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Abstract

We propose a new approach for detecting repeated pat-

terns on a grid in a single image. To do so, we detect repeti-

tions in the space of pre-trained deep CNN filter responses

at all layer levels. These encode features at several con-

ceptual levels (from low-level patches to high-level seman-

tics) as well as scales (from local to global). As a result,

our repeated pattern detector is robust to challenging cases

where repeated tiles show strong variation in visual appear-

ance due to occlusions, lighting or background clutter. Our

method contrasts with previous approaches that rely on key-

point extraction, description and clustering or on patch cor-

relation. These generally only detect low-level feature clus-

ters that do not handle variations in visual appearance of

the patterns very well. Our method is simpler, yet incorpo-

rates high level features implicitly. As such, we can demon-

strate detections of repetitions with strong appearance vari-

ations, organized on a nearly-regular axis-aligned grid Re-

sults show robustness and consistency throughout a varied

database of more than 150 images.

1. Introduction

Repeated patterns are ubiquitous, especially in man-

made environments like cities (see Fig 6). They provide

insight about the structure of the elements they compose

and can give strong geometric or semantic cues. As such,

their detection can be beneficial to many algorithms in com-

puter vision and graphics. For example, it can be used for

retrieval of images with similar patterns in a database, or

for disambiguation of pixel matching in a structure from

motion pipeline [26]. Several repetitions can also provide

multiple viewpoints on a similar pattern, which can be use-

ful for estimating reflectance for instance [1].

Automating repetition detection in a single image is a

challenging task as it is not even well understood how hu-

mans handle it: repetitions suddenly occur, but there is no

principled definition of that mechanism. Perfect repetitions

are trivial to detect, e.g., a checkerboard pattern observed

in a fronto-parallel way. In real-life conditions however,

most repetitions are irregular in either or both their spa-

tial positioning and/or visual content (the G and A scores

in [10], respectively). In this paper, we substantially im-

prove on the robustness of repetition detections w.r.t. intra-

pattern visual content variation by exploiting feature activa-

tions produced by running a pre-trained convolutional neu-

ral network (CNN) on a target image. To demonstrate the

gained robustness w.r.t. this intra pattern variation, we pur-

posefully limit the structural complexity by detecting repe-

titions organized on a nearly-regular axis-aligned grid. Our

algorithm is the first to incorporate CNN for this task.

Many algorithms have tackled spatial deviation from

regularity and thus handle perspective distortion or even

random positioning for example [8, 9]. Robustness to visual

content variation has been less attended to. That is because

these variations are complex: they can be induced by natural

variations (e.g., lighting conditions, weathering) or simply

by visual variance among semantically similar classes (e.g.,

human faces) or context (e.g., belonging to a foreground or

background item). Hence, it requires handcrafting a com-

plex and robust feature detector and algorithm.

In this work, we explore the capabilities of pre-trained

CNN for this task. CNN can be seen as a multi-level feature

extractor, ranging from low-level and local image patches

to high-level semantic classes. Hence, we think it is the

right space to tackle the problem (see Fig 1). As a result,

our approach heavily simplifies repeated pattern detection

by alleviating the cumbersome classical process of feature

extraction, description and clustering in a single step of run-

ning a CNN on an image, leveraging a simpler yet robust

pipeline providing the estimated grid.
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Figure 1. Illustration of our pipeline. i) An image is run through the convolutional filters of a CNN, producing activations that peak at

repetitive locations at several scales. ii) A voting scheme defines the most consistent displacement vector on strong activations in the

Hough voting space. iii) An Implicit Pattern Model representing the tile is computed and correctly aligned to the repetitions. iv) Instances

of repetitive tiles are detected and produce the layout of the grid.

1.1. Related Work

Convolutional neural networks (CNN) have been suc-

cessfully applied in many computer vision problems such

as object detection [19], classification [4], image segmenta-

tion [11] or text recognition [24]. They exist in many fla-

vors and shapes, yet they share the common pattern of a

convolutional part followed by fully connected layers and

a final classifier [5]. They proved their ability to capture

natural image statistics and real world variations. It was

shown in [12] that the learned convolutional filters repre-

sent useful visual concepts of increasing complexity rang-

ing from low-level and local image patches (e.g., edges,

ridges) to high-level semantic elements (e.g., fences, win-

dows) inferred from more global information. We want to

use this descriptiveness to simplify the repeated pattern de-

tection task and make it robust. In this work, we focus on

the convolutional part of the trained CNN which can be ap-

plied on inputs of arbitrary size1. The convolutional layers

of the network apply multiple convolution filters on a target

image and produce “activations”. We explore these activa-

tions to detect spatially repeated patterns.

Repeated elements have been used in various different

tasks to segment objects [18] or reconstruct 3D appear-

ance from multiple occurrences of the same structure [26]

in a single image without any other prior knowledge about

the scene. Repetition detection algorithms can be analyzed

from two points of view: pattern definitions (i.e., what they

are composed of) and pattern layout assumptions (i.e., how

they are arranged in the image).

It is still a bit of a philosophical question what de-

fines a repeated pattern. Hence, there is no common way

of detecting nor benchmarking detections. A pattern is

commonly associated with clustered local features such

as keypoints [21, 15], stable regions [16] or even whole

tiles [17, 9]. A more recent algorithm combines constella-

tions of local features into more complex patterns [8]. Rep-

etitions are not expected to be perfect. Rather, tolerance to

appearance and geometry changes, as caused by change in

1Still, the approximate scales of objects in the training and testing

stages should be similar.

lighting or intra-class pattern variation, is favored. Hence,

features have to be carefully designed to be robust to that.

We avoid this cumbersome process.

The assumptions about the structure of the repeated pat-

tern differ as well: 1- or 2-dimensional lattice [2, 15],

fronto-parallel projection [27], thin plate spline warped

lattice [14] or more general unstructured “stamps” on

a plane [16, 8]. For handling perspective transforma-

tions, rectification can be applied by detecting vanishing

points [22, 25]. Alternatively, co-variant keypoints can de-

tect canonical shapes of a blob or region and use the as-

sumption of multiple occurrences of the element to rectify

the dominant plane [2, 16]. Multiple planes were studied

for geolocalization in urban environments [18].

We tackle the case of detecting repeated elements or ob-

jects on a regular pre-rectified lattice, and improve on the

variance that repeated elements can show while still being

detected. Thanks to the automatic multi-level feature ex-

traction and clustering provided by CNNs, a deeper under-

standing of repetitions is obtained. This allows for exam-

ple transparent structures in front of a complex and varying

background to be detected more robustly, while not com-

promising on low-level features when they are of impor-

tance. Finally, to partially compensate for the lack of com-

mon benchmarks, we provide a manually annotated ground

truth dataset on which we quantitatively evaluate our algo-

rithm.

1.2. Overview

In section 2, we detail why and how we exploit spatially

recurring patterns in the space of pre-computed CNN re-

sponses to infer repetitions in image space. Section 3 de-

scribes algorithmic details regarding parameter tuning. Fi-

nally, in section 4, we present qualitative and quantitative

results of our method, showing more robustness and consis-

tency over state of the art methods.

2. Repeated Pattern Detection

The standard local feature based approach for detecting

repeated patterns uses a pipeline consisting of keypoint ex-
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traction and description, descriptor clustering, displacement

vector extraction and finally pattern model creation and in-

stances detection [8] or structure modeling [14]. We in-

tend to replace the keypoint extraction, description and clus-

tering stages of the pipeline – that are traditionally hand-

crafted – by the activations of filters in the convolutional

layers. These are both more descriptive and simpler to ob-

tain. The convolutional filters in each layer are learned dur-

ing the pre-training of the network, where they are forced

to yield sparse, invariant and sufficiently complete repre-

sentations of the parts in the training images. A natural hi-

erarchy of filters with increasing complexity arises as the

outputs of the lower levels are inputs for the next. The first

layer filters respond mainly to low level image features such

as corners, lines or colors, while the higher layers capture

more conceptual features. To exploit this, we extract ac-

tivation peaks of the response maps using a standard non-

maxima suppression procedure. These activation peaks will

form the base observations of similarity used to detect and

describe the repeated patterns. This simple procedure al-

leviates key challenges of the keypoint approach by trans-

forming the keypoint detection, description and clustering

into a simple application of convolutional filters. This re-

quires a good algorithm for fusing the activations across

multiple layers, with their different scales and conceptual

levels, which is our core contribution.

2.1. Consistent Displacement Vector Selection

When a pattern repeats regularly on a grid, CNN filters

generate characteristic regular activation peaks that follow

the grid structure. To explore this regularity across different

filters and layers, we fuse vectors linking pairs of activation

peaks by a Hough-like voting in the image domain.

Let us denote by fl a filter fl : R
2 → R, fl ∈ Fl

of layer l ∈ L, where L is a set of convolutional lay-

ers. Let p : R
2, p ∈ Pfl be the location of an acti-

vation peak of filter fl, and Pfl be the set of activation

peaks of the filter fl. For every pair of peaks pi, pj ∈
Pfl , we form a set Dfl of displacement vectors Dfl =
{

di,j : |pi − pj |, ∀pi, pj ∈ Pfl , i �= j
}

. where |.| denotes

the element-wise absolute value on vectors. Displacement

vectors for all filters and all layers cast votes into the dis-

placement vector Hough voting space V : R2 → R. To re-

flect the uncertainty of the localization of activation peaks,

due to different resolutions and strides of the filters, every

displacement vector vote is modeled with a 2D normal dis-

tribution centered at di,j with σl corresponding to the layer

l. Additionally, to normalize the overall energy of each fil-

ter fl, the vote is weighted by the number of displacement

vectors |Dfl | across all layers and filters, formally:

V =
∑

x∈R2

∑

l∈L
fl∈Fl

1

|Dfl |

∑

di,j∈Dfl

Vfl,i,j (1)

Figure 2. Voting for displacement vectors illustration. Top: regular

pattern with small lighting effects, occluded grid and transparent

fence, respectively. Bottom: cast votes for displacement vectors.

The peaks’ coordinates (reddest dots) correspond to the separation

vectors of the strongest repetitions.

where

Vfl,i,j =
1

2π
√

|Σ|
exp

(

−
1

2
(x− di,j)⊤Σ−1(x− di,j)

)

Σ =

(

σ2

l 0
0 σ2

l

)

Assuming an axis-aligned rectangular grid, we extract the

most consistent displacement vector d∗ as the maxima of

the voting space on the x and y axes:

d∗ = (argmax
x

Vx,0, argmax
y

V0,y) (2)

Examples of the displacement vector voting space V are

shown in Fig 2.

2.2. Repeated Pattern Model

Once a displacement vector d∗ has been selected, we

construct a model of the repeated pattern. The model is in-

spired by the Implicit Shape Model (ISM) with its weighted

votes [6]. This construction consists of three steps. First,

we find the consistent set of filters that composes the pattern

responsible for the strongest displacement vector. Second,

the implicit pattern model (IPM) is built from the votes on

those filters in the displacement vector space. Finally the

newly created IPM is used to detect instances of the pattern,

on which a model of the grid structure is fitted.

2.2.1 Filter Selection

The first step, filter selection aims to pick the filters with

activation peaks most consistent with the selected displace-

ment vector d∗. We gather all the votes of displacement

vectors di,j consistent with d∗, called consistent votes D∗
fl

:

D∗
fl

= {di,j ∈ Dfl : ||d
i,j − d∗|| < 3 ∗ αl}, (3)
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Figure 3. Lattice detection voting cast by the learned IPM. Red

dots show the maxima used for defining the final grid.

where parameter αl describes the radius of the neighbor-

hood considered at layer l as the close surrounding of the

selected displacement vector. The consistent votes are then

attributed with weights wi,j,fl :

wi,j,fl =
1

|Dfl |+ φ
· exp

(

−
||di,j − d∗||2

2α2

l

)

(4)

where φ is a flat prior estimated from the expected number

of repetitions computed on the distribution of D∗
fl

. The in-

tuition behind the selection of this parameter is in the grid

assumption. In the ideal case, all filters respond to a spe-

cific part of the tile, i.e. approximately the same number

of times. The first component of Eqn. (4) sets the balance

between filters having a lot of activation peaks, e.g., on an

uniform texture, and filters having significantly smaller than

expected numbers of repetitions. The second component

of Eqn. (4) exponentially down-weights votes based on the

distance to the expected location of d∗.

The weight of a particular filter wfl is given as the sum

of the weights of its consistent votes:

wfl =
∑

di,j∈D∗

fl

wi,j,fl (5)

Finally, filters in every layer l are ordered by wfl to select

the set of consistent filters F∗
l that will participate in the

repeated pattern model. The filters with weights larger than

δlw
∗
fl

are kept, where w∗
fl

is the highest weight among the

filters in Fl, and δ is a threshold parameter controlling the

specificity of the pattern (see section 3.2).

2.2.2 Implicit Pattern Model

The IPM created for the tile of the pattern will use the con-

sistent votes of the selected filters F∗
l to vote for the centroid

of the tile. To gather the relative locations of displacement

vector votes, we first reduce them in modulo space:

M : R
2 → [0, d∗x]× [0, d∗y]

M(v) →
(

vx mod d∗x, vy mod d∗y
)

Figure 4. Example of a failed displacement vector estimate and

lattice voting: model corrupted due to the spatial non-regularity in

the pattern combined with the strong appearance changes.

However this arbitrary reduction produces patterns that are

randomly placed w.r.t. the information sources (e.g., in be-

tween 2 windows on the façades). To correct it, and produce

a meaningful centroid of the pattern, we compute the offset

o∗ = (ox, oy) that minimizes the weighted average distance

of the consistent votes to the center of the pattern:

o∗ = argmin
o

∑

l∈L

fl∈F
∗

l

di,j
∈D

∗

fl

wi,j,f∗

l
||M(di,j − o)− d∗/2|| (6)

2.2.3 Lattice Detection Voting

Similarly to the ISM [6], the lattice detection voting pro-

cess takes the activation peaks of the selected filters F∗
l and

casts votes for the centroid of the tile corresponding to their

weights in the model. Successful examples of such voting

can be seen in Fig. 3 and an example of voting with a model

corrupted by the non-regular positioning of the patterns is

shown in Fig. 4.

Finally, the lattice is detected by fitting an elastic model

of a 2-dimensional grid using RANSAC to the extracted

maxima of the implicit model voting (last step in Fig. 1).

3. Technical Details

3.1. Feature pre-computation

We use the Caffe deep learning framework [3] to load

the CaffeNet network pre-trained on the ImageNet dataset.

The convolutional part of the network is applied on the full

resolution images and the activations of convolutional filters

at each level are kept and further analyzed. The structure

of the network replicates AlexNet [5] and is composed of

five convolutional layers (further referenced by Ci | i ∈
{0, . . . , 4}), with resp. 96, 256, 384, 384 and 256 filters.
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At each layer, each filter is convolved with the activations

of the filters at the previous layer. At the first layer, it is

convolved with the three color channels of the input image.

The filter sizes are (11× 11), (5× 5), (3× 3), (3× 3) and

(3× 3), respectively. The two first layers have a stride of 2

while the last three have a minimal window stride of 1, i.e.

come with evaluations at every location of the input.

3.2. Parameter Setting

Three parameters influence the method’s accuracy. To

optimize them, we performed a grid search over each of

the most important parameters independently, keeping all

others fixed. The results produced were then used to ob-

serve the global optimum and the trend. We guided our

search with the quantitative evaluation measuring preci-

sion and recall w.r.t. our ground truth dataset (see Sec-

tions 4.1 and 4.4).

Expected Number of Repetitions φ. The first important

parameter is a flat prior φ introduced in Eqn. (5). It is a

percentile related to the number of consistent votes. The

intuition behind this parameter is that with a fixed, given

number of repetitions, the majority of the consistent filter

responses should vote once per observed occurrence of the

repeated tile. Filter responses showing partial regularity

should be penalized for the misses. Its role is to compen-

sate for overfitting the weights to filters which have only

few peak activations. If no flat prior was used, the weight

of those votes becomes relatively high with respect to other

filters. This biases the pattern model towards such filters,

which can be considered as an overfit. The optimization

procedure showed that a value between 80th and 90th per-

centiles produced the best results. Lower values increased

the number of missed detections. In the remainder of this

paper, we used the value of φ = 80th percentile.

Consistent Displacement Vector Precision αl. This is

a set of parameters (standard deviations) that define the

size of the neighborhood around the selected displacement

vector d∗ considered for the creation of the implicit pat-

tern model. They are primarily linked to the robustness of

the collection of the filters composing the pattern model,

namely its robustness to noise and the imprecision in the

peak localization. This is even more important at higher

layers where the interpolation and the max-pooling present

in the network might shift the correct peak from its optimal

location. To account for the different resolutions of the lay-

ers and different spatial extents of the convolution filters,

we use different values for each layer.

The range of values giving the best results is between

[3,6,10,10,10] and [5,7,15,15,15] pixels (respectively for

[α1, α2, α3, α4, α5]). For the lower values, only a couple

of filters with very precisely localized activation peaks will

be considered. This results in an overfit to these filters

and reduces the robustness of the implicit pattern model on

slightly distorted parts of the pattern, thus decreasing the de-

tection performance. Higher values did not show improve-

ments in detection performance as it reached an apparent

asymptote. In the remainder of this paper, we used the value

of [α1, α2, α3, α4, α5] = [5, 7, 15, 15, 15] percentile.

Filter Selection Threshold δ. The filter selection thresh-

old controls the fraction of filters considered for the pattern

model construction by removing filters less than δ times

lower than the highest filter’s weight at every layer. Too

high values make the model too selective, ending up in an

increased fraction of missing tiles or failures in lattice de-

tection. Lower values augment the general descriptiveness

of the pattern at the cost of specificity, too low values tend

to flatten the detection peak and increase the false positive

detections. In this paper, we used the value of δ = 0.65

The experiments with the baseline algorithm revealed a

couple of observations. First, the displacement vector can

be guessed most of the time with even a small number of

keypoints correctly extracted in the image and clustered to-

gether. The number of these non-random occurrences ap-

pearing on the pattern are enough to make a significant peak

in the displacement vector space. The main drawback of

the keypoints based method is the non-consistency along

the pattern instances, i.e., the corresponding keypoints are

not detected on every instance of the pattern or detected

at a slightly different location. Consequently, the result-

ing significant appearance variations lead to assignment of

the corresponding keypoints into different clusters. This

produces a bigger number of clusters of smaller size mak-

ing them harder to distinguish from clusters that consists of

non-pattern or background keypoints.

4. Results

In this section we present qualitative and quantitative re-

sults of our algorithm and compare to the state of the art

when suitable (sections 4.3 and 4.4, respectively). To allow

for quantitative evaluation, we first introduce the dataset we

compiled, with associated manual ground truth labels (sec-

tion 4.1). Then we present the state of the art algorithms

we compare to, including a custom-built baseline method

allowing fair assessment (section 4.2).

4.1. Dataset and Ground Truth Annotation

We composed the Nearly-Regular Pattern (NRP) dataset

that is in line with the scope of our contribution. It con-

tains rectified images with repetitions lying on a regular or

slightly irregular grid. We expect the former to be well

handled, the latter will show the extent and possible lim-

its of our regularity assumption. In either cases, repetitions
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Figure 5. Examples of ground truth image annotations. We define

a regular grid and label each cell as green (instance of a repetitive

item), yellow (instances with strong appearance changes) or red

(not an instance of the repetitive pattern).

at higher conceptual levels are included, something tradi-

tional datasets do not provide. The existing public dataset

for near-regular texture detection is focused on textures and

symmetries of the tiles, and the grid usually covers the

whole image [7]. We kept images that satisfy our axis-

aligned grid assumption. We also added our own images

whose manual rectification form an almost perfect grid with

very similar tiles. We have decided to use the ECP façade

dataset [20] and particularly the CVPR 2010 subset, com-

posed of 109 rectified images of façades. We ran our al-

gorithm on the full NRP dataset. Results are provided as a

supplementary document.

To quantitatively evaluate our results, we manually anno-

tate our dataset and will make our labels publicly available.

As we already highlighted, there is no common definition

of repetitive patterns. Hence, a ground truth dataset is still a

subjective choice. We aim at imperfect types of repetitions

rather than perfectly repeated tiles, similarly to what human

beings would notice. So we loosely defined four labels as

follows (see Fig. 5). First, a regular “most consensual” grid.

Then rectangles shown in red are labeled as non-repeated

elements with either heavy occlusion or substantially dif-

ferent appearance. The rectangles shown in yellow are bor-

der cases. They exhibit strong appearance changes, but still

represent the same semantic element, e.g., windows par-

tially obstructed by sparse vegetation or shutters. Finally,

green elements are unobstructed tiles that may also exhibit

appearance changes, but that would undoubtedly be labeled

as repeated by a human observer. In the following, we con-

sider green and yellow labels to be positive repetitions of

the same pattern.

Figure 6. Results of the proposed repeated pattern detection algo-

rithm on repetitions exhibiting different levels of noise and visual

appearance changes.

4.2. Baseline and Related Work

We considered comparing to two state of the art meth-

ods. GRASP is the state of that art among generic methods,

i.e., assuming no grid [8]. It is keypoint-based. Among

lattice-based methods, the work of Park et al. is a refer-

ence and uses the classical feature design and clustering ap-

proach [14]. Qualitative observation shows that averaged

numerical comparison with these methods would be unfair,

as they fail dramatically in some cases (see section 4.3).

Hence, we built a custom baseline method to quantitatively

and qualitatively assess the impact of the feature space.

We implemented a baseline algorithm that replaces the

convolutional features with state of the art handcrafted key-

point features in our framework. In detail, the convolutional

feature extraction and the hierarchical displacement vec-

tor voting is replaced by a keypoint detection, description

and clustering procedure. The other parts of the algorithm

(i.e., displacement vector selection, implicit pattern model

creation and pattern instance detection) remain unchanged.

Keypoints are detected using scale and affine covariant fea-

ture detectors (provided by [23]), and SIFT descriptors are

computed on the normalized patches [13]. SIFT was cho-

sen for its proven descriptiveness and robustness. To ex-

ploit the fronto-parallel constraint of our setup, the domi-

nant orientation was not computed and all descriptors were

vertically aligned. The Affinity Propagation clustering al-

gorithm with a damping value of 0.5 was preferred to alle-
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Figure 7. Qualitative comparison to related work: GRASP [8], [14] (best of 3 randomly-initialized runs) and our baseline. While related

work is distracted by appearance variations in at least one of the images, our method allows for robust detection of repeated patterns.

viate the cumbersome selection of the number of clusters.

To reflect the size and uncertainty in localization of the key-

points on higher scales, the scale of the keypoints is used to

distribute the votes during displacement vector voting and

implicit pattern model creation.

4.3. Qualitative Evaluation

In this qualitative evaluation we present the lattices de-

tected by our algorithm on a variety of challenging images

of the NRP dataset in Figs. 6 and 7. Our method perfectly

detects regular grids exhibiting small illumination and ap-

pearance variations (Fig. 6, top left, and Fig. 7, left). Sim-

ilarly, partially transparent repeated patterns on cluttered

background are well detected (Fig. 6, top right, and Fig. 7,

second image). Finally, occlusions of the repeated pattern

and strong pattern irregularities are also satisfyingly de-

tected (Fig. 6, row 2 and Fig. 7, last two images). Note

that there is no manual parameter tuning involved: all ex-

amples were processed by the same algorithm. We kindly

refer the reader to the supplemental document to see results

on the full dataset.

When pattern appearances change too much from one

instance to another (e.g., drastic lighting changes, clut-

tered background, occlusions), keypoint methods strug-

gle, because they need distinctive local neighborhoods to

match. Fig. 7 compares our results to related work. While

GRASP [8] tackles a much wider problem of detecting un-

constrained patterns, it should reliably work on our less gen-

eral problem (i.e., regular grid). However, their keypoint-

based approach is distracted by heavy background clutter

(second image), misses positives close to occluded areas

(middle) or lighting changes (right). Similarly, with [14]

significant background variations and occlusions hinder op-

timal detection. Our method conversely takes advantage of

the high-level convolutional layer filters which capture non-

local semantic information to correctly detect repetition.
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Keypoint Baseline Our work

Prec. Recall Prec. Recall

Reg. façades 92.72 56.52 86.94 93.23

Irreg. façades 77.19 57.42 76.35 91.19

Reg. PSU 94.52 50.65 79.37 99.27

Irreg. PSU 92.41 46.16 63.71 93.86

All images 92.52 51.80 81.70 94.46

Table 1. Summary of quantitative results. Average precision and

recall (in %) over different portions of our dataset.

4.4. Quantitative Evaluation

The dataset with ground truth was used for quantitative

evaluation: we computed precision and recall averaged over

the set. Comparison to related work is difficult here: it

would be unfair for [14] because detection fails dramatically

on some particular images (Fig. 7, right), and is impossible

to quantify for GRASP [8] as no grid is detected. Hence,

we compare to our baseline and evaluate the added value of

using CNN features.

Table 1 summarizes quantitative evaluation over differ-

ent subsets of our dataset: façades and PSU data, both di-

vided in regular (still showing significant appearance vari-

ations) and non-regular (e.g., non-regular spacing between

repetitive elements). While our method degrades precision,

recall is dramatically improved. That is, we detect nearly all

positives, but still tend to detect too many. Note that this is

also relative to subjective ground truth annotations. For ex-

ample (cf. façade images in Fig. 7): a roof window is often

detected by our method, while we annotated it as a negative

repetition of a (non-roof) window.

Finally, computing CNN activations is generally faster

than the keypoint-based pipeline. Our non-optimized algo-

rithm takes tens of seconds to minutes to extract a grid. Re-

lated work have similar computation times but have to be

launched several times to find a good random initialization.

4.5. Discussion

We have emphasized that our algorithm takes advantage

of high-level features. Rather, we like to think of it as “se-

lecting” the most important features in the multi-layer space

of CNN activations. As an illustration, Fig. 8 (top) shows a

repetitive pattern of 5 × 4 squares. As humans, we (only)

used our high-level understanding to annotate each square

as a repeated element (left). Conversely, our algorithm ex-

ploited both high-level knowledge to identify the squares,

and low-level color comparisons to find out that every fourth

(vertical) or fifth (horizontal) square is identical (right).

In some cases, this is arguable: in Fig. 8 (bottom), it

is unclear which pattern should be favored. Our algorithm

tends to favor large pattern repetitions which are expressed

Figure 8. Surprising results. Left: our ground truth annotation.

Right: grid detected by our algorithm, which differs. Top: human

annotation was surpassed by our algorithm, which detected that

every 5×4 squares form a repeated pattern. Bottom: our algorithm

made the arguable choice of favoring the smaller repetitions.

throughout all layers, from shallow to deep. Conversely,

smaller repetitions may be too small to be visible in the

deeper activation maps, which are of low resolution in the

architecture we chose [5]. Adapting the architecture could

cancel this effect. Nevertheless, consistent small patterns

can be strongly expressed in the shallower layers and hence

be detected as the major repetition (cf. Fig. 8, second row).

5. Conclusion

We presented an algorithm that uses learned filters of

CNN convolutional layers for extraction and description of

translational repetitions in images. This new way of tack-

ling repeated pattern detection alleviates key challenges in

the old keypoint clustering based approaches, and brings

robustness to differences in visual appearance and seman-

tic level of the repetition (e.g., foreground or background).

As a result, elements of the repetition that vary significantly

in appearance but contain some well-aligned parts are de-

tected. We demonstrated the capabilities on a manually an-

notated dataset of very challenging regular and non-regular

façades and repetitive patterns which will be made publicly

available. The proposed algorithm achieved high recall on

most images. The degree of allowable variation is defined

by the learned convolutional neural network which com-

bines the repetitions at multiple conceptual levels. An in-

teresting future work consists of adapting CNN training for

target scenes or data (e.g., urban, paintings), with the hope

of boosting performance.
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