor. We note that if Mixed Models[3] rather than GEE are used for Table 1, The 

corresponding parameter point estimates in Table 1 using independence correlation (MM-IND) 

and equicorrelation (MM-E) are essentially unchanged (data not shown).  

Faced with this confusing dilemma, investigators typically go to published guidance on 

which correlation structure to use.   To that end, based on the within subject correlation of 

residuals being 0.45 in GEE-E (and in MM-E), and the quasilikelihood independence criteria 

goodness of fit statistic (QIC) = 10,836.27 for GEE- E being smaller than the QIC=10,847.14 for 

GEE-IND (or the Akaike information criteria goodness of fit statistic (AIC) from a mixed model 

using equicorrelation (MM-E) of (AIC=94,934.5) being smaller than AIC=99,374.5 from a 

mixed model using independence (MM-IND) (data not shown)) most articles providing model 

fitting guidance [4-12] point towards using equicorrelation working correlation. 

However, as Section 2 describes in detail, this guidance is problematic; only the parameter 

estimates obtained by using independence working correlation can have any meaning here as the 

model did not separately fit Within and Between Subject Slopes. Further as Section 3 explains, if 

the investigators’ goal is causal inference, then decomposition of the parameters into Within and 

Between subject associations (or slopes) is needed. Sections 4 and 5 present epidemiological 

factors that cause Within and Between subject slopes to differ and some consequences of this. 

The Discussion (Section 6) summarizes and explores further implications for our example and 

other laboratory, clinical and environmental settings. 

 

2. Cross Sectional and Between/Within Subject Linear Models With Repeated Measures 
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    We begin here with some notation. Consider repeated measures on n subjects denoted by 

i=1,2,…n.  For most laboratory and clinical  analyses the “subjects” will be persons with 

longitudinal repeated measures. But for environmental analyses “subjects” can be something else 

such as cities, schools, hospitals, etc.  Each subject has Ji different observations enumerated by 

j= 1, …, Ji often taken at times ti1 < ti2 <…. <ti,Ji, on the same person when person is the 

“subject”.  But for some studies, replicates are taken at the same time, such as from Ji 

neighborhoods in the same city  when city is the “subject”.  For Ji constant across i, we denote J.  

The observations have continuous outcomes Yij and K predictor (or exposure) variables 

1, 2, ,
, ,....

ij ij ij K ij
X X X X=
%

. When K=1 we drop the “K” enumeration, using Xij for the only 

predictor.  Linear models for E[Yij| ij
X
%

] or E[Yij| ij
X ] are fit.  

2A Cross Sectional Regression (CS) Regression. The most commonly fitted linear model does 

not separate “Within” and “Between” subject associations and is usually written out as  
ij
Y =  

1 1, 2 2, K ,
....

ij ij K ij
X X Xα β β β+ + + +  + εij.     This is denoted “Cross Sectional Regression” for 

longitudinal repeated measures and we use this same nomenclature for settings where the 

repeated measures are not longitudinal.   We also add a subscripted “CS” to the β’s to distinguish 

these slopes from Between subject (BS) and Within subject (WS) slopes defined in Section 2B. 

The Cross Sectional Regression model here is denoted:     

                       
1, 1, 2,C 2, K, ,

....
ij CS ij CS CS ij S ij CS K ij
Y X X X Xβ α β β β= = + + + +

%%

 + εij                     (1) 

where 
1, 2, K,

, , ,....,
CS CS CS CS

α β β β  are unknown parameters, while εij is error with E[εij]= 0 that is 

independent between different subjects i and i’, but may be correlated for  j≠ j’ within the same 

subject.  Again for K=1 the subscript for K is dropped; the model is, 
ij CS CS ijY Xα β= + + εij. The 

goal of Cross Sectional Regression is most appropriately to obtain estimates ˆ
CS

β
%

for  
CS

β
%

 to 

input ˆ
CS

β
%

 into (1) order to estimate unobserved Y’s from observed 
ij
X
%

’s as ˆ
CS ijXβ
%%

.  Cross 

Sectional Regression is also used to make adjusted (causal) inference on the covariate 

associations in ˆ
CS

β
%

 but as we show later, doing this may be problematic.   
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2B  Between/Within Subject Slope (BS/WS) Regression.   While regression models fit in 

laboratory, clinical and environmental studies typically do not consider this, it has long been 

noted that slopes on changes of Xij within the same subject i differ from cross sectional 

associations[13-16].  To illustrate this consider the cross sectional model of a laboratory measure 

cholesterol (Yij) on the clinical outcome of body weight (Xij); E[Yij] = αCS + βCS Xij. As described 

in the first paragraph of the Introduction, the cross sectional slope βCS for association of a 10 lb. 

weight difference between two different subjects (i.e. persons) on cholesterol is less than the 

slope for association of a 10 lb “Within Subject” weight change for the same person on 

cholesterol which we denote  as βWS.  Again the reason βCS is less than βWS is; a) part a 10 lb. 

cross sectional weight difference between two subjects often reflects greater height in one of the 

persons b) but a 10 pound weight increase in the same subject is not influenced by height 

difference and thus the is more likely due to more body fat being in the heavier weight. Thus 

since greater body fat is what is directly associated with more cholesterol, the within person 

association of a 10 lb. increase with cholesterol is greater than the cross sectional repeated 

measures association of a 10 lb. difference.  Common within person body height reflects a shared 

within subject measurement bias on weight as a predictor of cholesterol.  For example as Figure 

1a illustrates, if TXij = body mass index (wt/ht
2
) were the true predictor of Yij and Hi = height 

(which does not change with j in the same i), then Xij = TXij * Hi contains this shared within 

subject measurement bias Ei. Section 4 describes more settings where  
WS CS

β β≠ . 

INSERT FIGURE 1 HERE 

Therefore linear regression models fit to make causal inference often decompose the 

associations into “Within Subject” slopes (
WS

β
%

) described above and “Between Subject” slopes 

(
BS

β
%

) described below that capture associations of subjects’ central tendencies of the exposure. 

To do this, subject means of the predictor variables 
1 2
, ,...,

i i i Ki
x x x x=
%

 are calculated, where 

1
/

iJ

ki kji ij
x X J

=
=∑ .  Then Yij is modeled as a combination of “Between Subject” slopes from 

ki
x  

and “Within Subject” slopes from deviations of Xki j about 
ki
x . 

    /W 1, 1 2, 2 ,

1, 1 1 2, 2 2 ,

( ) ( ) ... ( )

                             ( ) ( ) ... ( )

BS Sij KiBS i BS i K BS

ijKij KiWS ij i WS ij i K WS

Y x x x

X x X x X x

α β β β

β β β ε

= + + + + +

− + − + + − +

                   (2) 
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Or for K = 1, 
/ ( ) ( )

WS BSij i ij i ijBS WSY x X xα β β ε= + + − + . To illustrate this for our earlier example with 

Yij=Cholesterol and Xij=Weight, let 
/

30
WS BS

α = , βBS=0.9 and βWS=3; 

then   30 0.9 3(  )   
ij i ij i ij
Y x X x ε= + + − + . If person i had an average value of 210

i
x =  across all Ji 

measures with the j
th

 measure being Xij=200 then for that person-visit tij,  

 30 0.9(210) 3(200 210)  1 89.  
ij

E Y += + − =⎡ ⎤⎣ ⎦  

Now for some technical asides;  First – the choice of the observed 
ki
x  as the “central 

tendency” of Xkij for subject i is necessary as “µki” a person’s “true average weight” over the 

entire time period is unknown, but for Ji large enough, 
ki
x  should be close to µki.  Thus while 

k,WS
β  only captures association with within subject change in in Xkij, k,BS

β  inherently contains 

some
k,WS

β  from deviation of (
ki
x  - µki); especially for small Ji.  Second -  the implicit 

assumption that 
k,WS

β is well defined may also not always be true.  For example 
k,

""
WS

β  could 

differ by time separation tj - tj’. Perhaps weight gain of 10 lbs. in one month creates a shock that 

hyper-elevates cholesterol, but a 10 lb. weight gain over 12 months does not; in which case 

'| 1j jWS t tβ − =  > 
'| 12j jWS t tβ − = .   But it is probably reasonable to assume that any such 

differences are minor. 

In spite of these technical limitations, Between/Within-Subject decomposition is used 

including to test if 
k,B k,S WS

β β=  in which case as shown in Section 2C they also equal 

,k CS
β and the separated BS, WS  decomposition can be collapsed.   Due to orthogonal 

decomposition of Xkij about
ki
x , this previous test for collapsing the BS, WS decomposition is a 

two sample z-test of parameter estimates from fitted models comparing 

k,B k, k,B k,
| / var( ) var( )ˆ ˆ ˆ ˆ|

S WS S WS
β β β β− +  to Z1-α/2 [16].  Between/Within subject 

decomposition is mostly used for inference on adjusted (causal) associations of the Xk,ij’s on Yij’s. 

It is typically not used to produce models to estimate future unknown Yij from
ij
X
%

as such is often 

done when only one observation per subject is available; hence 
kij kiX x≡ .  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/374124doi: bioRxiv preprint 

https://doi.org/10.1101/374124


	

	

	

9	

We refit the analyses of Table 1 to illustrate that the impact of choice of correlation structure 

(i.e GEE-IND Vs. GEE-E working correlations) is eliminated after making a Between – Within 

Subject decomposition.   There were no new HIV infections after study entry; so
, ,

 x
HIV ij HIV i
X

≡
 

making Within Subject association of HIV unmeasurable.  For Within Subject associations of 

BUN and Albumin, GEE-IND and GEE-E gave identical point estimates as centering about 
ki
x  

makes comparisons entirely within subject and invariant to these correlation choices (although 

within subject estimates would differ slightly if autoregressive (AR(1)) or other formulations for 

intrasubject correlation of residuals had been used).   There were small GEE-IND, GEE-E 

differences on the Between Subject slopes as has been observed elsewhere[17].  For example, the 

point estimate for between subject HIV status is -1.16; 95%CI (-4.21, 1.88) in the GEE-IND of 

Table 2 Vs. -1.57; 95% CI (-4.47, 1.33) with GEE-E.   

INSERT TABLE 2 HERE 

From now on, we only examine GEE-IND results for Between/Within subject decomposition 

models as GEE-E results are essentially similar (data not shown). For BUN, the GEE-IND the 

Between Subject
BUN,B
ˆ

S
β = -2.72, 95% CI (-3.10, -2.33) is qualitatively and statistically farther 

from 0 than the corresponding Within Subject slope; 
BUN,
ˆ

WS
β = -1.11, 95% CI (-1.34, -0.88).  But 

serum albumin goes the other way; the Within subject slope 
ALB,W
ˆ

S
β =-10.70, 95% CI (-12.99, -

8.40) is statistically further from 0 than the corresponding Between subject GEE-IND 
ALB,B
ˆ

S
β =-

3.27 with a 95% CI (-7.88, 1.33) that overlaps 0.  

   So how can one interpret differences in the Between and Within Subject slopes in 

particular for causal inference?  This depends on hypotheses of interest (and we do not have any 

for this illustrative example).   But general rules also apply although we are unaware of any 

systematic exploration of reasons that between 
BS

β
%

(or 
BS

β for K=1) could differ from within 

subject 
WS

β
%

(or 
WS

β ) slopes and implications for causal inference.   But before going to this here 

it is important to first note the relationship between, Cross Sectional, Within Subject and 

Between Subject slopes.   
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2C Relationship Between 
CS

β
%

,
WS

β
%

and
BS

β
%

.  
CS

β
%

 averages 
WS

β
%

 and 
BS

β
%

 according to relative 

variances of the within subject means Vs. the variance of the repeated measures about those 

sample means[16].  For example, with K=1, if 
2

x
σ
&

 is the population variance of the within person 

mean 
i
x  and

2

X x
σ

−
&

 is the population variance of the deviations of differences of the repeat 

measures Xij from their 
i
x , then 

2 2 2 2 2 2/ ( ) / ( )
CS BS x X x x WS X x X x x

β β σ σ σ β σ σ σ− − −= + + +
& & & & & &

.                                                 (3) 

In the previous example of weight and cholesterol with   30 0.9 x 3( x )  ,
ij i ij i ij
Y X ε= + + − +  if 

2
400

x
σ =
&

 and 
2

100
X x

σ
−
=

&

, then 0.9*400 / (100 400) 3*100 / (100 400)
CS

β = + + +  = 1.32.  If the 

sample means are more homogeneous in weight with 
2

x
σ
&

= 200 and 
2

X x
σ

−
&

= 100 still, then 
CS

β  

moves closer to
WS

β ;  0.9*200 / (100 200) 3*100 / (100 200)
CS

β = + + +  = 1.60. 

2D Working Correlation Structures for Model Residuals Other than Independence Can Lead to 

Unusable Results for Cross Sectional Regression.    

As noted earlier, fitting both MM and GEE repeated measure regression models involve 

specification of correlation (or working correlation) of εij within the same subject i.  We denote 

the working correlation structure by Vi which is a matrix. Typical choices for Vi are 

equicorrelation (E) with correlation of εij and εij’ for j ≠ j’ always the same value ρ and 

independence (IND); with correlation of εij and εij’ ≡ 0 as used in the illustrative examples of 

Table 1 and Table 2, and also AR(1) where correlation of  εij and εij’ is | '|j jρ −  [3].   Again, current 

guidance articles[4-12] emphasize choosing the Vi that most closely fits the true covariance 

structure of the residuals within i and/or by model fit criteria such as having lowest QIC for GEE 

and AIC for MM, as doing so often improves precision of the model parameter estimates.  

However, this approach may be wrong for Cross Sectional Regression, because using any 

correlation structure other than independence can introduce structural bias into ˆ
CS

β
%

 that the 

standard approaches used to chose the best working correlation structure such as intrasubject 

residual correlations, the AIC and QIC mentioned earlier do not account for[18, 19].   
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From Pepe & Anderson (1994)[18], for Cross Sectional Regression if 
ii
X
%

varies within i and, 

 [  | ]
ij ij

E XY
%

depends on 
, 'k ijX  for any k of a different replicate j’ in i                            (4) 

then no matter what true correlation structure of εij among repeated measures within a subject 

is, GEE-IND gives unbiased  estimates for 
CS

β
%

, but any MM or GEE model not using Vi = 

Independence,  gives biased estimates of 
CS

β
%

.   Thus the only working correlation structure that 

should be used to estimate 
CS

β
%

is Vi = IND.  However, if (4) does not hold, then any working 

correlation structure obtains unbiased estimates for 
CS

β
%

in which case, choosing the Vi that most 

accurately gives the correlation structure of εij minimizes the variance of ˆ
CS

β
%

. 

 If repeated measures j and j’ are thought of as “siblings” and the predictors as 

“exposures” then (4) means that even after considering the “self-exposure” of the current 

measure j through 
ij
X
%

,	the outcome Y has “Conditional Dependence On Sibling Exposures” (i.e. 

on 
, 'k ijX ). Thus the sibling exposure 

, 'k ijX  could be thought of as a “Co-DOSE” beyond the 

“dose” from the “self-exposure”.   Hence we use “Co-DOSE” to denote that (4) occurs.   

Also while this point has not very well made, for Cross Sectional Regression, Co-DOSE 

or (4) largely occurs if and only if Between and Within Subject slopes differ.  If Between and 

Within Subject slopes differ for any predictor (i.e. 
BS WS

β β≠
% %

) then Co-DOSE (4) happens.  But 

if the Between and Within Subject slopes are equal for all predictors (i.e. 
BS WS

β β=

% %

) then (4) 

does not occur.   More details on this and an illustration are given in Appendix 1.  But one trivial 

case is if the predictors are invariant within the same subject; (i.e. 
1 2

...
i i iJi i
X X X x≡ ≡ ≡ ≡
% % % %

  then 

the Within Subject slopes are not defined since 0
ij i
X x− ≡
% %

and for the same reason Co-DOSE 

cannot occur. While the mathematical details are beyond this paper, if 
BS WS

β β≠ , when 

IND≠
i
V , the non-zero covariances ρij > 0 besides adjusting for within i collinearity of εij also 

overweight the 
BS

β
%

 relative to 
WS

β
%

 in (3) pushing “Cross Sectional Regression” parameter 

estimates away from 
CS

β
%

 towards 
WS

β
%

[16].  Since robust covariance methods exist to adjust for 
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impact of misspecification of Vi=IND from collinearity of the εij on variance estimates in 

particular for GEE[3], IND=
i
V

 
can eliminate bias in estimating 

CS
β
%

 and still provide a 

conservative variance for the estimate. 

2E Implications for Clinical, Laboratory and Environmental Research.   Much of what has been 

presented above is not commonly understood and implemented in clinical, laboratory and 

environmental research.  Cross sectional models are typically fit, with 
CS

β
%

 interpreted to also be 

BS
β
%

 and 
WS

β
%

 without checking if these slopes are equal. Non-independence Vi is often used for 

Cross Sectional Regression without checking if Co-DOSE (4) exists.  Systematic 

epidemiological description of causal mechanisms for why Between and Within subject slopes 

can differ for clinical, laboratory and environmental measures have not been undertaken.  We 

thus do this next in Section 3.    

3. Classification	of	Epidemiological	Reasons	for	Between	and	Within	Subject	Slopes	to	Differ	

To make it easier for investigators to identify what could cause βk,WS  ≠  βk,BS  (or equivalently 

Co-DOSE) in given settings, (especially for clinical, laboratory and environmental) we classify 

major reasons this happens. For simplicity now let K=1 unless otherwise noted as the principles 

below extend to multivariate settings. 

3A. Change Effects.  We propose that the effect of a longitudinal within subject change in the 

predictor X could have a greater (or less) direct impact on Y than a long term standing difference 

in X between two different subjects (hence βWS ≠ βBS) and define this as a (c.f. short term) 

“Change Effect”.  Returning to the example of weight and cholesterol, consider two identical 

twins, A has lived his adult life at 
i
x =190 lbs. and B at 

'i
x =180 lbs.  If B undergoes a short term 

weight gain of 10 lbs. to 190 (
' 'i j i

X x− =10), assuming 
'i
x  not impacted by the rapid change, 

while A remains at 190 lbs. (
ij i
X x− =0), the shock or corollaries of this rapid change in “B” may 

raise his cholesterol level above that of “A’s” even though they both now weigh 190 lbs. 

meaning βWS > βBS and Co-DOSE (4) occurs.  But it should be noted that as was mentioned in 

Section 2B, in this setting, βWS would be undefined if say a 10 lb. gain in a shorter time period 

(i.e. 1 month) increases βWS more than does a 10 lb. gain over a longer time period (i.e. 12 

months).     
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        3B Lag Causality of X on Future Y.   The effect of prior levels of X on Y may independently 

project into the future (i.e. beyond that effect of the current level of X).  For example, consider 

an HIV infected person and two time points t1 < t2; let Xij be HIV viral load and Yij be CD4 

count.  High HIV levels destroy CD4 blood cells into the future. So as illustrated in Figure 2a, 

high HIV viral load at t1 may affect CD4 loss from t1 to t2 (lag causality of X at t1 on Y at t2) so 

that even if the person’s HIV viral load is low at t2, the high viral load at t1 is predictive of lower 

CD4 at t2 through that higher viral load at t1 having created more CD4 destruction between t1 and 

t2. Thus Yi,2|Xi2 at t2 is not independent of Xi,1 at t1; Co-DOSE (4) occurs and Within / Between 

Subject slopes differ;  βBS ≠ βWS.  Lag causality is often considered when serial measures of X = 

long term environmental exposures (such as air pollution) that effect chronic conditions Y (such 

as lung function) are obtained[3,20]. 

INSERT FIGURE 2 HERE 

    3C Reverse Lag Causality of X on Future Y.  The setting in Section 3B also manifests in the 

opposite direction if X is being used as to estimate Y that is causal for future X.    Reversing the 

previous example with X now being CD4 used to predict HIV viral load as Y, as Figure 2b 

illustrates, high viral load (Yi,1) at t1 may have degraded the CD4 count from t1 to t2.  Thus Yi,1|Xi1 

at t1  is not independent of Xi,2 at t2; Co-DOSE (4) occurs and Between / Within subject slopes 

differ ; βBS ≠ βWS.  

 

    3D Spillover Causality of X on Adjacent Y.  The setting of 3B can also manifest in 

repeated measure cross sectional settings based on geographical proximities.  Let the subjects (i) 

now be cities and j enumerate different neighborhoods in these cities.  The repeat measures are 

Xij = average air pollution of neighborhood j in city i and Yjj = average lung function of all 

residents living within neighborhood j of city i. A resident living in neighborhood j may work in 

different neighborhoods j’ of the same city and thus have “spillover exposure” to air in the 

neighborhood they work in, for a given city i, Yi,i|Xij is not independent of Xij’ and hence Co-

DOSE occurs. 

3E Common within Subject Measurement Bias. Shared within subject measurement bias 

occurs if all repeat measures from the same subject have the same positively correlated 

measurement bias. This was the setting described in Section 2B and Figure 1a with weight as 
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exposure for cholesterol.    Here with weight as a surrogate for body fat, the measurement bias 

was mediated by height with taller people being heavier independently of body fat than shorter 

persons which lead to βWS > βCS and Co-DOSE (4) when weight was a predictor of cholesterol. In 

this setting height is a measurement bias not as a confounder as height itself is not associated 

with cholesterol. We now present a similar setting where the unmeasured variable is a 

confounder.  

3F Common within Subject Confounding.  Figure 1b shows a diagrammatically similar 

phenomenon, that causes βWS ≠ βCS and Co-DOSE (4), common within subject confounding 

where now the extraneous factor shared by the repeated measures of the same subject is 

associated with Y.   For example, let the confounder variable Ci = sex of subject i (which does 

not change with j) not be in the model and the outcome Yi,j be a linear score for male pattern 

baldness at time j with again Xij
 
being weight at time j.  Now men are both heavier and 

independently of weight have greater male pattern baldness than women.  So Ci is associated 

with the outcome.  Here a 10 lb. weight difference in 2 persons, but not a within person increase 

of 10 lbs., could be informative of the heavier person more likely being male.  Hence for this 

example, βWS = 0 (assuming within person weight does not influence baldness), but βBS > 0 and 

hence also βCS > 0 reflecting unaddressed between subject confounding from heavier persons 

more likely to be men.  Similarly, Mancl, Leroux & DeRouen proposed that unmeasured 

treatment compliance as a confounder could lead to Between/Within subject slope differences 

when j enumerated different teeth in the same subject[17]. 

   In non-longitudinal settings where i denotes clusters (for example schools) and j denotes 

repeated subjects within that cluster (for example students), common within subject confounding 

is referred to as “contextual effects”[21,22]. For example as Robinson (1950)[13] observed, 

when X was race of the student (White=0, Black=1) and Y was achievement-score, a higher 
i
x   

(portion of a school’s students that were non-White) indicated weaker financial support for that 

school (weaker financial support being the confounder) and thus worse achievement-scores 

overall for that school; βBS was negative. But within the same school Black and White students 

performed equally well, thus βWS was 0.  Begg & Parides (2003) identify a similar setting in 

birthweight and IQ in families[23]. 
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3G Measure Error in X.ij Makes E[Yij|Xij] Dependent on Xij’  It has been shown that, measure 

error on X that is independent of Y[24] or correlated with Y[25] biases estimates for association 

of X with Y.  Now measure error can arise either from imprecision in an analysis instrument, 

such as in a machine quantifying components of serum, or in data collection process, such as the 

chemical composition of blood samples being non-informatively influenced by diurnal and other 

nuisance processes.  If Xij is incorrectly quantified due to such measure error, then Co-DOSE (4) 

occurs and Within / Between subject slopes differ, βBS ≠ βWS, because the biases being created 

from the measure error distribute differentially to different slopes.  Figure 3 shows, if Xi1 

incompletely measures the true state TXi1 (i.e. true BUN) then Xi2, is informative for TXi1 even 

after considering Xi1.    

INSERT FIGURE 3 HERE 

For example, Going back to the analysis of Table 1, let Xij = BUN and Yij = EGFR.  Let two 

persons have BUN of Xi1=10 mg/dL measured today but with Measure Error in BUN Assume the 

true BUN state changes slowly and after 6 months one of these persons measures Xi2=20 mg/dL 

while the other measures Xi2=5 mg/dL.  Since BUN changes slowly, it is more likely that the 

True BUN today (TXi1) of the former person is > 10 mg/dL and of the later is < 10 mg/dL. Thus, 

since i) EGFR (Yi1) directly depends on TXi1 not Xi1, and ii) Xi2 is informative on TXi1 after 

considering Xi1,  thus  iii) Yi1|Xi1  is not independent of Xi2 and similarly Yi2|Xi2  not independent 

of Xi1 meaning Co-DOSE (4) occurs and Between/Within subject slopes differ.   As Appendix 2 

shows, measure error on the exposure that is independent of the outcome pushes both βWS and βBS 

towards 0, but more so for βWS. Such tempering from averaged measure error has been proposed 

as a reason |βWS|<|βBS| was observed in dental research[17]. 

   But if Mij is correlated with Yij (most likely correlated with measure error on Yij[25]) the 

tempering of β’s from Mij will not be to 0.  For example, consider TX=CD8 and TY=CD4 cells 

which together are the almost exclusive components of serum lymphocytes (TZ) …. 

(i.e.,TY TZ TX≈ − ).   Physiologically TZ is constrained creating negative βBS, βWS and βCS for TYij 

on TXij; subjects with higher CD8 component of serum lymphocytes by converse having lower 

CD4 components.  But the measured lymphocyte count (Z) is subject to a correlated measure 

error that equally spreads onto X and Y; for example if a person is dehydrated, the entire 

lymphocyte (meaning both CD8=X and CD4=Y) portions of blood become higher.  If a person-
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sample has a high (or low) measured lymphocyte count Zij = TZij+Mij, due to such 

sampling/measurement error, Mij distributes onto both CD4 (Xij) and CD8 (Yij) components 

making both simultaneously higher (or lower).  Thus within person, higher measured CD4 count 

due to positive Mij is associated with higher measured CD8 as the “Mij” is shared making  βWS 

drawn towards being positive.  But βBS that tempers down Mij on both X and Y through averaging 

as shown in Appendix 2 for X is less affected.  

4. Predictors having Co-DOSE will bias adjusted parameter estimates of predictors not 

having Co-DOSE in cross sectional regression when Vi ≠ Independence is used 

Going back to Table 1, it was shown earlier that the adjusted  point estimate from GEE-IND 

  
β̂

HIV ,CS
for the adjusted cross sectional association of HIV with EGFR is still consistent for 

HIV,CS
β .  However, HIV infection status was constant over all replicates within the same subject 

so cannot have Co-DOSE (4) as the entire effect of HIV is mediated between subject, not within 

subject so the question arises whether the adjusted estimate from an non-independence 

correlation structure 
  
β̂

HIV ,CS−E
 can be biased for 

HIV,CS
β . Note, that for this section, we use 

  
β̂

XXX ,CS
 and  

  
β̂

XXX ,CS−E
to denote estimates for adjusted cross sectional association for variable 

XXX from models using independence and equicorrelation  structures, respectively. The added 

designation of “E” (CS-E) in the subscript for equicorrelation but none for independence 

correlation is made because the equicorrelation estimate (but not the independence estimate) can 

be biased.  The specific question addressed here is could having BUN and albumin that each 

have Co-DOSE (4) in the model bias the corresponding estimate for cross sectional adjusted HIV 

association from using equicorrelation  (
  
β̂

HIV ,CS−E
) so that it no longer is consistent for βHIV,CS in 

the multivariate model even though HIV itself is not Co-DOSE?  This is important as 
  
β̂

HIV ,CS−E  
= 

-2.04 95% CI (-5.07 0.98) qualitatively differs from 
  
β̂

HIV ,CS  
3.96 (-6.90, -1.03) in Table 1 with 

only 
  
β̂

HIV ,CS−E
 statistically (P < 0.01) differing from 0. 

   We believe 
  
β̂

HIV ,CS−E
 for HIV is biased away from βHIV,CS and to make this point refer to 

Table 3 which  presents normative data broken down by HIV status of the subjects.  A) From 
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Table 1, 
  
β̂

BUN ,CS−E
 is biased higher for

,BUN CS
β  (with GEE-E  

  
β̂

BUN ,CS−E  
 = -1.22  > 

BUN,
ˆ

CS
β  = -1.87 

for GEE-IND), while from Table 3, those who are HIV+ have higher mean BUN (12.94 Vs. 

12.10, p <0.0001 from GEE-IND).  Thus the full “negative effect” of the higher BUN in HIV+ 

subjects from 
,BUN CS

β  is underestimated by 
  
β̂

BUN ,CS−E
 and this pushes 

  
β̂

HIV ,CS−E
 down to 

compensate.  B) Similarly, from Table 1, 
  
β̂

ALB,CS−E
 is biased lower for βALB,CS (with GEE-E  

  
β̂

ALB,CS−E
 = -9.84 < 

ALB,
ˆ

CS
β  =-6.21) while from Table 3, HIV+ individuals have lower mean 

albumin; (3.97 Vs. 4.10, P < 0.0001 from GEE-IND).  Thus the “positive effect” of the lower 

albumin in HIV+ subjects from 
ALB,CS

β  is overestimated by 
  
β̂

ALB,CS−E
 which pushes 

  
β̂

HIV ,CS−E
 

further down to compensate.  C) Thus as Figure 4 shows, these deficits in A) and B) above are 

added to push 
  
β̂

HIV ,CS−E
 downwards from the true adjusted βHIV,CS.   Therefore, non-independence 

Vi can bias multivariate cross sectional parameter estimates of variables that do not carry Co-

DOSE (4) if other variables in the model carry Co-DOSE. 

INSERT TABLE 3 AND FIGURE 4 HERE 

5. Discussion  

    New GEE and MM cross sectional regression models from repeated measures of 

predictors that vary within subject that either use non-independence working correlations or do 

not state the correlation structure used continue to be published in the clinical, laboratory and 

environmental sciences literature.  These papers do not show awareness of the points presented 

in Sections 1–4. Specifically, they either; a) do not specify if the coefficients of interest are 
CS

β
%

, 

WS
β
%

 or 
BS

β
%

 nor check if 
BS WS

β β=

% %

, b) make potentially invalid 
CS

β
%

 interpretations from MM 

and GEE using non-independence correlation Vi’s, and/or c) do not justify the choice of non-

independence working correlations Vi in light of potential differences between 
WS

β
%

, 

BS
β
%

and
CS

β
%

. We found >30 such papers from a quick literature search (including some authored 

by us before becoming aware of these issues); this is probably only a fraction of the total.   
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   Yet papers published up to 65 years ago either warn against using non-independence 

working correlation structure in cross sectional regression with repeated measures[17,18], or to 

decompose the associations into Within Subject (
WS

β
%

) and “Between Subject” (
BS

β
%

) to make 

causal inference[13-16].  Numerous examples where
CS BS WS

β β β≠ ≠
% % %

 have been presented[13-

18,20-23]. While it was not covered in our paper, this includes fitting GEE models of binary 

outcomes where the issues discussed here also apply[17,26].   But these points are still not well 

known or emphasized in statistical software documentation and papers providing guidance on 

GEE and MM analyses (i.e.[4-12]).    

One problem that impedes acceptance of Within Subject (
WS

β
%

) and “Between Subject” 

(
BS

β
%

) decomposition is that it leads to much more complicated models that are very difficult to 

explain.  Still some studies in environmental research have considered one mechanism described 

in Section 3.  For example, lag causality has been considered in longitudinal analyses of 

association of air pollution on health measures[3].   Other air pollution / health studies have fit 

Within and Between Subject decompositions using cities as the subject and neighborhoods as the 

repeated measures within the city[27-30]. Most often in these studies the magnitude was greater 

for Within subject slope | |
WS

β  >  | |
BS

β , but sometimes | |
BS

β  >  | |
WS

β   meaning possibly 

multiple etiologies are involved. Those papers that did attempt to explain the reasons for the 

differences described common within subject confounding (Section 3E), such as unmodeled 

pollutants that were correlated between (but not within) cities with the modeled pollutants of 

interest as a potential reason. 

We concur with others[17,18], that Cross Sectional Regression with repeated measures 

should use independence as the default working correlation unless justification is given to use 

other Vi .  While non-independence Vi can improve precision [20] they can considerably bias 

estimates for cross sectional parameters
CS

β
%

; including perhaps towards what the investigator 

wants to see.  For example in Table 1, P < 0.01 for was observed association with HIV in GEE-E 

compared to the more appropriate P=0.19 from GEE-IND.   
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While showing this is beyond the scope of our paper, when Vi is not independence, factors 

such as Ji and magnitude/structure of εij strongly influence parameter estimates for 
CS

β
%

from the 

misfitted Cross Sectional Models allowing the misfitted estimate to arbitrarily range from 
WS

β
%

 to 

CS
β
%

.  Standardization is important; and as such factors will arbitrarily vary between studies, 

parameter estimates of 
CS

β
%

 become harder to compare across studies when Vi differs at 

discretion of investigators.  The working correlation structure used in Cross Sectional 

Regressions using repeated measures should thus always be reported. 

We also concur with others [13-17,21-23] that in spite of the difficulties in identifying why 

“Within” and “Between subject slopes differ, causal inference analyses with repeated measures 

should initially make such decompositions and investigators be wary if there are qualitative 

differences between 
BS

β
%

and 
WS

β
%

.  The example, Table 2 with 584 subjects and 10,782 

measurements demonstrated need for ,  
BS WS

β β
% %

decomposition to make causal inference (as well 

as for using GEE-IND in cross sectional regression).  But a smaller study could have been less 

clear-cut.  If the same point estimates for 
BS

β
%

and 
WS

β
%

seen in Table 2 were observed but did not 

statistically differ, one would be tempted to merge 
BS

β
%

and
WS

β
%

 into a combined 
CS

β
%

 at least for 

some variables as standard model fitting practice promotes parsimony when statistical 

significance is not observed.   This would be particularly true if for a given variable, k, neither 

,
ˆ
k WS

β  nor 
,
ˆ
k BS

β statistically differed from 0, but 
,
ˆ
k CS

β  did.  If such collapsing is done, it may still 

be important to report ˆ
BS

β
%

and ˆ
WS

β
%

for comparison to future studies and target potential 

mechanisms for Between/Within slope differences as described in Section 3.     

   Unfortunately, Between/Within Subject decomposition expands required analyses and 

presentation.  Statistical software mostly does not have standard subroutines to do this.  

Decomposition can be tedious if 
,k i

x is recalculated to maintain orthogonal decomposition of Xk,ij 

as new models are fit if observations are excluded from the Ji due to missing values of newly 

included variables.  The fact that 
,k i

x  is ill-defined by averaging the Xk,ij  rather than being a true 
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mean for subject i creates confusion about interpretation of ˆ
BS

β
%

 which can also be influenced by 

within subject slopes as noted in Section 2B. 

When ˆ
BS

β
%

 and 
W

ˆ
S

β
%

 differ, the causal mechanisms as to why this happens should be 

explored.  For example, in Table 2 with EGFR as the outcome, for BUN the Between Subject 

slope  
,

 2 7ˆ . 2
BUN BS

β = −  (from GEE-IND) was statistically farther from 0 in the expected 

direction of association than was the Within Subject slope 
,

1ˆ 1 . 1
BUN WS

β −= .  But albumin went 

the other way; Within Subject slope 
ALB,W
ˆ 10.70

S
β −  was statistically farther from 0 than was 

Between Subject slope 
,W

ˆ 3.27
BUN S

β = − .    So what are the potential reasons for this? 

While lag/reverse lag causality between serum BUN and creatinine (the main component of 

calculated EGFR) which could reduce magnitude of βBUN,WS Vs. βBUN,BS (Sections 3B and 3C), 

this was unlikely given separation of visits was 6 months and internal biochemistry operates over 

shorter time periods.  But independent measure error on BUN (Section 3E) would temper 

|βBUN,WS| relative to |βBUN,BS|.  Several articles find greater; coefficient of variation [31,32], within 

person change[31,32], assay error[32],  and sample degradation for serum BUN Vs. albumin 

measures[33], all of which could reflect BUN having larger independent measure error than does 

albumin that would selectively temper 
,W

ˆ
BUN S

β  (i.e., more than
  
β̂

ALB,W S
) to 0.   

Conversely, serum creatinine and albumin are both constrained into the intravascular fluid 

compartment and will noninformatively increase together with greater hydration and decrease 

with less hydration of this compartment inducing positively correlated measurement error; much 

as was the case for measured CD4 and CD8 cells in the last paragraph of Section 3F.  As 

creatinine factors inversely into EGFR calculation, this would constitute negative correlation of 

measure error between albumin and EGFR and selectively bias 
  
β̂

ALB,W S
to be more negative than 

  
β̂

ALB,BS
.  However, BUN, which crosses across all body compartments, is less subject to such 

correlation in measure error with creatinine and thus with EGFR. 
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When Between and Within subject slopes differ,    ( ) 
BS WS

β β≠
% %

 it is unclear which is the “least 

confounded/biased”, including the possibility that by “averaging” the different biases in each that 

CS
β
%

could be least biased.  There may be a heuristic perception to believe that by “matching 

within the same subject”, 
WS

β
%

 is superior to 
  
!

β
BS

and 
CS

β
%

, but this is not necessarily true as 

Measure Error on X (Section 3F) and lag / reverse lag and spillover causality (Sections 3B-3D) 

can in fact bias 
WS

β
%

 to a larger degree than happens for 
  
!

β
BS

and 
CS

β
%

.   

To conclude, for decades it has been known by some that when exposures vary within 

subjects in repeated measures regression then, i) Cross Sectional Regression using 

Vi=Independence working correlation should be the default if building a model to estimate a 

future unknown Y is the goal, and ii) Between/Within subject decompositions of slopes should at 

least initially be fit when building models for causal inference.  Yet this advice rarely makes it 

into published guidelines and hence is not heeded; perhaps in part due to complexity of the 

settings where Between and Within Subject slopes differ and limited substantive study of the 

mechanisms that cause such differences.  Clinical, laboratory and environmental studies should 

explore and quantify reasons for bias that occur in order to provide groundwork to improve 

future studies. To that end, analyses using repeated measures regression should investigate if 

Between and Within Subject slopes differ and when they do, try to identify the reasons for this 

including; change effect, lag/reverse lag and spillover causality, shared within subject 

measurement bias or confounding, and/or measure error on exposures. 
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Table 1 – Cross Sectional Regression Using GEE
1
 of EGFR = HIV infection, Serum Albumin and BUN 

in the Bronx WIHS 

 

 

 

Variable 

Working Correlation Structure
2
 

 

Independence 
 

Equicorrelation
 

Point 

Estimate 

95% CI Z-Value 

(P) 

Point 

Estimate 

95% CI Z-Value  

(P) 

HIV Infection  

(βHIV,CS) 

-2.04 (-5.07 0.98) -1.32  

(0.19) 

-3.96 (-6.90, -1.03) -2.65 

(0.0081) 

Albumin Per g/dL  

(βALB,CS) 

-6.21 (-8.95, -3.47) -4.44 

(<0.0001) 

-9.84 (-12.01, -7.68) -8.93 

(<0.0001) 

BUN Per  mg/dL  

(βBUN,CS) 

-1.87 (-2.12, -1.62) -14.45 

(<0.0001) 

-1.22 (-1.46, -0.99) -10.30 

(<0.0001) 

Quasi-Information 

Criteria (QIC)  

 

10847.14 

 

10836.27 

1. Mixed models gave essentially similar point estimates 

2. Intraclass correlation of residuals from GEE-E was 0.45 indicating non-independence correlation 

was structurally correct.    

 

 

 

 

Table 2 – Between Subject and Within Subject Decomposition Regression  Using GEE
1
 for EGFR = HIV 

Infection, Albumin and BUN in the Bronx WIHS 

Variable 

 

Compartment Independence Working 

Correlation
 

Equicorrelation Working 

Correlation
 

Point 

Estimate 

95% CI Z-Value 

(P) 

Point Estimate 95% CI Z-Value  

(P) 

HIV 

Infection  

Between Subject 

(βHIV,BS) 

-1.16 (-4.21, 

1.88) 

-0.75 

(0.45) 

-1.57 (-4.47, 

1.33) 

-1.06 

(0.29) 

NA
2 

--- --- --- NA
2
 --- --- 

Albumin 

Per  g/dL  

Between Subject 

(βALB,BS) 

-3.27 (-7.88,  

1.33)  

-1.39 

(0.16) 

-2.71 (-7.00  

 1.57) 

-1.24 

(0.21) 

Within Subject 

(βALB,WS) 

-10.70 (-12.99   

-8.40) 

-9.16 

(<0.0001) 

-10.70 (-12.99   

-8.40) 

-9.16 

(<0.0001) 

BUN Per  

mg/dL 

 

Between Subject 

(βBUN,BS) 

-2.72 (-3.10, 

-2.33) 

-13.89 

(<0.0001) 

-2.65 (-3.01   

-2.08) 

-14.21 

(<0.0001) 

Within Subject 

(βBUN,WS) 

-1.11 (-1.34,  

-0.88) 

-9.31 

(<0.0001) 

-1.11 (-1.34,  

-0.88) 

-9.31 

(<0.0001) 

1. Mixed models gave essentially similar point estimates 

2. There is no Within Subject Variation for HIV Infection Status  
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Table 3 – Means ± Standard Deviation of EGFR Serum Albumin and BUN Broken Down by HIV Status 

Across all Repeated Measures Used in Tables 1 and 2 

Variable  For HIV+ Subjects (496 persons 

7,326 Replicates) 

For HIV- Subjects (178 persons 

3,456 Replicates) 

EGFR 90.3±27.2 92.4±25.0 

BUN 12.94±5.71 12.10±5.30 

Albumin 3.97±0.44 4.14±0.36 
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FIGURES 
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APPENDIX 1–  Homology Between Co-DOSE (4) Occurrence and Between and Within 

Subject Slopes being the Same or Differing  

Figure 5 illustrates using the example of Section 2B (with K = 1) that Co-DOSE (4)” 

occurs if 
BS WS

β β≠
% %

. Remember that in this example, βBS=0.9, βWS=3, βCS=1.60.  Now let J=2.   

So for the Between / Within Subject decomposition model;  30 0.9 3 ( - )
ij i ij i

E Y x X x⎡ ⎤⎣ = + +⎦ .  If 

the overall mean of Xij for all repeat measures in the sample was 180 (i.e. 
2

1 1

/ (2 ) 180
n

ij

i j

X n
= =

=∑∑ ) 

then the full cross sectional model is  96 1.60( )
ij ijE Y X=− +⎡ ⎤⎣ ⎦ .  If a subject’s two weight 

measures are Xi1=200 and Xi2 =220, then for the first measure, the Cross Sectional model 

estimates
1  96  1.| 60 (200)  224

ij i
E Y X⎡ ⎤⎣ =− + =⎦ .  But since Xi2 =220 and 

i
x  = 210, as we saw 

earlier Between/Within Subject decomposition gives; 

( ) ( )1 2  30| 0.9 210  200 – 210 189, 3
ij i i

E Y X X = + +⎦ =⎡ ⎤⎣ .  Thus E[Y1j|Xi1] is not independent of Xi2 

since Xi2 is informative of where 
i
x  falls and the slope for (Xij - i

x  ) is different than the slope 

for 
i
x  when 

BS WS
β β≠ .  But if 

BS WS
β β= , Xi2 is non-informative on Yi1|Xi1 as E[Yij] = αCS + βCS 

Xi1 = αCS + βCS (Xi1 - i
x ) + βCS 

i
x  = αWS/BS + βWS (Xi1 - i

x ) + βBS i
x  since

BS WS
β β= . 

INSERT FIGURE 5 HERE 

As Ji≡2, in the prior example, the second observation was deterministic for
i
x . But for Ji > 

2, additional Xij’ go into computation of 
i
x  are thus still informative on relative contributions of 

iBS
 xβ and ( )WS ij iX xβ+ − on E[Yij|Xij].  For βWS not well defined, additional Xij’ may still be 

informative on a ( )BS WS ii ijXx x  β β+ −&& decomposition with [ ]
WS WS

Eβ β=&& .  

Whether or not Co-DOSE (4) occurs also informs if 
BS WS

β β= .  If for a given j, 

[ | ]
jij i

E Y X is independent of all other
'ij

X , then [ | ]
jij i

E Y X is independent of 
1

/

iJ

ij i

j

i X Jx
=

=∑ , 

which only happens if
BS WS

β β= . But if [ | ]
jij i

E Y X is not independent of other
'ij

X , then; i) if 

,  0|( )i iij jxC Xorr Y ≠ , then 
WS

β (if well defined) ≠ 
BS

β , ii) otherwise if ,  0|( )i iij jxC Xorr Y = , then 

WS
β is not well defined.   
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APPENDIX 2– Illustration that Measurement Error Which is Independent of the 

Outcome Pushes βWS and βBS to Zero With Greater Impact on βWS. 

To illustrate this for K=1, let there always be the same number of replicates, J,  per 

subject and assume in the absence of Measure Error, βWS = βBS = βCSR.  For example, let 

  5  
ij ij

E Y  TX=⎡ ⎤⎣ ⎦  = )  5  5( )ij i iijE Y  (TX tx tx⎡ ⎤ − +⎣ ⎦= , for simplicity the intercept is 0.   But we 

observe
ij ij ij

X  TX  M= +  where Mij is Measure Error with variance 2

M
σ  that is independent 

across all i’s and j’s and also from Yij.  Let TXij vary with j within i as follows; 
ij i ijTX  TC  TR= +  

where TCi is a central tendency of TX for subject i, while TRij is within subject i repeated visit 

variation in TX across the j’s. Let 2

C
σ  and 2

R
σ  be variances of TCi and TRij, respectively.   

Now Var(Xij) = 2 2 2( )
C R M

σ σ σ+ +  ,  Cov(Xij,Yij) =  2 25( )
C R

σ σ+ so βCS = 
2 2

2 2 2

5( ) 
C R

C R M

σ σ

σ σ σ+ +

+
;   

Var(
i
x ) = 2 2 2( / / J)

C R M
Jσ σ σ+ +  ,  Cov(

i
x ,Yij) = 2 25( / )

C R
Jσ σ+ so βBS = 

2 2

2 2 2

5( / )

/

 

/

C R

C R M

J

J J

σ σ

σ σ σ

+

+ +
; 

Var(
ij i
X x− )= 2 2[(J 1) / ]( )

R M
J σ σ+− , Cov( ( )

ij i
X x− , (Y )

ij i
y− ) = 25 [(J 1) / ]

R
Jσ −  so βWS= 

2

2 2

( )5  
R

R M

σ

σ σ+
 

For example, let 2

C
σ = 8, 2

R
σ =2 and 2

M
σ = 10 and J=5.  The entire variance of Xij is 20 of 

which half, 10, is from Measure Error, 8 is variation of the central tendency of X between subjects 

and 2 is variation of X within subject.   Then βCS = 5(10)/20 = 2.5, βBS = 5(8.4)/10.4 = 4.03 and 

βWS = 5(2)/12 = 0.83.   Considering that without Measure Error, true Between and Within person 

slopes both = 5, Measure Error has greatly tempered βWS=0.83 towards 0 while βBS=4.03 is the 

least tempered.  This happens because βBS most fully retains the signal in X, but tempers M 

through averaging, while βWS more fully retains M while excluding the between subject signal in 

X.    
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